• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1  //===-- UnrollLoop.cpp - Loop unrolling utilities -------------------------===//
2  //
3  //                     The LLVM Compiler Infrastructure
4  //
5  // This file is distributed under the University of Illinois Open Source
6  // License. See LICENSE.TXT for details.
7  //
8  //===----------------------------------------------------------------------===//
9  //
10  // This file implements some loop unrolling utilities. It does not define any
11  // actual pass or policy, but provides a single function to perform loop
12  // unrolling.
13  //
14  // The process of unrolling can produce extraneous basic blocks linked with
15  // unconditional branches.  This will be corrected in the future.
16  //
17  //===----------------------------------------------------------------------===//
18  
19  #include "llvm/Transforms/Utils/UnrollLoop.h"
20  #include "llvm/ADT/SmallPtrSet.h"
21  #include "llvm/ADT/Statistic.h"
22  #include "llvm/Analysis/AssumptionCache.h"
23  #include "llvm/Analysis/InstructionSimplify.h"
24  #include "llvm/Analysis/LoopIterator.h"
25  #include "llvm/Analysis/LoopPass.h"
26  #include "llvm/Analysis/ScalarEvolution.h"
27  #include "llvm/IR/BasicBlock.h"
28  #include "llvm/IR/DataLayout.h"
29  #include "llvm/IR/DiagnosticInfo.h"
30  #include "llvm/IR/Dominators.h"
31  #include "llvm/IR/LLVMContext.h"
32  #include "llvm/Support/Debug.h"
33  #include "llvm/Support/raw_ostream.h"
34  #include "llvm/Transforms/Utils/BasicBlockUtils.h"
35  #include "llvm/Transforms/Utils/Cloning.h"
36  #include "llvm/Transforms/Utils/Local.h"
37  #include "llvm/Transforms/Utils/LoopUtils.h"
38  #include "llvm/Transforms/Utils/SimplifyIndVar.h"
39  using namespace llvm;
40  
41  #define DEBUG_TYPE "loop-unroll"
42  
43  // TODO: Should these be here or in LoopUnroll?
44  STATISTIC(NumCompletelyUnrolled, "Number of loops completely unrolled");
45  STATISTIC(NumUnrolled, "Number of loops unrolled (completely or otherwise)");
46  
47  /// RemapInstruction - Convert the instruction operands from referencing the
48  /// current values into those specified by VMap.
RemapInstruction(Instruction * I,ValueToValueMapTy & VMap)49  static inline void RemapInstruction(Instruction *I,
50                                      ValueToValueMapTy &VMap) {
51    for (unsigned op = 0, E = I->getNumOperands(); op != E; ++op) {
52      Value *Op = I->getOperand(op);
53      ValueToValueMapTy::iterator It = VMap.find(Op);
54      if (It != VMap.end())
55        I->setOperand(op, It->second);
56    }
57  
58    if (PHINode *PN = dyn_cast<PHINode>(I)) {
59      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
60        ValueToValueMapTy::iterator It = VMap.find(PN->getIncomingBlock(i));
61        if (It != VMap.end())
62          PN->setIncomingBlock(i, cast<BasicBlock>(It->second));
63      }
64    }
65  }
66  
67  /// FoldBlockIntoPredecessor - Folds a basic block into its predecessor if it
68  /// only has one predecessor, and that predecessor only has one successor.
69  /// The LoopInfo Analysis that is passed will be kept consistent.  If folding is
70  /// successful references to the containing loop must be removed from
71  /// ScalarEvolution by calling ScalarEvolution::forgetLoop because SE may have
72  /// references to the eliminated BB.  The argument ForgottenLoops contains a set
73  /// of loops that have already been forgotten to prevent redundant, expensive
74  /// calls to ScalarEvolution::forgetLoop.  Returns the new combined block.
