• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 #include <cstring>
2 #include <cmath>
3 #include <iostream>
4 
5 #include "polynom_solver.h"
6 #include "p3p.h"
7 
init_inverse_parameters()8 void p3p::init_inverse_parameters()
9 {
10     inv_fx = 1. / fx;
11     inv_fy = 1. / fy;
12     cx_fx = cx / fx;
13     cy_fy = cy / fy;
14 }
15 
p3p(cv::Mat cameraMatrix)16 p3p::p3p(cv::Mat cameraMatrix)
17 {
18     if (cameraMatrix.depth() == CV_32F)
19         init_camera_parameters<float>(cameraMatrix);
20     else
21         init_camera_parameters<double>(cameraMatrix);
22     init_inverse_parameters();
23 }
24 
p3p(double _fx,double _fy,double _cx,double _cy)25 p3p::p3p(double _fx, double _fy, double _cx, double _cy)
26 {
27     fx = _fx;
28     fy = _fy;
29     cx = _cx;
30     cy = _cy;
31     init_inverse_parameters();
32 }
33 
solve(cv::Mat & R,cv::Mat & tvec,const cv::Mat & opoints,const cv::Mat & ipoints)34 bool p3p::solve(cv::Mat& R, cv::Mat& tvec, const cv::Mat& opoints, const cv::Mat& ipoints)
35 {
36     double rotation_matrix[3][3], translation[3];
37     std::vector<double> points;
38     if (opoints.depth() == ipoints.depth())
39     {
40         if (opoints.depth() == CV_32F)
41             extract_points<cv::Point3f,cv::Point2f>(opoints, ipoints, points);
42         else
43             extract_points<cv::Point3d,cv::Point2d>(opoints, ipoints, points);
44     }
45     else if (opoints.depth() == CV_32F)
46         extract_points<cv::Point3f,cv::Point2d>(opoints, ipoints, points);
47     else
48         extract_points<cv::Point3d,cv::Point2f>(opoints, ipoints, points);
49 
50     bool result = solve(rotation_matrix, translation, points[0], points[1], points[2], points[3], points[4], points[5],
51           points[6], points[7], points[8], points[9], points[10], points[11], points[12], points[13], points[14],
52           points[15], points[16], points[17], points[18], points[19]);
53     cv::Mat(3, 1, CV_64F, translation).copyTo(tvec);
54     cv::Mat(3, 3, CV_64F, rotation_matrix).copyTo(R);
55     return result;
56 }
57 
solve(double R[3][3],double t[3],double mu0,double mv0,double X0,double Y0,double Z0,double mu1,double mv1,double X1,double Y1,double Z1,double mu2,double mv2,double X2,double Y2,double Z2,double mu3,double mv3,double X3,double Y3,double Z3)58 bool p3p::solve(double R[3][3], double t[3],
59     double mu0, double mv0,   double X0, double Y0, double Z0,
60     double mu1, double mv1,   double X1, double Y1, double Z1,
61     double mu2, double mv2,   double X2, double Y2, double Z2,
62     double mu3, double mv3,   double X3, double Y3, double Z3)
63 {
64     double Rs[4][3][3], ts[4][3];
65 
66     int n = solve(Rs, ts, mu0, mv0, X0, Y0, Z0,  mu1, mv1, X1, Y1, Z1, mu2, mv2, X2, Y2, Z2);
67 
68     if (n == 0)
69         return false;
70 
71     int ns = 0;
72     double min_reproj = 0;
73     for(int i = 0; i < n; i++) {
74         double X3p = Rs[i][0][0] * X3 + Rs[i][0][1] * Y3 + Rs[i][0][2] * Z3 + ts[i][0];
75         double Y3p = Rs[i][1][0] * X3 + Rs[i][1][1] * Y3 + Rs[i][1][2] * Z3 + ts[i][1];
76         double Z3p = Rs[i][2][0] * X3 + Rs[i][2][1] * Y3 + Rs[i][2][2] * Z3 + ts[i][2];
77         double mu3p = cx + fx * X3p / Z3p;
78         double mv3p = cy + fy * Y3p / Z3p;
79         double reproj = (mu3p - mu3) * (mu3p - mu3) + (mv3p - mv3) * (mv3p - mv3);
