• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*M///////////////////////////////////////////////////////////////////////////////////////
2 //
3 //  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
4 //
5 //  By downloading, copying, installing or using the software you agree to this license.
6 //  If you do not agree to this license, do not download, install,
7 //  copy or use the software.
8 //
9 //
10 //                           License Agreement
11 //                For Open Source Computer Vision Library
12 //
13 // Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
14 // Copyright (C) 2009, Willow Garage Inc., all rights reserved.
15 // Third party copyrights are property of their respective owners.
16 //
17 // Redistribution and use in source and binary forms, with or without modification,
18 // are permitted provided that the following conditions are met:
19 //
20 //   * Redistribution's of source code must retain the above copyright notice,
21 //     this list of conditions and the following disclaimer.
22 //
23 //   * Redistribution's in binary form must reproduce the above copyright notice,
24 //     this list of conditions and the following disclaimer in the documentation
25 //     and/or other materials provided with the distribution.
26 //
27 //   * The name of the copyright holders may not be used to endorse or promote products
28 //     derived from this software without specific prior written permission.
29 //
30 // This software is provided by the copyright holders and contributors "as is" and
31 // any express or implied warranties, including, but not limited to, the implied
32 // warranties of merchantability and fitness for a particular purpose are disclaimed.
33 // In no event shall the Intel Corporation or contributors be liable for any direct,
34 // indirect, incidental, special, exemplary, or consequential damages
35 // (including, but not limited to, procurement of substitute goods or services;
36 // loss of use, data, or profits; or business interruption) however caused
37 // and on any theory of liability, whether in contract, strict liability,
38 // or tort (including negligence or otherwise) arising in any way out of
39 // the use of this software, even if advised of the possibility of such damage.
40 //
41 //M*/
42 
43 #include "opencv2/opencv_modules.hpp"
44 
45 #ifndef HAVE_OPENCV_CUDEV
46 
47 #error "opencv_cudev is required"
48 
49 #else
50 
51 #include "opencv2/cudaarithm.hpp"
52 #include "opencv2/cudev.hpp"
53 #include "opencv2/core/private.cuda.hpp"
54 
55 using namespace cv;
56 using namespace cv::cuda;
57 using namespace cv::cudev;
58 
59 namespace {
60 
61 template <typename T, typename R, typename I>
62 struct ConvertorMinMax : unary_function<T, R>
63 {
64     typedef typename LargerType<T, R>::type larger_type1;
65     typedef typename LargerType<larger_type1, I>::type larger_type2;
66     typedef typename LargerType<larger_type2, float>::type scalar_type;
67 
68     scalar_type dmin, dmax;
69     const I* minMaxVals;
70 
operator ()__anon4d9fa3fd0111::ConvertorMinMax71     __device__ R operator ()(typename TypeTraits<T>::parameter_type src) const
72     {
73         const scalar_type smin = minMaxVals[0];
74         const scalar_type smax = minMaxVals[1];
75 
76         const scalar_type scale = (dmax - dmin) * (smax - smin > numeric_limits<scalar_type>::epsilon() ? 1.0 / (smax - smin) : 0.0);
77         const scalar_type shift = dmin - smin * scale;
78 
79         return cudev::saturate_cast<R>(scale * src + shift);
80     }
81 };
82 
83 template <typename T, typename R, typename I>
normalizeMinMax(const GpuMat & _src,GpuMat & _dst,double a,double b,const GpuMat & mask,Stream & stream)84 void normalizeMinMax(const GpuMat& _src, GpuMat& _dst, double a, double b, const GpuMat& mask, Stream& stream)
85 {
86     const GpuMat_<T>& src = (const GpuMat_<T>&)_src;
87     GpuMat_<R>& dst = (GpuMat_<R>&)_dst;
88 
89     BufferPool pool(stream);
90     GpuMat_<I> minMaxVals(1, 2, pool.getAllocator());
91 
92     if (mask.empty())
93     {
94         gridFindMinMaxVal(src, minMaxVals, stream);
95     }
96     else
97     {
98         gridFindMinMaxVal(src, minMaxVals, globPtr<uchar>(mask), stream);
99     }
100 
101     ConvertorMinMax<T, R, I> cvt;
102     cvt.dmin = std::min(a, b);
103     cvt.dmax = std::max(a, b);
104     cvt.minMaxVals = minMaxVals[0];
105 
106     if (mask.empty())
107     {
108         gridTransformUnary(src, dst, cvt, stream);
109     }
110     else
111     {
112         dst.setTo(Scalar::all(0), stream);
113         gridTransformUnary(src, dst, cvt, globPtr<uchar>(mask), stream);
114     }
115 }
116 
117 template <typename T, typename R, typename I, bool normL2>
118 struct ConvertorNorm : unary_function<T, R>
119 {
120     typedef typename LargerType<T, R>::type larger_type1;
121     typedef typename LargerType<larger_type1, I>::type larger_type2;
122     typedef typename LargerType<larger_type2, float>::type scalar_type;
123 
124     scalar_type a;
125     const I* normVal;
126 
operator ()__anon4d9fa3fd0111::ConvertorNorm127     __device__ R operator ()(typename TypeTraits<T>::parameter_type src) const
128     {
129         sqrt_func<scalar_type> sqrt;
130 
131         scalar_type scale = normL2 ? sqrt(*normVal) : *normVal;