75  static BasicBlock *
FoldBlockIntoPredecessor(BasicBlock * BB,LoopInfo * LI,ScalarEvolution * SE,SmallPtrSetImpl<Loop * > & ForgottenLoops)76  FoldBlockIntoPredecessor(BasicBlock *BB, LoopInfo* LI, ScalarEvolution *SE,
77                           SmallPtrSetImpl<Loop *> &ForgottenLoops) {
78    // Merge basic blocks into their predecessor if there is only one distinct
79    // pred, and if there is only one distinct successor of the predecessor, and
80    // if there are no PHI nodes.
81    BasicBlock *OnlyPred = BB->getSinglePredecessor();
82    if (!OnlyPred) return nullptr;
83  
84    if (OnlyPred->getTerminator()->getNumSuccessors() != 1)
85      return nullptr;
86  
87    DEBUG(dbgs() << "Merging: " << *BB << "into: " << *OnlyPred);
88  
89    // Resolve any PHI nodes at the start of the block.  They are all
90    // guaranteed to have exactly one entry if they exist, unless there are
91    // multiple duplicate (but guaranteed to be equal) entries for the
92    // incoming edges.  This occurs when there are multiple edges from
93    // OnlyPred to OnlySucc.
94    FoldSingleEntryPHINodes(BB);
95  
96    // Delete the unconditional branch from the predecessor...
97    OnlyPred->getInstList().pop_back();
98  
99    // Make all PHI nodes that referred to BB now refer to Pred as their
100    // source...
101    BB->replaceAllUsesWith(OnlyPred);
102  
103    // Move all definitions in the successor to the predecessor...
104    OnlyPred->getInstList().splice(OnlyPred->end(), BB->getInstList());
105  
106    // OldName will be valid until erased.
107    StringRef OldName = BB->getName();
108  
109    // Erase basic block from the function...
110  
111    // ScalarEvolution holds references to loop exit blocks.
112    if (SE) {
113      if (Loop *L = LI->getLoopFor(BB)) {
114        if (ForgottenLoops.insert(L).second)
115          SE->forgetLoop(L);
116      }
117    }
118    LI->removeBlock(BB);
119  
120    // Inherit predecessor's name if it exists...
121    if (!OldName.empty() && !OnlyPred->hasName())
122      OnlyPred->setName(OldName);
123  
124    BB->eraseFromParent();
125  
126    return OnlyPred;
127  }
128  
129  /// Unroll the given loop by Count. The loop must be in LCSSA form. Returns true
130  /// if unrolling was successful, or false if the loop was unmodified. Unrolling
131  /// can only fail when the loop's latch block is not terminated by a conditional
132  /// branch instruction. However, if the trip count (and multiple) are not known,
133  /// loop unrolling will mostly produce more code that is no faster.
134  ///
135  /// TripCount is generally defined as the number of times the loop header
136  /// executes. UnrollLoop relaxes the definition to permit early exits: here
137  /// TripCount is the iteration on which control exits LatchBlock if no early
138  /// exits were taken. Note that UnrollLoop assumes that the loop counter test
139  /// terminates LatchBlock in order to remove unnecesssary instances of the
140  /// test. In other words, control may exit the loop prior to TripCount
141  /// iterations via an early branch, but control may not exit the loop from the
142  /// LatchBlock's terminator prior to TripCount iterations.
143  ///
144  /// Similarly, TripMultiple divides the number of times that the LatchBlock may
145  /// execute without exiting the loop.
146  ///
147  /// If AllowRuntime is true then UnrollLoop will consider unrolling loops that
148  /// have a runtime (i.e. not compile time constant) trip count.  Unrolling these
149  /// loops require a unroll "prologue" that runs "RuntimeTripCount % Count"
150  /// iterations before branching into the unrolled loop.  UnrollLoop will not
151  /// runtime-unroll the loop if computing RuntimeTripCount will be expensive and
152  /// AllowExpensiveTripCount is false.
153  ///
154  /// The LoopInfo Analysis that is passed will be kept consistent.
