1 ///////////////////////////////////////////////////////////////////////////
2 //
3 // Copyright (c) 2002, Industrial Light & Magic, a division of Lucas
4 // Digital Ltd. LLC
5 //
6 // All rights reserved.
7 //
8 // Redistribution and use in source and binary forms, with or without
9 // modification, are permitted provided that the following conditions are
10 // met:
11 // * Redistributions of source code must retain the above copyright
12 // notice, this list of conditions and the following disclaimer.
13 // * Redistributions in binary form must reproduce the above
14 // copyright notice, this list of conditions and the following disclaimer
15 // in the documentation and/or other materials provided with the
16 // distribution.
17 // * Neither the name of Industrial Light & Magic nor the names of
18 // its contributors may be used to endorse or promote products derived
19 // from this software without specific prior written permission.
20 //
21 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32 //
33 ///////////////////////////////////////////////////////////////////////////
34
35
36
37 #ifndef INCLUDED_IMATHPLANE_H
38 #define INCLUDED_IMATHPLANE_H
39
40 //----------------------------------------------------------------------
41 //
42 // template class Plane3
43 //
44 // The Imath::Plane3<> class represents a half space, so the
45 // normal may point either towards or away from origin. The
46 // plane P can be represented by Imath::Plane3 as either p or -p
47 // corresponding to the two half-spaces on either side of the
48 // plane. Any function which computes a distance will return
49 // either negative or positive values for the distance indicating
50 // which half-space the point is in. Note that reflection, and
51 // intersection functions will operate as expected.
52 //
53 //----------------------------------------------------------------------
54
55 #include "ImathVec.h"
56 #include "ImathLine.h"
57
58 namespace Imath {
59
60
61 template <class T>
62 class Plane3
63 {
64 public:
65
66 Vec3<T> normal;
67 T distance;
68
Plane3()69 Plane3() {}
70 Plane3(const Vec3<T> &normal, T distance);
71 Plane3(const Vec3<T> &point, const Vec3<T> &normal);
72 Plane3(const Vec3<T> &point1,
73 const Vec3<T> &point2,
74 const Vec3<T> &point3);
75
76 //----------------------
77 // Various set methods
78 //----------------------
79
80 void set(const Vec3<T> &normal,
81 T distance);
82
83 void set(const Vec3<T> &point,
84 const Vec3<T> &normal);
85
86 void set(const Vec3<T> &point1,
87 const Vec3<T> &point2,
88 const Vec3<T> &point3 );
89
90 //----------------------
91 // Utilities
92 //----------------------
93
94 bool intersect(const Line3<T> &line,
95 Vec3<T> &intersection) const;
96
97 bool intersectT(const Line3<T> &line,
98 T ¶meter) const;
99
100 T distanceTo(const Vec3<T> &) const;
101
102 Vec3<T> reflectPoint(const Vec3<T> &) const;
103 Vec3<T> reflectVector(const Vec3<T> &) const;
104 };
105
106
107 //--------------------
108 // Convenient typedefs
109 //--------------------
110
111 typedef Plane3<float> Plane3f;
112 typedef Plane3<double> Plane3d;
113
114
115 //---------------
116 // Implementation
117 //---------------
118
119 template <class T>
Plane3(const Vec3<T> & p0,const Vec3<T> & p1,const Vec3<T> & p2)120 inline Plane3<T>::Plane3(const Vec3<T> &p0,
121 const Vec3<T> &p1,