132         scale = scale > numeric_limits<scalar_type>::epsilon() ? a / scale : 0.0;
133 
134         return cudev::saturate_cast<R>(scale * src);
135     }
136 };
137 
138 template <typename T, typename R, typename I>
normalizeNorm(const GpuMat & _src,GpuMat & _dst,double a,int normType,const GpuMat & mask,Stream & stream)139 void normalizeNorm(const GpuMat& _src, GpuMat& _dst, double a, int normType, const GpuMat& mask, Stream& stream)
140 {
141     const GpuMat_<T>& src = (const GpuMat_<T>&)_src;
142     GpuMat_<R>& dst = (GpuMat_<R>&)_dst;
143 
144     BufferPool pool(stream);
145     GpuMat_<I> normVal(1, 1, pool.getAllocator());
146 
147     if (normType == NORM_L1)
148     {
149         if (mask.empty())
150         {
151             gridCalcSum(abs_(cvt_<I>(src)), normVal, stream);
152         }
153         else
154         {
155             gridCalcSum(abs_(cvt_<I>(src)), normVal, globPtr<uchar>(mask), stream);
156         }
157     }
158     else if (normType == NORM_L2)
159     {
160         if (mask.empty())
161         {
162             gridCalcSum(sqr_(cvt_<I>(src)), normVal, stream);
163         }
164         else
165         {
166             gridCalcSum(sqr_(cvt_<I>(src)), normVal, globPtr<uchar>(mask), stream);
167         }
168     }
169     else // NORM_INF
170     {
171         if (mask.empty())
172         {
173             gridFindMaxVal(abs_(cvt_<I>(src)), normVal, stream);
174         }
175         else
176         {
177             gridFindMaxVal(abs_(cvt_<I>(src)), normVal, globPtr<uchar>(mask), stream);
178         }
179     }
180 
181     if (normType == NORM_L2)
182     {
183         ConvertorNorm<T, R, I, true> cvt;
184         cvt.a = a;
185         cvt.normVal = normVal[0];
186 
187         if (mask.empty())
188         {
189             gridTransformUnary(src, dst, cvt, stream);
190         }
191         else
192         {
193             dst.setTo(Scalar::all(0), stream);
194             gridTransformUnary(src, dst, cvt, globPtr<uchar>(mask), stream);
195         }
196     }
197     else
198     {
199         ConvertorNorm<T, R, I, false> cvt;
200         cvt.a = a;
201         cvt.normVal = normVal[0];
202 
203         if (mask.empty())
204         {
205             gridTransformUnary(src, dst, cvt, stream);
206         }
207         else
208         {
209             dst.setTo(Scalar::all(0), stream);
210             gridTransformUnary(src, dst, cvt, globPtr<uchar>(mask), stream);
211         }
212     }
213 }
214 
215 } // namespace
216 
normalize(InputArray _src,OutputArray _dst,double a,double b,int normType,int dtype,InputArray _mask,Stream & stream)217 void cv::cuda::normalize(InputArray _src, OutputArray _dst, double a, double b, int normType, int dtype, InputArray _mask, Stream& stream)
218 {
219     typedef void (*func_minmax_t)(const GpuMat& _src, GpuMat& _dst, double a, double b, const GpuMat& mask, Stream& stream);
220     typedef void (*func_norm_t)(const GpuMat& _src, GpuMat& _dst, double a, int normType, const GpuMat& mask, Stream& stream);
221 
222     static const func_minmax_t funcs_minmax[] =
223     {
224         normalizeMinMax<uchar, float, float>,
225         normalizeMinMax<schar, float, float>,
226         normalizeMinMax<ushort, float, float>,
227         normalizeMinMax<short, float, float>,
228         normalizeMinMax<int, float, float>,
229         normalizeMinMax<float, float, float>,
230         normalizeMinMax<double, double, double>
231     };
232 
233     static const func_norm_t funcs_norm[] =
234     {
235         normalizeNorm<uchar, float, float>,
236         normalizeNorm<schar, float, float>,
237         normalizeNorm<ushort, float, float>,
238         normalizeNorm<short, float, float>,
239         normalizeNorm<int, float, float>,
240         normalizeNorm<float, float, float>,
241         normalizeNorm<double, double, double>
242     };
243 
244     CV_Assert( normType == NORM_INF || normType == NORM_L1 || normType == NORM_L2 || normType == NORM_MINMAX );
245 
246     const GpuMat src = getInputMat(_src, stream);
247     const GpuMat mask = getInputMat(_mask, stream);
248 
249     CV_Assert( src.channels() == 1 );
250     CV_Assert( mask.empty() || (mask.size() == src.size() && mask.type() == CV_8U) );
251 
252     dtype = CV_MAT_DEPTH(dtype);
253 
254     const int src_depth = src.depth();
255     const int tmp_depth = src_depth <= CV_32F ? CV_32F : src_depth;
256 
257     GpuMat dst;
258     if (dtype == tmp_depth)
259     {
260         _dst.create(src.size(), tmp_depth);
261         dst = getOutputMat(_dst, src.size(), tmp_depth, stream);
262     }
263     else
264     {
265         BufferPool pool(stream);
266         dst = pool.getBuffer(src.size(), tmp_depth);
267     }
268 
269     if (normType == NORM_MINMAX)
270     {
271         const func_minmax_t func = funcs_minmax[src_depth];
272         func(src, dst, a, b, mask, stream);
273     }
274     else
275     {
276         const func_norm_t func = funcs_norm[src_depth];
277         func(src, dst, a, normType, mask, stream);
278     }
279 
280     if (dtype == tmp_depth)
281     {
282         syncOutput(dst, _dst, stream);
283     }
284     else
285     {
286         dst.convertTo(_dst, dtype, stream);
287     }
288 }
289 
290 #endif
291