155  ///
156  /// This utility preserves LoopInfo. It will also preserve ScalarEvolution and
157  /// DominatorTree if they are non-null.
UnrollLoop(Loop * L,unsigned Count,unsigned TripCount,bool AllowRuntime,bool AllowExpensiveTripCount,unsigned TripMultiple,LoopInfo * LI,ScalarEvolution * SE,DominatorTree * DT,AssumptionCache * AC,bool PreserveLCSSA)158  bool llvm::UnrollLoop(Loop *L, unsigned Count, unsigned TripCount,
159                        bool AllowRuntime, bool AllowExpensiveTripCount,
160                        unsigned TripMultiple, LoopInfo *LI, ScalarEvolution *SE,
161                        DominatorTree *DT, AssumptionCache *AC,
162                        bool PreserveLCSSA) {
163    BasicBlock *Preheader = L->getLoopPreheader();
164    if (!Preheader) {
165      DEBUG(dbgs() << "  Can't unroll; loop preheader-insertion failed.\n");
166      return false;
167    }
168  
169    BasicBlock *LatchBlock = L->getLoopLatch();
170    if (!LatchBlock) {
171      DEBUG(dbgs() << "  Can't unroll; loop exit-block-insertion failed.\n");
172      return false;
173    }
174  
175    // Loops with indirectbr cannot be cloned.
176    if (!L->isSafeToClone()) {
177      DEBUG(dbgs() << "  Can't unroll; Loop body cannot be cloned.\n");
178      return false;
179    }
180  
181    BasicBlock *Header = L->getHeader();
182    BranchInst *BI = dyn_cast<BranchInst>(LatchBlock->getTerminator());
183  
184    if (!BI || BI->isUnconditional()) {
185      // The loop-rotate pass can be helpful to avoid this in many cases.
186      DEBUG(dbgs() <<
187               "  Can't unroll; loop not terminated by a conditional branch.\n");
188      return false;
189    }
190  
191    if (Header->hasAddressTaken()) {
192      // The loop-rotate pass can be helpful to avoid this in many cases.
193      DEBUG(dbgs() <<
194            "  Won't unroll loop: address of header block is taken.\n");
195      return false;
196    }
197  
198    if (TripCount != 0)
199      DEBUG(dbgs() << "  Trip Count = " << TripCount << "\n");
200    if (TripMultiple != 1)
201      DEBUG(dbgs() << "  Trip Multiple = " << TripMultiple << "\n");
202  
203    // Effectively "DCE" unrolled iterations that are beyond the tripcount
204    // and will never be executed.
205    if (TripCount != 0 && Count > TripCount)
206      Count = TripCount;
207  
208    // Don't enter the unroll code if there is nothing to do. This way we don't
209    // need to support "partial unrolling by 1".
210    if (TripCount == 0 && Count < 2)
211      return false;
212  
213    assert(Count > 0);
214    assert(TripMultiple > 0);
215    assert(TripCount == 0 || TripCount % TripMultiple == 0);
216  
217    // Are we eliminating the loop control altogether?
218    bool CompletelyUnroll = Count == TripCount;
219    SmallVector<BasicBlock *, 4> ExitBlocks;
220    L->getExitBlocks(ExitBlocks);
221    Loop *ParentL = L->getParentLoop();
222    bool AllExitsAreInsideParentLoop = !ParentL ||
223        std::all_of(ExitBlocks.begin(), ExitBlocks.end(),
224                    [&](BasicBlock *BB) { return ParentL->contains(BB); });
225  
226    // We assume a run-time trip count if the compiler cannot
227    // figure out the loop trip count and the unroll-runtime
228    // flag is specified.
229    bool RuntimeTripCount = (TripCount == 0 && Count > 0 && AllowRuntime);
230  
231    if (RuntimeTripCount &&
232        !UnrollRuntimeLoopProlog(L, Count, AllowExpensiveTripCount, LI, SE, DT,
233                                 PreserveLCSSA))
234      return false;
235  
236    // Notify ScalarEvolution that the loop will be substantially changed,
237    // if not outright eliminated.
