1 /*M///////////////////////////////////////////////////////////////////////////////////////
2 //
3 // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
4 //
5 // By downloading, copying, installing or using the software you agree to this license.
6 // If you do not agree to this license, do not download, install,
7 // copy or use the software.
8 //
9 //
10 // License Agreement
11 // For Open Source Computer Vision Library
12 //
13 // Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
14 // Copyright (C) 2009, Willow Garage Inc., all rights reserved.
15 // Third party copyrights are property of their respective owners.
16 //
17 // Redistribution and use in source and binary forms, with or without modification,
18 // are permitted provided that the following conditions are met:
19 //
20 // * Redistribution's of source code must retain the above copyright notice,
21 // this list of conditions and the following disclaimer.
22 //
23 // * Redistribution's in binary form must reproduce the above copyright notice,
24 // this list of conditions and the following disclaimer in the documentation
25 // and/or other materials provided with the distribution.
26 //
27 // * The name of the copyright holders may not be used to endorse or promote products
28 // derived from this software without specific prior written permission.
29 //
30 // This software is provided by the copyright holders and contributors "as is" and
31 // any express or implied warranties, including, but not limited to, the implied
32 // warranties of merchantability and fitness for a particular purpose are disclaimed.
33 // In no event shall the Intel Corporation or contributors be liable for any direct,
34 // indirect, incidental, special, exemplary, or consequential damages
35 // (including, but not limited to, procurement of substitute goods or services;
36 // loss of use, data, or profits; or business interruption) however caused
37 // and on any theory of liability, whether in contract, strict liability,
38 // or tort (including negligence or otherwise) arising in any way out of
39 // the use of this software, even if advised of the possibility of such damage.
40 //
41 //M*/
42
43 #include "test_precomp.hpp"
44
45 #ifdef HAVE_CUDA
46
47 using namespace cvtest;
48
49 namespace
50 {
createTransfomMatrix(cv::Size srcSize,double angle)51 cv::Mat createTransfomMatrix(cv::Size srcSize, double angle)
52 {
53 cv::Mat M(2, 3, CV_64FC1);
54
55 M.at<double>(0, 0) = std::cos(angle); M.at<double>(0, 1) = -std::sin(angle); M.at<double>(0, 2) = srcSize.width / 2;
56 M.at<double>(1, 0) = std::sin(angle); M.at<double>(1, 1) = std::cos(angle); M.at<double>(1, 2) = 0.0;
57
58 return M;
59 }
60 }
61
62 ///////////////////////////////////////////////////////////////////
63 // Test buildWarpAffineMaps
64
PARAM_TEST_CASE(BuildWarpAffineMaps,cv::cuda::DeviceInfo,cv::Size,Inverse)65 PARAM_TEST_CASE(BuildWarpAffineMaps, cv::cuda::DeviceInfo, cv::Size, Inverse)
66 {
67 cv::cuda::DeviceInfo devInfo;
68 cv::Size size;
69 bool inverse;
70
71 virtual void SetUp()
72 {
73 devInfo = GET_PARAM(0);
74 size = GET_PARAM(1);
75 inverse = GET_PARAM(2);
76
77 cv::cuda::setDevice(devInfo.deviceID());
78 }
79 };
80
CUDA_TEST_P(BuildWarpAffineMaps,Accuracy)81 CUDA_TEST_P(BuildWarpAffineMaps, Accuracy)
82 {
83 cv::Mat M = createTransfomMatrix(size, CV_PI / 4);
84 cv::Mat src = randomMat(randomSize(200, 400), CV_8UC1);
85
86 cv::cuda::GpuMat xmap, ymap;
87 cv::cuda::buildWarpAffineMaps(M, inverse, size, xmap, ymap);
88
89 int interpolation = cv::INTER_NEAREST;
90 int borderMode = cv::BORDER_CONSTANT;
91 int flags = interpolation;
92 if (inverse)
93 flags |= cv::WARP_INVERSE_MAP;
94
95 cv::Mat dst;
96 cv::remap(src, dst, cv::Mat(xmap), cv::Mat(ymap), interpolation, borderMode);
97
98 cv::Mat dst_gold;
99 cv::warpAffine(src, dst_gold, M, size, flags, borderMode);
100
101 EXPECT_MAT_NEAR(dst_gold, dst, 0.0);
102 }
103
104 INSTANTIATE_TEST_CASE_P(CUDA_Warping, BuildWarpAffineMaps, testing::Combine(
105 ALL_DEVICES,
106 DIFFERENT_SIZES,
107 DIRECT_INVERSE));
108
109 ///////////////////////////////////////////////////////////////////
110 // Gold implementation
111
112 namespace
113 {
warpAffineImpl(const cv::Mat & src,const cv::Mat & M,cv::Size dsize,cv::Mat & dst,int borderType,cv::Scalar borderVal)114 template <typename T, template <typename> class Interpolator> void warpAffineImpl(const cv::Mat& src, const cv::Mat& M, cv::Size dsize, cv::Mat& dst, int borderType, cv::Scalar borderVal)
115 {
116 const int cn = src.channels();
117
118 dst.create(dsize, src.type());
119