122 const Vec3<T> &p2)
123 {
124 set(p0,p1,p2);
125 }
126
127 template <class T>
Plane3(const Vec3<T> & n,T d)128 inline Plane3<T>::Plane3(const Vec3<T> &n, T d)
129 {
130 set(n, d);
131 }
132
133 template <class T>
Plane3(const Vec3<T> & p,const Vec3<T> & n)134 inline Plane3<T>::Plane3(const Vec3<T> &p, const Vec3<T> &n)
135 {
136 set(p, n);
137 }
138
139 template <class T>
set(const Vec3<T> & point1,const Vec3<T> & point2,const Vec3<T> & point3)140 inline void Plane3<T>::set(const Vec3<T>& point1,
141 const Vec3<T>& point2,
142 const Vec3<T>& point3)
143 {
144 normal = (point2 - point1) % (point3 - point1);
145 normal.normalize();
146 distance = normal ^ point1;
147 }
148
149 template <class T>
set(const Vec3<T> & point,const Vec3<T> & n)150 inline void Plane3<T>::set(const Vec3<T>& point, const Vec3<T>& n)
151 {
152 normal = n;
153 normal.normalize();
154 distance = normal ^ point;
155 }
156
157 template <class T>
set(const Vec3<T> & n,T d)158 inline void Plane3<T>::set(const Vec3<T>& n, T d)
159 {
160 normal = n;
161 normal.normalize();
162 distance = d;
163 }
164
165 template <class T>
distanceTo(const Vec3<T> & point)166 inline T Plane3<T>::distanceTo(const Vec3<T> &point) const
167 {
168 return (point ^ normal) - distance;
169 }
170
171 template <class T>
reflectPoint(const Vec3<T> & point)172 inline Vec3<T> Plane3<T>::reflectPoint(const Vec3<T> &point) const
173 {
174 return normal * distanceTo(point) * -2.0 + point;
175 }
176
177
178 template <class T>
reflectVector(const Vec3<T> & v)179 inline Vec3<T> Plane3<T>::reflectVector(const Vec3<T> &v) const
180 {
181 return normal * (normal ^ v) * 2.0 - v;
182 }
183
184
185 template <class T>
intersect(const Line3<T> & line,Vec3<T> & point)186 inline bool Plane3<T>::intersect(const Line3<T>& line, Vec3<T>& point) const
187 {
188 T d = normal ^ line.dir;
189 if ( d == 0.0 ) return false;
190 T t = - ((normal ^ line.pos) - distance) / d;
191 point = line(t);
192 return true;
193 }
194
195 template <class T>
intersectT(const Line3<T> & line,T & t)196 inline bool Plane3<T>::intersectT(const Line3<T>& line, T &t) const
197 {
198 T d = normal ^ line.dir;
199 if ( d == 0.0 ) return false;
200 t = - ((normal ^ line.pos) - distance) / d;
201 return true;
202 }
203
204 template<class T>
205 std::ostream &operator<< (std::ostream &o, const Plane3<T> &plane)
206 {
207 return o << "(" << plane.normal << ", " << plane.distance
208 << ")";
209 }
210
211 template<class T>
212 Plane3<T> operator* (const Plane3<T> &plane, const Matrix44<T> &M)
213 {
214 // T
215 // -1
216 // Could also compute M but that would suck.
217 //
218
219 Vec3<T> dir1 = Vec3<T> (1, 0, 0) % plane.normal;
220 T dir1Len = dir1 ^ dir1;
221
222 Vec3<T> tmp = Vec3<T> (0, 1, 0) % plane.normal;
223 T tmpLen = tmp ^ tmp;
224
225 if (tmpLen > dir1Len)
226 {
227 dir1 = tmp;
228 dir1Len = tmpLen;
229 }
230
231 tmp = Vec3<T> (0, 0, 1) % plane.normal;
232 tmpLen = tmp ^ tmp;
233
234 if (tmpLen > dir1Len)
235 {
236 dir1 = tmp;
237 }
238
239 Vec3<T> dir2 = dir1 % plane.normal;
240 Vec3<T> point = plane.distance * plane.normal;
241
242 return Plane3<T> ( point * M,
243 (point + dir2) * M,
244 (point + dir1) * M );
245 }
246
247 template<class T>
248 Plane3<T> operator- (const Plane3<T> &plane)
249 {
250 return Plane3<T>(-plane.normal,-plane.distance);
251 }
252
253
254 } // namespace Imath
255
256 #endif
257