238    if (SE)
239      SE->forgetLoop(L);
240  
241    // If we know the trip count, we know the multiple...
242    unsigned BreakoutTrip = 0;
243    if (TripCount != 0) {
244      BreakoutTrip = TripCount % Count;
245      TripMultiple = 0;
246    } else {
247      // Figure out what multiple to use.
248      BreakoutTrip = TripMultiple =
249        (unsigned)GreatestCommonDivisor64(Count, TripMultiple);
250    }
251  
252    // Report the unrolling decision.
253    DebugLoc LoopLoc = L->getStartLoc();
254    Function *F = Header->getParent();
255    LLVMContext &Ctx = F->getContext();
256  
257    if (CompletelyUnroll) {
258      DEBUG(dbgs() << "COMPLETELY UNROLLING loop %" << Header->getName()
259            << " with trip count " << TripCount << "!\n");
260      emitOptimizationRemark(Ctx, DEBUG_TYPE, *F, LoopLoc,
261                             Twine("completely unrolled loop with ") +
262                                 Twine(TripCount) + " iterations");
263    } else {
264      auto EmitDiag = [&](const Twine &T) {
265        emitOptimizationRemark(Ctx, DEBUG_TYPE, *F, LoopLoc,
266                               "unrolled loop by a factor of " + Twine(Count) +
267                                   T);
268      };
269  
270      DEBUG(dbgs() << "UNROLLING loop %" << Header->getName()
271            << " by " << Count);
272      if (TripMultiple == 0 || BreakoutTrip != TripMultiple) {
273        DEBUG(dbgs() << " with a breakout at trip " << BreakoutTrip);
274        EmitDiag(" with a breakout at trip " + Twine(BreakoutTrip));
275      } else if (TripMultiple != 1) {
276        DEBUG(dbgs() << " with " << TripMultiple << " trips per branch");
277        EmitDiag(" with " + Twine(TripMultiple) + " trips per branch");
278      } else if (RuntimeTripCount) {
279        DEBUG(dbgs() << " with run-time trip count");
280        EmitDiag(" with run-time trip count");
281      }
282      DEBUG(dbgs() << "!\n");
283    }
284  
285    bool ContinueOnTrue = L->contains(BI->getSuccessor(0));
286    BasicBlock *LoopExit = BI->getSuccessor(ContinueOnTrue);
287  
288    // For the first iteration of the loop, we should use the precloned values for
289    // PHI nodes.  Insert associations now.
290    ValueToValueMapTy LastValueMap;
291    std::vector<PHINode*> OrigPHINode;
292    for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
293      OrigPHINode.push_back(cast<PHINode>(I));
294    }
295  
296    std::vector<BasicBlock*> Headers;
297    std::vector<BasicBlock*> Latches;
298    Headers.push_back(Header);
299    Latches.push_back(LatchBlock);
300  
301    // The current on-the-fly SSA update requires blocks to be processed in
302    // reverse postorder so that LastValueMap contains the correct value at each
303    // exit.
304    LoopBlocksDFS DFS(L);
305    DFS.perform(LI);
306  
307    // Stash the DFS iterators before adding blocks to the loop.
308    LoopBlocksDFS::RPOIterator BlockBegin = DFS.beginRPO();
309    LoopBlocksDFS::RPOIterator BlockEnd = DFS.endRPO();
310  
311    for (unsigned It = 1; It != Count; ++It) {
312      std::vector<BasicBlock*> NewBlocks;
313      SmallDenseMap<const Loop *, Loop *, 4> NewLoops;
314      NewLoops[L] = L;
315  
316      for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) {
317        ValueToValueMapTy VMap;
318        BasicBlock *New = CloneBasicBlock(*BB, VMap, "." + Twine(It));
319        Header->getParent()->getBasicBlockList().push_back(New);
320  
321        // Tell LI about New.
