• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2011 Google Inc. All Rights Reserved.
2 //
3 // Use of this source code is governed by a BSD-style license
4 // that can be found in the COPYING file in the root of the source
5 // tree. An additional intellectual property rights grant can be found
6 // in the file PATENTS. All contributing project authors may
7 // be found in the AUTHORS file in the root of the source tree.
8 // -----------------------------------------------------------------------------
9 //
10 // Macroblock analysis
11 //
12 // Author: Skal (pascal.massimino@gmail.com)
13 
14 #include <stdlib.h>
15 #include <string.h>
16 #include <assert.h>
17 
18 #include "./vp8enci.h"
19 #include "./cost.h"
20 #include "../utils/utils.h"
21 
22 #if defined(__cplusplus) || defined(c_plusplus)
23 extern "C" {
24 #endif
25 
26 #define MAX_ITERS_K_MEANS  6
27 
28 //------------------------------------------------------------------------------
29 // Smooth the segment map by replacing isolated block by the majority of its
30 // neighbours.
31 
SmoothSegmentMap(VP8Encoder * const enc)32 static void SmoothSegmentMap(VP8Encoder* const enc) {
33   int n, x, y;
34   const int w = enc->mb_w_;
35   const int h = enc->mb_h_;
36   const int majority_cnt_3_x_3_grid = 5;
37   uint8_t* const tmp = (uint8_t*)WebPSafeMalloc((uint64_t)w * h, sizeof(*tmp));
38   assert((uint64_t)(w * h) == (uint64_t)w * h);   // no overflow, as per spec
39 
40   if (tmp == NULL) return;
41   for (y = 1; y < h - 1; ++y) {
42     for (x = 1; x < w - 1; ++x) {
43       int cnt[NUM_MB_SEGMENTS] = { 0 };
44       const VP8MBInfo* const mb = &enc->mb_info_[x + w * y];
45       int majority_seg = mb->segment_;
46       // Check the 8 neighbouring segment values.
47       cnt[mb[-w - 1].segment_]++;  // top-left
48       cnt[mb[-w + 0].segment_]++;  // top
49       cnt[mb[-w + 1].segment_]++;  // top-right
50       cnt[mb[   - 1].segment_]++;  // left
51       cnt[mb[   + 1].segment_]++;  // right
52       cnt[mb[ w - 1].segment_]++;  // bottom-left
53       cnt[mb[ w + 0].segment_]++;  // bottom
54       cnt[mb[ w + 1].segment_]++;  // bottom-right
55       for (n = 0; n < NUM_MB_SEGMENTS; ++n) {
56         if (cnt[n] >= majority_cnt_3_x_3_grid) {
57           majority_seg = n;
58         }
59       }
60       tmp[x + y * w] = majority_seg;
61     }
62   }
63   for (y = 1; y < h - 1; ++y) {
64     for (x = 1; x < w - 1; ++x) {
65       VP8MBInfo* const mb = &enc->mb_info_[x + w * y];
66       mb->segment_ = tmp[x + y * w];
67     }
68   }
69   free(tmp);
70 }
71 
72 //------------------------------------------------------------------------------
73 // set segment susceptibility alpha_ / beta_
74 
clip(int v,int m,int M)75 static WEBP_INLINE int clip(int v, int m, int M) {
76   return (v < m) ? m : (v > M) ? M : v;
77 }
78 
SetSegmentAlphas(VP8Encoder * const enc,const int centers[NUM_MB_SEGMENTS],int mid)79 static void SetSegmentAlphas(VP8Encoder* const enc,
80                              const int centers[NUM_MB_SEGMENTS],
81                              int mid) {
82   const int nb = enc->segment_hdr_.num_segments_;
83   int min = centers[0], max = centers[0];
84   int n;
85 
86   if (nb > 1) {
87     for (n = 0; n < nb; ++n) {
88       if (min > centers[n]) min = centers[n];
89       if (max < centers[n]) max = centers[n];
90     }
91   }
92   if (max == min) max = min + 1;
93   assert(mid <= max && mid >= min);
94   for (n = 0; n < nb; ++n) {
95     const int alpha = 255 * (centers[n] - mid) / (max - min);
96     const int beta = 255 * (centers[n] - min) / (max - min);
97     enc->dqm_[n].alpha_ = clip(alpha, -127, 127);
98     enc->dqm_[n].beta_ = clip(beta, 0, 255);
99   }
100 }
101 
102 //------------------------------------------------------------------------------
103 // Compute susceptibility based on DCT-coeff histograms:
104 // the higher, the "easier" the macroblock is to compress.