80         if (i == 0 || min_reproj > reproj) {
81             ns = i;
82             min_reproj = reproj;
83         }
84     }
85 
86     for(int i = 0; i < 3; i++) {
87         for(int j = 0; j < 3; j++)
88             R[i][j] = Rs[ns][i][j];
89         t[i] = ts[ns][i];
90     }
91 
92     return true;
93 }
94 
solve(double R[4][3][3],double t[4][3],double mu0,double mv0,double X0,double Y0,double Z0,double mu1,double mv1,double X1,double Y1,double Z1,double mu2,double mv2,double X2,double Y2,double Z2)95 int p3p::solve(double R[4][3][3], double t[4][3],
96     double mu0, double mv0,   double X0, double Y0, double Z0,
97     double mu1, double mv1,   double X1, double Y1, double Z1,
98     double mu2, double mv2,   double X2, double Y2, double Z2)
99 {
100     double mk0, mk1, mk2;
101     double norm;
102 
103     mu0 = inv_fx * mu0 - cx_fx;
104     mv0 = inv_fy * mv0 - cy_fy;
105     norm = sqrt(mu0 * mu0 + mv0 * mv0 + 1);
106     mk0 = 1. / norm; mu0 *= mk0; mv0 *= mk0;
107 
108     mu1 = inv_fx * mu1 - cx_fx;
109     mv1 = inv_fy * mv1 - cy_fy;
110     norm = sqrt(mu1 * mu1 + mv1 * mv1 + 1);
111     mk1 = 1. / norm; mu1 *= mk1; mv1 *= mk1;
112 
113     mu2 = inv_fx * mu2 - cx_fx;
114     mv2 = inv_fy * mv2 - cy_fy;
115     norm = sqrt(mu2 * mu2 + mv2 * mv2 + 1);
116     mk2 = 1. / norm; mu2 *= mk2; mv2 *= mk2;
117 
118     double distances[3];
119     distances[0] = sqrt( (X1 - X2) * (X1 - X2) + (Y1 - Y2) * (Y1 - Y2) + (Z1 - Z2) * (Z1 - Z2) );
120     distances[1] = sqrt( (X0 - X2) * (X0 - X2) + (Y0 - Y2) * (Y0 - Y2) + (Z0 - Z2) * (Z0 - Z2) );
121     distances[2] = sqrt( (X0 - X1) * (X0 - X1) + (Y0 - Y1) * (Y0 - Y1) + (Z0 - Z1) * (Z0 - Z1) );
122 
123     // Calculate angles
124     double cosines[3];
125     cosines[0] = mu1 * mu2 + mv1 * mv2 + mk1 * mk2;
126     cosines[1] = mu0 * mu2 + mv0 * mv2 + mk0 * mk2;
127     cosines[2] = mu0 * mu1 + mv0 * mv1 + mk0 * mk1;
128 
129     double lengths[4][3];
130     int n = solve_for_lengths(lengths, distances, cosines);
131 
132     int nb_solutions = 0;
133     for(int i = 0; i < n; i++) {
134         double M_orig[3][3];
135 
136         M_orig[0][0] = lengths[i][0] * mu0;
137         M_orig[0][1] = lengths[i][0] * mv0;
138         M_orig[0][2] = lengths[i][0] * mk0;
139 
140         M_orig[1][0] = lengths[i][1] * mu1;
141         M_orig[1][1] = lengths[i][1] * mv1;
142         M_orig[1][2] = lengths[i][1] * mk1;
143 
144         M_orig[2][0] = lengths[i][2] * mu2;
145         M_orig[2][1] = lengths[i][2] * mv2;
146         M_orig[2][2] = lengths[i][2] * mk2;
147 
148         if (!align(M_orig, X0, Y0, Z0, X1, Y1, Z1, X2, Y2, Z2, R[nb_solutions], t[nb_solutions]))
149             continue;
150 
151         nb_solutions++;
152     }
153 
154     return nb_solutions;
155 }
156 
157 /// Given 3D distances between three points and cosines of 3 angles at the apex, calculates
158 /// the lentghs of the line segments connecting projection center (P) and the three 3D points (A, B, C).
159 /// Returned distances are for |PA|, |PB|, |PC| respectively.
160 /// Only the solution to the main branch.
161 /// Reference : X.S. Gao, X.-R. Hou, J. Tang, H.-F. Chang; "Complete Solution Classification for the Perspective-Three-Point Problem"
162 /// IEEE Trans. on PAMI, vol. 25, No. 8, August 2003
163 /// \param lengths3D Lengths of line segments up to four solutions.