322        if (*BB == Header) {
323          assert(LI->getLoopFor(*BB) == L && "Header should not be in a sub-loop");
324          L->addBasicBlockToLoop(New, *LI);
325        } else {
326          // Figure out which loop New is in.
327          const Loop *OldLoop = LI->getLoopFor(*BB);
328          assert(OldLoop && "Should (at least) be in the loop being unrolled!");
329  
330          Loop *&NewLoop = NewLoops[OldLoop];
331          if (!NewLoop) {
332            // Found a new sub-loop.
333            assert(*BB == OldLoop->getHeader() &&
334                   "Header should be first in RPO");
335  
336            Loop *NewLoopParent = NewLoops.lookup(OldLoop->getParentLoop());
337            assert(NewLoopParent &&
338                   "Expected parent loop before sub-loop in RPO");
339            NewLoop = new Loop;
340            NewLoopParent->addChildLoop(NewLoop);
341  
342            // Forget the old loop, since its inputs may have changed.
343            if (SE)
344              SE->forgetLoop(OldLoop);
345          }
346          NewLoop->addBasicBlockToLoop(New, *LI);
347        }
348  
349        if (*BB == Header)
350          // Loop over all of the PHI nodes in the block, changing them to use
351          // the incoming values from the previous block.
352          for (unsigned i = 0, e = OrigPHINode.size(); i != e; ++i) {
353            PHINode *NewPHI = cast<PHINode>(VMap[OrigPHINode[i]]);
354            Value *InVal = NewPHI->getIncomingValueForBlock(LatchBlock);
355            if (Instruction *InValI = dyn_cast<Instruction>(InVal))
356              if (It > 1 && L->contains(InValI))
357                InVal = LastValueMap[InValI];
358            VMap[OrigPHINode[i]] = InVal;
359            New->getInstList().erase(NewPHI);
360          }
361  
362        // Update our running map of newest clones
363        LastValueMap[*BB] = New;
364        for (ValueToValueMapTy::iterator VI = VMap.begin(), VE = VMap.end();
365             VI != VE; ++VI)
366          LastValueMap[VI->first] = VI->second;
367  
368        // Add phi entries for newly created values to all exit blocks.
369        for (succ_iterator SI = succ_begin(*BB), SE = succ_end(*BB);
370             SI != SE; ++SI) {
371          if (L->contains(*SI))
372            continue;
373          for (BasicBlock::iterator BBI = (*SI)->begin();
374               PHINode *phi = dyn_cast<PHINode>(BBI); ++BBI) {
375            Value *Incoming = phi->getIncomingValueForBlock(*BB);
376            ValueToValueMapTy::iterator It = LastValueMap.find(Incoming);
377            if (It != LastValueMap.end())
378              Incoming = It->second;
379            phi->addIncoming(Incoming, New);
380          }
381        }
382        // Keep track of new headers and latches as we create them, so that
383        // we can insert the proper branches later.
384        if (*BB == Header)
385          Headers.push_back(New);
386        if (*BB == LatchBlock)
387          Latches.push_back(New);
388  
389        NewBlocks.push_back(New);
390      }
391  
392      // Remap all instructions in the most recent iteration
393      for (unsigned i = 0; i < NewBlocks.size(); ++i)
394        for (BasicBlock::iterator I = NewBlocks[i]->begin(),
395             E = NewBlocks[i]->end(); I != E; ++I)
396          ::RemapInstruction(&*I, LastValueMap);
397    }
398  
399    // Loop over the PHI nodes in the original block, setting incoming values.
400    for (unsigned i = 0, e = OrigPHINode.size(); i != e; ++i) {
401      PHINode *PN = OrigPHINode[i];
402      if (CompletelyUnroll) {
403        PN->replaceAllUsesWith(PN->getIncomingValueForBlock(Preheader));
404        Header->getInstList().erase(PN);
405      }
406      else if (Count > 1) {
407        Value *InVal = PN->removeIncomingValue(LatchBlock, false);
408        // If this value was defined in the loop, take the value defined by the
409        // last iteration of the loop.