105 
106 #define MAX_ALPHA 255                // 8b of precision for susceptibilities.
107 #define ALPHA_SCALE (2 * MAX_ALPHA)  // scaling factor for alpha.
108 #define DEFAULT_ALPHA (-1)
109 #define IS_BETTER_ALPHA(alpha, best_alpha) ((alpha) > (best_alpha))
110 
FinalAlphaValue(int alpha)111 static int FinalAlphaValue(int alpha) {
112   alpha = MAX_ALPHA - alpha;
113   return clip(alpha, 0, MAX_ALPHA);
114 }
115 
GetAlpha(const VP8Histogram * const histo)116 static int GetAlpha(const VP8Histogram* const histo) {
117   int max_value = 0, last_non_zero = 1;
118   int k;
119   int alpha;
120   for (k = 0; k <= MAX_COEFF_THRESH; ++k) {
121     const int value = histo->distribution[k];
122     if (value > 0) {
123       if (value > max_value) max_value = value;
124       last_non_zero = k;
125     }
126   }
127   // 'alpha' will later be clipped to [0..MAX_ALPHA] range, clamping outer
128   // values which happen to be mostly noise. This leaves the maximum precision
129   // for handling the useful small values which contribute most.
130   alpha = (max_value > 1) ? ALPHA_SCALE * last_non_zero / max_value : 0;
131   return alpha;
132 }
133 
MergeHistograms(const VP8Histogram * const in,VP8Histogram * const out)134 static void MergeHistograms(const VP8Histogram* const in,
135                             VP8Histogram* const out) {
136   int i;
137   for (i = 0; i <= MAX_COEFF_THRESH; ++i) {
138     out->distribution[i] += in->distribution[i];
139   }
140 }
141 
142 //------------------------------------------------------------------------------
143 // Simplified k-Means, to assign Nb segments based on alpha-histogram
144 
AssignSegments(VP8Encoder * const enc,const int alphas[MAX_ALPHA+1])145 static void AssignSegments(VP8Encoder* const enc,
146                            const int alphas[MAX_ALPHA + 1]) {
147   const int nb = enc->segment_hdr_.num_segments_;
148   int centers[NUM_MB_SEGMENTS];
149   int weighted_average = 0;
150   int map[MAX_ALPHA + 1];
151   int a, n, k;
152   int min_a = 0, max_a = MAX_ALPHA, range_a;
153   // 'int' type is ok for histo, and won't overflow
154   int accum[NUM_MB_SEGMENTS], dist_accum[NUM_MB_SEGMENTS];
155 
156   // bracket the input
157   for (n = 0; n <= MAX_ALPHA && alphas[n] == 0; ++n) {}
158   min_a = n;
159   for (n = MAX_ALPHA; n > min_a && alphas[n] == 0; --n) {}
160   max_a = n;
161   range_a = max_a - min_a;
162 
163   // Spread initial centers evenly
164   for (n = 1, k = 0; n < 2 * nb; n += 2) {
165     centers[k++] = min_a + (n * range_a) / (2 * nb);
166   }
167 
168   for (k = 0; k < MAX_ITERS_K_MEANS; ++k) {     // few iters are enough
169     int total_weight;
170     int displaced;
171     // Reset stats
172     for (n = 0; n < nb; ++n) {
173       accum[n] = 0;
174       dist_accum[n] = 0;
175     }
176     // Assign nearest center for each 'a'
177     n = 0;    // track the nearest center for current 'a'
178     for (a = min_a; a <= max_a; ++a) {
179       if (alphas[a]) {
180         while (n < nb - 1 && abs(a - centers[n + 1]) < abs(a - centers[n])) {
181           n++;
182         }
183         map[a] = n;
184         // accumulate contribution into best centroid
185         dist_accum[n] += a * alphas[a];
186         accum[n] += alphas[a];
187       }
188     }
189     // All point are classified. Move the centroids to the
190     // center of their respective cloud.