164 /// \param dist3D Distance between 3D points in pairs |BC|, |AC|, |AB|.
165 /// \param cosines Cosine of the angles /_BPC, /_APC, /_APB.
166 /// \returns Number of solutions.
167 /// WARNING: NOT ALL THE DEGENERATE CASES ARE IMPLEMENTED
168 
solve_for_lengths(double lengths[4][3],double distances[3],double cosines[3])169 int p3p::solve_for_lengths(double lengths[4][3], double distances[3], double cosines[3])
170 {
171     double p = cosines[0] * 2;
172     double q = cosines[1] * 2;
173     double r = cosines[2] * 2;
174 
175     double inv_d22 = 1. / (distances[2] * distances[2]);
176     double a = inv_d22 * (distances[0] * distances[0]);
177     double b = inv_d22 * (distances[1] * distances[1]);
178 
179     double a2 = a * a, b2 = b * b, p2 = p * p, q2 = q * q, r2 = r * r;
180     double pr = p * r, pqr = q * pr;
181 
182     // Check reality condition (the four points should not be coplanar)
183     if (p2 + q2 + r2 - pqr - 1 == 0)
184         return 0;
185 
186     double ab = a * b, a_2 = 2*a;
187 
188     double A = -2 * b + b2 + a2 + 1 + ab*(2 - r2) - a_2;
189 
190     // Check reality condition
191     if (A == 0) return 0;
192 
193     double a_4 = 4*a;
194 
195     double B = q*(-2*(ab + a2 + 1 - b) + r2*ab + a_4) + pr*(b - b2 + ab);
196     double C = q2 + b2*(r2 + p2 - 2) - b*(p2 + pqr) - ab*(r2 + pqr) + (a2 - a_2)*(2 + q2) + 2;
197     double D = pr*(ab-b2+b) + q*((p2-2)*b + 2 * (ab - a2) + a_4 - 2);
198     double E = 1 + 2*(b - a - ab) + b2 - b*p2 + a2;
199 
200     double temp = (p2*(a-1+b) + r2*(a-1-b) + pqr - a*pqr);
201     double b0 = b * temp * temp;
202     // Check reality condition
203     if (b0 == 0)
204         return 0;
205 
206     double real_roots[4];
207     int n = solve_deg4(A, B, C, D, E,  real_roots[0], real_roots[1], real_roots[2], real_roots[3]);
208 
209     if (n == 0)
210         return 0;
211 
212     int nb_solutions = 0;
213     double r3 = r2*r, pr2 = p*r2, r3q = r3 * q;
214     double inv_b0 = 1. / b0;
215 
216     // For each solution of x
217     for(int i = 0; i < n; i++) {
218         double x = real_roots[i];
219 
220         // Check reality condition
221         if (x <= 0)
222             continue;
223 
224         double x2 = x*x;
225 
226         double b1 =
227             ((1-a-b)*x2 + (q*a-q)*x + 1 - a + b) *
228             (((r3*(a2 + ab*(2 - r2) - a_2 + b2 - 2*b + 1)) * x +
229 
230             (r3q*(2*(b-a2) + a_4 + ab*(r2 - 2) - 2) + pr2*(1 + a2 + 2*(ab-a-b) + r2*(b - b2) + b2))) * x2 +
231 
232             (r3*(q2*(1-2*a+a2) + r2*(b2-ab) - a_4 + 2*(a2 - b2) + 2) + r*p2*(b2 + 2*(ab - b - a) + 1 + a2) + pr2*q*(a_4 + 2*(b - ab - a2) - 2 - r2*b)) * x +
233 
234             2*r3q*(a_2 - b - a2 + ab - 1) + pr2*(q2 - a_4 + 2*(a2 - b2) + r2*b + q2*(a2 - a_2) + 2) +
235             p2*(p*(2*(ab - a - b) + a2 + b2 + 1) + 2*q*r*(b + a_2 - a2 - ab - 1)));
236 
237         // Check reality condition
238         if (b1 <= 0)
239             continue;
240 
241         double y = inv_b0 * b1;
242         double v = x2 + y*y - x*y*r;
243 
244         if (v <= 0)
245             continue;
246 
247         double Z = distances[2] / sqrt(v);
248         double X = x * Z;
249         double Y = y * Z;
250 
251         lengths[nb_solutions][0] = X;