410        if (Instruction *InValI = dyn_cast<Instruction>(InVal)) {
411          if (L->contains(InValI))
412            InVal = LastValueMap[InVal];
413        }
414        assert(Latches.back() == LastValueMap[LatchBlock] && "bad last latch");
415        PN->addIncoming(InVal, Latches.back());
416      }
417    }
418  
419    // Now that all the basic blocks for the unrolled iterations are in place,
420    // set up the branches to connect them.
421    for (unsigned i = 0, e = Latches.size(); i != e; ++i) {
422      // The original branch was replicated in each unrolled iteration.
423      BranchInst *Term = cast<BranchInst>(Latches[i]->getTerminator());
424  
425      // The branch destination.
426      unsigned j = (i + 1) % e;
427      BasicBlock *Dest = Headers[j];
428      bool NeedConditional = true;
429  
430      if (RuntimeTripCount && j != 0) {
431        NeedConditional = false;
432      }
433  
434      // For a complete unroll, make the last iteration end with a branch
435      // to the exit block.
436      if (CompletelyUnroll) {
437        if (j == 0)
438          Dest = LoopExit;
439        NeedConditional = false;
440      }
441  
442      // If we know the trip count or a multiple of it, we can safely use an
443      // unconditional branch for some iterations.
444      if (j != BreakoutTrip && (TripMultiple == 0 || j % TripMultiple != 0)) {
445        NeedConditional = false;
446      }
447  
448      if (NeedConditional) {
449        // Update the conditional branch's successor for the following
450        // iteration.
451        Term->setSuccessor(!ContinueOnTrue, Dest);
452      } else {
453        // Remove phi operands at this loop exit
454        if (Dest != LoopExit) {
455          BasicBlock *BB = Latches[i];
456          for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB);
457               SI != SE; ++SI) {
458            if (*SI == Headers[i])
459              continue;
460            for (BasicBlock::iterator BBI = (*SI)->begin();
461                 PHINode *Phi = dyn_cast<PHINode>(BBI); ++BBI) {
462              Phi->removeIncomingValue(BB, false);
463            }
464          }
465        }
466        // Replace the conditional branch with an unconditional one.
467        BranchInst::Create(Dest, Term);
468        Term->eraseFromParent();
469      }
470    }
471  
472    // Merge adjacent basic blocks, if possible.
473    SmallPtrSet<Loop *, 4> ForgottenLoops;
474    for (unsigned i = 0, e = Latches.size(); i != e; ++i) {
475      BranchInst *Term = cast<BranchInst>(Latches[i]->getTerminator());
476      if (Term->isUnconditional()) {
477        BasicBlock *Dest = Term->getSuccessor(0);
478        if (BasicBlock *Fold = FoldBlockIntoPredecessor(Dest, LI, SE,
479                                                        ForgottenLoops))
480          std::replace(Latches.begin(), Latches.end(), Dest, Fold);
481      }
482    }
483  
484    // FIXME: We could register any cloned assumptions instead of clearing the
485    // whole function's cache.
486    AC->clear();
487  
488    // FIXME: Reconstruct dom info, because it is not preserved properly.
489    // Incrementally updating domtree after loop unrolling would be easy.
490    if (DT)
491      DT->recalculate(*L->getHeader()->getParent());
492  
493    // Simplify any new induction variables in the partially unrolled loop.
494    if (SE && !CompletelyUnroll) {
495      SmallVector<WeakVH, 16> DeadInsts;
496      simplifyLoopIVs(L, SE, DT, LI, DeadInsts);
497  
498      // Aggressively clean up dead instructions that simplifyLoopIVs already
499      // identified. Any remaining should be cleaned up below.