191     displaced = 0;
192     weighted_average = 0;
193     total_weight = 0;
194     for (n = 0; n < nb; ++n) {
195       if (accum[n]) {
196         const int new_center = (dist_accum[n] + accum[n] / 2) / accum[n];
197         displaced += abs(centers[n] - new_center);
198         centers[n] = new_center;
199         weighted_average += new_center * accum[n];
200         total_weight += accum[n];
201       }
202     }
203     weighted_average = (weighted_average + total_weight / 2) / total_weight;
204     if (displaced < 5) break;   // no need to keep on looping...
205   }
206 
207   // Map each original value to the closest centroid
208   for (n = 0; n < enc->mb_w_ * enc->mb_h_; ++n) {
209     VP8MBInfo* const mb = &enc->mb_info_[n];
210     const int alpha = mb->alpha_;
211     mb->segment_ = map[alpha];
212     mb->alpha_ = centers[map[alpha]];  // for the record.
213   }
214 
215   if (nb > 1) {
216     const int smooth = (enc->config_->preprocessing & 1);
217     if (smooth) SmoothSegmentMap(enc);
218   }
219 
220   SetSegmentAlphas(enc, centers, weighted_average);  // pick some alphas.
221 }
222 
223 //------------------------------------------------------------------------------
224 // Macroblock analysis: collect histogram for each mode, deduce the maximal
225 // susceptibility and set best modes for this macroblock.
226 // Segment assignment is done later.
227 
228 // Number of modes to inspect for alpha_ evaluation. For high-quality settings
229 // (method >= FAST_ANALYSIS_METHOD) we don't need to test all the possible modes
230 // during the analysis phase.
231 #define FAST_ANALYSIS_METHOD 4  // method above which we do partial analysis
232 #define MAX_INTRA16_MODE 2
233 #define MAX_INTRA4_MODE  2
234 #define MAX_UV_MODE      2
235 
MBAnalyzeBestIntra16Mode(VP8EncIterator * const it)236 static int MBAnalyzeBestIntra16Mode(VP8EncIterator* const it) {
237   const int max_mode =
238       (it->enc_->method_ >= FAST_ANALYSIS_METHOD) ? MAX_INTRA16_MODE
239                                                   : NUM_PRED_MODES;
240   int mode;
241   int best_alpha = DEFAULT_ALPHA;
242   int best_mode = 0;
243 
244   VP8MakeLuma16Preds(it);
245   for (mode = 0; mode < max_mode; ++mode) {
246     VP8Histogram histo = { { 0 } };
247     int alpha;
248 
249     VP8CollectHistogram(it->yuv_in_ + Y_OFF,
250                         it->yuv_p_ + VP8I16ModeOffsets[mode],
251                         0, 16, &histo);
252     alpha = GetAlpha(&histo);
253     if (IS_BETTER_ALPHA(alpha, best_alpha)) {
254       best_alpha = alpha;
255       best_mode = mode;
256     }
257   }
258   VP8SetIntra16Mode(it, best_mode);
259   return best_alpha;
260 }
261 
MBAnalyzeBestIntra4Mode(VP8EncIterator * const it,int best_alpha)262 static int MBAnalyzeBestIntra4Mode(VP8EncIterator* const it,
263                                    int best_alpha) {
264   uint8_t modes[16];
265   const int max_mode =
266       (it->enc_->method_ >= FAST_ANALYSIS_METHOD) ? MAX_INTRA4_MODE