252         lengths[nb_solutions][1] = Y;
253         lengths[nb_solutions][2] = Z;
254 
255         nb_solutions++;
256     }
257 
258     return nb_solutions;
259 }
260 
align(double M_end[3][3],double X0,double Y0,double Z0,double X1,double Y1,double Z1,double X2,double Y2,double Z2,double R[3][3],double T[3])261 bool p3p::align(double M_end[3][3],
262     double X0, double Y0, double Z0,
263     double X1, double Y1, double Z1,
264     double X2, double Y2, double Z2,
265     double R[3][3], double T[3])
266 {
267     // Centroids:
268     double C_start[3], C_end[3];
269     for(int i = 0; i < 3; i++) C_end[i] = (M_end[0][i] + M_end[1][i] + M_end[2][i]) / 3;
270     C_start[0] = (X0 + X1 + X2) / 3;
271     C_start[1] = (Y0 + Y1 + Y2) / 3;
272     C_start[2] = (Z0 + Z1 + Z2) / 3;
273 
274     // Covariance matrix s:
275     double s[3 * 3];
276     for(int j = 0; j < 3; j++) {
277         s[0 * 3 + j] = (X0 * M_end[0][j] + X1 * M_end[1][j] + X2 * M_end[2][j]) / 3 - C_end[j] * C_start[0];
278         s[1 * 3 + j] = (Y0 * M_end[0][j] + Y1 * M_end[1][j] + Y2 * M_end[2][j]) / 3 - C_end[j] * C_start[1];
279         s[2 * 3 + j] = (Z0 * M_end[0][j] + Z1 * M_end[1][j] + Z2 * M_end[2][j]) / 3 - C_end[j] * C_start[2];
280     }
281 
282     double Qs[16], evs[4], U[16];
283 
284     Qs[0 * 4 + 0] = s[0 * 3 + 0] + s[1 * 3 + 1] + s[2 * 3 + 2];
285     Qs[1 * 4 + 1] = s[0 * 3 + 0] - s[1 * 3 + 1] - s[2 * 3 + 2];
286     Qs[2 * 4 + 2] = s[1 * 3 + 1] - s[2 * 3 + 2] - s[0 * 3 + 0];
287     Qs[3 * 4 + 3] = s[2 * 3 + 2] - s[0 * 3 + 0] - s[1 * 3 + 1];
288 
289     Qs[1 * 4 + 0] = Qs[0 * 4 + 1] = s[1 * 3 + 2] - s[2 * 3 + 1];
290     Qs[2 * 4 + 0] = Qs[0 * 4 + 2] = s[2 * 3 + 0] - s[0 * 3 + 2];
291     Qs[3 * 4 + 0] = Qs[0 * 4 + 3] = s[0 * 3 + 1] - s[1 * 3 + 0];
292     Qs[2 * 4 + 1] = Qs[1 * 4 + 2] = s[1 * 3 + 0] + s[0 * 3 + 1];
293     Qs[3 * 4 + 1] = Qs[1 * 4 + 3] = s[2 * 3 + 0] + s[0 * 3 + 2];
294     Qs[3 * 4 + 2] = Qs[2 * 4 + 3] = s[2 * 3 + 1] + s[1 * 3 + 2];
295 
296     jacobi_4x4(Qs, evs, U);
297 
298     // Looking for the largest eigen value:
299     int i_ev = 0;
300     double ev_max = evs[i_ev];
301     for(int i = 1; i < 4; i++)
302         if (evs[i] > ev_max)
303             ev_max = evs[i_ev = i];
304 
305     // Quaternion:
306     double q[4];
307     for(int i = 0; i < 4; i++)
308         q[i] = U[i * 4 + i_ev];
309 
310     double q02 = q[0] * q[0], q12 = q[1] * q[1], q22 = q[2] * q[2], q32 = q[3] * q[3];
311     double q0_1 = q[0] * q[1], q0_2 = q[0] * q[2], q0_3 = q[0] * q[3];
312     double q1_2 = q[1] * q[2], q1_3 = q[1] * q[3];
313     double q2_3 = q[2] * q[3];
314 
315     R[0][0] = q02 + q12 - q22 - q32;
316     R[0][1] = 2. * (q1_2 - q0_3);
317     R[0][2] = 2. * (q1_3 + q0_2);
318 
319     R[1][0] = 2. * (q1_2 + q0_3);
320     R[1][1] = q02 + q22 - q12 - q32;
321     R[1][2] = 2. * (q2_3 - q0_1);
322 
323     R[2][0] = 2. * (q1_3 - q0_2);
324     R[2][1] = 2. * (q2_3 + q0_1);
325     R[2][2] = q02 + q32 - q12 - q22;
326 
327     for(int i = 0; i < 3; i++)
328         T[i] = C_end[i] - (R[i][0] * C_start[0] + R[i][1] * C_start[1] + R[i][2] * C_start[2]);
329 
330     return true;
331 }
332 
jacobi_4x4(double * A,double * D,double * U)333 bool p3p::jacobi_4x4(double * A, double * D, double * U)
334 {
335     double B[4], Z[4];