500      while (!DeadInsts.empty())
501        if (Instruction *Inst =
502                dyn_cast_or_null<Instruction>(&*DeadInsts.pop_back_val()))
503          RecursivelyDeleteTriviallyDeadInstructions(Inst);
504    }
505  
506    // At this point, the code is well formed.  We now do a quick sweep over the
507    // inserted code, doing constant propagation and dead code elimination as we
508    // go.
509    const DataLayout &DL = Header->getModule()->getDataLayout();
510    const std::vector<BasicBlock*> &NewLoopBlocks = L->getBlocks();
511    for (std::vector<BasicBlock*>::const_iterator BB = NewLoopBlocks.begin(),
512         BBE = NewLoopBlocks.end(); BB != BBE; ++BB)
513      for (BasicBlock::iterator I = (*BB)->begin(), E = (*BB)->end(); I != E; ) {
514        Instruction *Inst = &*I++;
515  
516        if (isInstructionTriviallyDead(Inst))
517          (*BB)->getInstList().erase(Inst);
518        else if (Value *V = SimplifyInstruction(Inst, DL))
519          if (LI->replacementPreservesLCSSAForm(Inst, V)) {
520            Inst->replaceAllUsesWith(V);
521            (*BB)->getInstList().erase(Inst);
522          }
523      }
524  
525    NumCompletelyUnrolled += CompletelyUnroll;
526    ++NumUnrolled;
527  
528    Loop *OuterL = L->getParentLoop();
529    // Update LoopInfo if the loop is completely removed.
530    if (CompletelyUnroll)
531      LI->updateUnloop(L);;
532  
533    // If we have a pass and a DominatorTree we should re-simplify impacted loops
534    // to ensure subsequent analyses can rely on this form. We want to simplify
535    // at least one layer outside of the loop that was unrolled so that any
536    // changes to the parent loop exposed by the unrolling are considered.
537    if (DT) {
538      if (!OuterL && !CompletelyUnroll)
539        OuterL = L;
540      if (OuterL) {
541        bool Simplified = simplifyLoop(OuterL, DT, LI, SE, AC, PreserveLCSSA);
542  
543        // LCSSA must be performed on the outermost affected loop. The unrolled
544        // loop's last loop latch is guaranteed to be in the outermost loop after
545        // LoopInfo's been updated by updateUnloop.
546        Loop *LatchLoop = LI->getLoopFor(Latches.back());
547        if (!OuterL->contains(LatchLoop))
548          while (OuterL->getParentLoop() != LatchLoop)
549            OuterL = OuterL->getParentLoop();
550  
551        if (CompletelyUnroll && (!AllExitsAreInsideParentLoop || Simplified))
552          formLCSSARecursively(*OuterL, *DT, LI, SE);
553        else
554          assert(OuterL->isLCSSAForm(*DT) &&
555                 "Loops should be in LCSSA form after loop-unroll.");
556      }
557    }
558  
559    return true;
560  }
561  
562  /// Given an llvm.loop loop id metadata node, returns the loop hint metadata
563  /// node with the given name (for example, "llvm.loop.unroll.count"). If no
564  /// such metadata node exists, then nullptr is returned.
GetUnrollMetadata(MDNode * LoopID,StringRef Name)565  MDNode *llvm::GetUnrollMetadata(MDNode *LoopID, StringRef Name) {
566    // First operand should refer to the loop id itself.
567    assert(LoopID->getNumOperands() > 0 && "requires at least one operand");
568    assert(LoopID->getOperand(0) == LoopID && "invalid loop id");
569  
570    for (unsigned i = 1, e = LoopID->getNumOperands(); i < e; ++i) {
571      MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
572      if (!MD)
573        continue;
574  
575      MDString *S = dyn_cast<MDString>(MD->getOperand(0));
576      if (!S)
577        continue;
578  
579      if (Name.equals(S->getString()))
580        return MD;
581    }
582    return nullptr;
583  }
584