267                                                   : NUM_BMODES;
268   int i4_alpha;
269   VP8Histogram total_histo = { { 0 } };
270   int cur_histo = 0;
271 
272   VP8IteratorStartI4(it);
273   do {
274     int mode;
275     int best_mode_alpha = DEFAULT_ALPHA;
276     VP8Histogram histos[2];
277     const uint8_t* const src = it->yuv_in_ + Y_OFF + VP8Scan[it->i4_];
278 
279     VP8MakeIntra4Preds(it);
280     for (mode = 0; mode < max_mode; ++mode) {
281       int alpha;
282 
283       memset(&histos[cur_histo], 0, sizeof(histos[cur_histo]));
284       VP8CollectHistogram(src, it->yuv_p_ + VP8I4ModeOffsets[mode],
285                           0, 1, &histos[cur_histo]);
286       alpha = GetAlpha(&histos[cur_histo]);
287       if (IS_BETTER_ALPHA(alpha, best_mode_alpha)) {
288         best_mode_alpha = alpha;
289         modes[it->i4_] = mode;
290         cur_histo ^= 1;   // keep track of best histo so far.
291       }
292     }
293     // accumulate best histogram
294     MergeHistograms(&histos[cur_histo ^ 1], &total_histo);
295     // Note: we reuse the original samples for predictors
296   } while (VP8IteratorRotateI4(it, it->yuv_in_ + Y_OFF));
297 
298   i4_alpha = GetAlpha(&total_histo);
299   if (IS_BETTER_ALPHA(i4_alpha, best_alpha)) {
300     VP8SetIntra4Mode(it, modes);
301     best_alpha = i4_alpha;
302   }
303   return best_alpha;
304 }
305 
MBAnalyzeBestUVMode(VP8EncIterator * const it)306 static int MBAnalyzeBestUVMode(VP8EncIterator* const it) {
307   int best_alpha = DEFAULT_ALPHA;
308   int best_mode = 0;
309   const int max_mode =
310       (it->enc_->method_ >= FAST_ANALYSIS_METHOD) ? MAX_UV_MODE
311                                                   : NUM_PRED_MODES;
312   int mode;
313   VP8MakeChroma8Preds(it);
314   for (mode = 0; mode < max_mode; ++mode) {
315     VP8Histogram histo = { { 0 } };
316     int alpha;
317     VP8CollectHistogram(it->yuv_in_ + U_OFF,
318                         it->yuv_p_ + VP8UVModeOffsets[mode],
319                         16, 16 + 4 + 4, &histo);
320     alpha = GetAlpha(&histo);
321     if (IS_BETTER_ALPHA(alpha, best_alpha)) {
322       best_alpha = alpha;
323       best_mode = mode;
324     }
325   }
326   VP8SetIntraUVMode(it, best_mode);
327   return best_alpha;
328 }
329 
MBAnalyze(VP8EncIterator * const it,int alphas[MAX_ALPHA+1],int * const alpha,int * const uv_alpha)330 static void MBAnalyze(VP8EncIterator* const it,
331                       int alphas[MAX_ALPHA + 1],
332                       int* const alpha, int* const uv_alpha) {
333   const VP8Encoder* const enc = it->enc_;
334   int best_alpha, best_uv_alpha;
335 
336   VP8SetIntra16Mode(it, 0);  // default: Intra16, DC_PRED
337   VP8SetSkip(it, 0);         // not skipped
338   VP8SetSegment(it, 0);      // default segment, spec-wise.
339 
340   best_alpha = MBAnalyzeBestIntra16Mode(it);
341   if (enc->method_ >= 5) {
342     // We go and make a fast decision for intra4/intra16.