336     double Id[16] = {1., 0., 0., 0.,
337         0., 1., 0., 0.,
338         0., 0., 1., 0.,
339         0., 0., 0., 1.};
340 
341     memcpy(U, Id, 16 * sizeof(double));
342 
343     B[0] = A[0]; B[1] = A[5]; B[2] = A[10]; B[3] = A[15];
344     memcpy(D, B, 4 * sizeof(double));
345     memset(Z, 0, 4 * sizeof(double));
346 
347     for(int iter = 0; iter < 50; iter++) {
348         double sum = fabs(A[1]) + fabs(A[2]) + fabs(A[3]) + fabs(A[6]) + fabs(A[7]) + fabs(A[11]);
349 
350         if (sum == 0.0)
351             return true;
352 
353         double tresh =  (iter < 3) ? 0.2 * sum / 16. : 0.0;
354         for(int i = 0; i < 3; i++) {
355             double * pAij = A + 5 * i + 1;
356             for(int j = i + 1 ; j < 4; j++) {
357                 double Aij = *pAij;
358                 double eps_machine = 100.0 * fabs(Aij);
359 
360                 if ( iter > 3 && fabs(D[i]) + eps_machine == fabs(D[i]) && fabs(D[j]) + eps_machine == fabs(D[j]) )
361                     *pAij = 0.0;
362                 else if (fabs(Aij) > tresh) {
363                     double hh = D[j] - D[i], t;
364                     if (fabs(hh) + eps_machine == fabs(hh))
365                         t = Aij / hh;
366                     else {
367                         double theta = 0.5 * hh / Aij;
368                         t = 1.0 / (fabs(theta) + sqrt(1.0 + theta * theta));
369                         if (theta < 0.0) t = -t;
370                     }
371 
372                     hh = t * Aij;
373                     Z[i] -= hh;
374                     Z[j] += hh;
375                     D[i] -= hh;
376                     D[j] += hh;
377                     *pAij = 0.0;
378 
379                     double c = 1.0 / sqrt(1 + t * t);
380                     double s = t * c;
381                     double tau = s / (1.0 + c);
382                     for(int k = 0; k <= i - 1; k++) {
383                         double g = A[k * 4 + i], h = A[k * 4 + j];
384                         A[k * 4 + i] = g - s * (h + g * tau);
385                         A[k * 4 + j] = h + s * (g - h * tau);
386                     }
387                     for(int k = i + 1; k <= j - 1; k++) {
388                         double g = A[i * 4 + k], h = A[k * 4 + j];
389                         A[i * 4 + k] = g - s * (h + g * tau);
390                         A[k * 4 + j] = h + s * (g - h * tau);
391                     }
392                     for(int k = j + 1; k < 4; k++) {
393                         double g = A[i * 4 + k], h = A[j * 4 + k];
394                         A[i * 4 + k] = g - s * (h + g * tau);
395                         A[j * 4 + k] = h + s * (g - h * tau);
396                     }
397                     for(int k = 0; k < 4; k++) {
398                         double g = U[k * 4 + i], h = U[k * 4 + j];
399                         U[k * 4 + i] = g - s * (h + g * tau);
400                         U[k * 4 + j] = h + s * (g - h * tau);
401                     }
402                 }
403                 pAij++;
404             }
405         }
406 
407         for(int i = 0; i < 4; i++) B[i] += Z[i];
408         memcpy(D, B, 4 * sizeof(double));
409         memset(Z, 0, 4 * sizeof(double));
410     }
411 
412     return false;
413 }
414