343     // It's usually not a good and definitive pick, but helps seeding the stats
344     // about level bit-cost.
345     // TODO(skal): improve criterion.
346     best_alpha = MBAnalyzeBestIntra4Mode(it, best_alpha);
347   }
348   best_uv_alpha = MBAnalyzeBestUVMode(it);
349 
350   // Final susceptibility mix
351   best_alpha = (3 * best_alpha + best_uv_alpha + 2) >> 2;
352   best_alpha = FinalAlphaValue(best_alpha);
353   alphas[best_alpha]++;
354   it->mb_->alpha_ = best_alpha;   // for later remapping.
355 
356   // Accumulate for later complexity analysis.
357   *alpha += best_alpha;   // mixed susceptibility (not just luma)
358   *uv_alpha += best_uv_alpha;
359 }
360 
DefaultMBInfo(VP8MBInfo * const mb)361 static void DefaultMBInfo(VP8MBInfo* const mb) {
362   mb->type_ = 1;     // I16x16
363   mb->uv_mode_ = 0;
364   mb->skip_ = 0;     // not skipped
365   mb->segment_ = 0;  // default segment
366   mb->alpha_ = 0;
367 }
368 
369 //------------------------------------------------------------------------------
370 // Main analysis loop:
371 // Collect all susceptibilities for each macroblock and record their
372 // distribution in alphas[]. Segments is assigned a-posteriori, based on
373 // this histogram.
374 // We also pick an intra16 prediction mode, which shouldn't be considered
375 // final except for fast-encode settings. We can also pick some intra4 modes
376 // and decide intra4/intra16, but that's usually almost always a bad choice at
377 // this stage.
378 
ResetAllMBInfo(VP8Encoder * const enc)379 static void ResetAllMBInfo(VP8Encoder* const enc) {
380   int n;
381   for (n = 0; n < enc->mb_w_ * enc->mb_h_; ++n) {
382     DefaultMBInfo(&enc->mb_info_[n]);
383   }
384   // Default susceptibilities.
385   enc->dqm_[0].alpha_ = 0;
386   enc->dqm_[0].beta_ = 0;
387   // Note: we can't compute this alpha_ / uv_alpha_.
388   WebPReportProgress(enc->pic_, enc->percent_ + 20, &enc->percent_);
389 }
390 
VP8EncAnalyze(VP8Encoder * const enc)391 int VP8EncAnalyze(VP8Encoder* const enc) {
392   int ok = 1;
393   const int do_segments =
394       enc->config_->emulate_jpeg_size ||   // We need the complexity evaluation.
395       (enc->segment_hdr_.num_segments_ > 1) ||
396       (enc->method_ == 0);  // for method 0, we need preds_[] to be filled.
397   enc->alpha_ = 0;
398   enc->uv_alpha_ = 0;
399   if (do_segments) {
400     int alphas[MAX_ALPHA + 1] = { 0 };
401     VP8EncIterator it;
402 
403     VP8IteratorInit(enc, &it);
404     do {
405       VP8IteratorImport(&it);
406       MBAnalyze(&it, alphas, &enc->alpha_, &enc->uv_alpha_);
407       ok = VP8IteratorProgress(&it, 20);
408       // Let's pretend we have perfect lossless reconstruction.
409     } while (ok && VP8IteratorNext(&it, it.yuv_in_));
410     enc->alpha_ /= enc->mb_w_ * enc->mb_h_;
411     enc->uv_alpha_ /= enc->mb_w_ * enc->mb_h_;
412     if (ok) AssignSegments(enc, alphas);
413   } else {   // Use only one default segment.
414     ResetAllMBInfo(enc);
415   }
416   return ok;
417 }
418 
419 #if defined(__cplusplus) || defined(c_plusplus)
420 }    // extern "C"
421 #endif
422