120 for (int y = 0; y < dsize.height; ++y)
121 {
122 for (int x = 0; x < dsize.width; ++x)
123 {
124 float xcoo = static_cast<float>(M.at<double>(0, 0) * x + M.at<double>(0, 1) * y + M.at<double>(0, 2));
125 float ycoo = static_cast<float>(M.at<double>(1, 0) * x + M.at<double>(1, 1) * y + M.at<double>(1, 2));
126
127 for (int c = 0; c < cn; ++c)
128 dst.at<T>(y, x * cn + c) = Interpolator<T>::getValue(src, ycoo, xcoo, c, borderType, borderVal);
129 }
130 }
131 }
132
warpAffineGold(const cv::Mat & src,const cv::Mat & M,bool inverse,cv::Size dsize,cv::Mat & dst,int interpolation,int borderType,cv::Scalar borderVal)133 void warpAffineGold(const cv::Mat& src, const cv::Mat& M, bool inverse, cv::Size dsize, cv::Mat& dst, int interpolation, int borderType, cv::Scalar borderVal)
134 {
135 typedef void (*func_t)(const cv::Mat& src, const cv::Mat& M, cv::Size dsize, cv::Mat& dst, int borderType, cv::Scalar borderVal);
136
137 static const func_t nearest_funcs[] =
138 {
139 warpAffineImpl<unsigned char, NearestInterpolator>,
140 warpAffineImpl<signed char, NearestInterpolator>,
141 warpAffineImpl<unsigned short, NearestInterpolator>,
142 warpAffineImpl<short, NearestInterpolator>,
143 warpAffineImpl<int, NearestInterpolator>,
144 warpAffineImpl<float, NearestInterpolator>
145 };
146
147 static const func_t linear_funcs[] =
148 {
149 warpAffineImpl<unsigned char, LinearInterpolator>,
150 warpAffineImpl<signed char, LinearInterpolator>,
151 warpAffineImpl<unsigned short, LinearInterpolator>,
152 warpAffineImpl<short, LinearInterpolator>,
153 warpAffineImpl<int, LinearInterpolator>,
154 warpAffineImpl<float, LinearInterpolator>
155 };
156
157 static const func_t cubic_funcs[] =
158 {
159 warpAffineImpl<unsigned char, CubicInterpolator>,
160 warpAffineImpl<signed char, CubicInterpolator>,
161 warpAffineImpl<unsigned short, CubicInterpolator>,
162 warpAffineImpl<short, CubicInterpolator>,
163 warpAffineImpl<int, CubicInterpolator>,
164 warpAffineImpl<float, CubicInterpolator>
165 };
166
167 static const func_t* funcs[] = {nearest_funcs, linear_funcs, cubic_funcs};
168
169 if (inverse)
170 funcs[interpolation][src.depth()](src, M, dsize, dst, borderType, borderVal);
171 else
172 {
173 cv::Mat iM;
174 cv::invertAffineTransform(M, iM);
175 funcs[interpolation][src.depth()](src, iM, dsize, dst, borderType, borderVal);
176 }
177 }
178 }
179
180 ///////////////////////////////////////////////////////////////////
181 // Test
182
PARAM_TEST_CASE(WarpAffine,cv::cuda::DeviceInfo,cv::Size,MatType,Inverse,Interpolation,BorderType,UseRoi)183 PARAM_TEST_CASE(WarpAffine, cv::cuda::DeviceInfo, cv::Size, MatType, Inverse, Interpolation, BorderType, UseRoi)
184 {
185 cv::cuda::DeviceInfo devInfo;
186 cv::Size size;
187 int type;
188 bool inverse;
189 int interpolation;
190 int borderType;
191 bool useRoi;
192
193 virtual void SetUp()
194 {
195 devInfo = GET_PARAM(0);
196 size = GET_PARAM(1);
197 type = GET_PARAM(2);
198 inverse = GET_PARAM(3);
199 interpolation = GET_PARAM(4);
200 borderType = GET_PARAM(5);
201 useRoi = GET_PARAM(6);
202
203 cv::cuda::setDevice(devInfo.deviceID());
204 }
205 };
206
CUDA_TEST_P(WarpAffine,Accuracy)207 CUDA_TEST_P(WarpAffine, Accuracy)
208 {
209 cv::Mat src = randomMat(size, type);
210 cv::Mat M = createTransfomMatrix(size, CV_PI / 3);
211 int flags = interpolation;
212 if (inverse)
213 flags |= cv::WARP_INVERSE_MAP;
214 cv::Scalar val = randomScalar(0.0, 255.0);
215
216 cv::cuda::GpuMat dst = createMat(size, type, useRoi);
217 cv::cuda::warpAffine(loadMat(src, useRoi), dst, M, size, flags, borderType, val);
218
219 cv::Mat dst_gold;
220 warpAffineGold(src, M, inverse, size, dst_gold, interpolation, borderType, val);
221
222 EXPECT_MAT_NEAR(dst_gold, dst, src.depth() == CV_32F ? 1e-1 : 1.0);
223 }
224
225 INSTANTIATE_TEST_CASE_P(CUDA_Warping, WarpAffine, testing::Combine(
226 ALL_DEVICES,
227 DIFFERENT_SIZES,
228 testing::Values(MatType(CV_8UC1), MatType(CV_8UC3), MatType(CV_8UC4), MatType(CV_16UC1), MatType(CV_16UC3), MatType(CV_16UC4), MatType(CV_32FC1), MatType(CV_32FC3), MatType(CV_32FC4)),
229 DIRECT_INVERSE,
230 testing::Values(Interpolation(cv::INTER_NEAREST), Interpolation(cv::INTER_LINEAR), Interpolation(cv::INTER_CUBIC)),
231 testing::Values(BorderType(cv::BORDER_REFLECT101), BorderType(cv::BORDER_REPLICATE), BorderType(cv::BORDER_REFLECT), BorderType(cv::BORDER_WRAP)),
232 WHOLE_SUBMAT));
233
234 ///////////////////////////////////////////////////////////////////
235 // Test NPP
236
PARAM_TEST_CASE(WarpAffineNPP,cv::cuda::DeviceInfo,MatType,Inverse,Interpolation)237 PARAM_TEST_CASE(WarpAffineNPP, cv::cuda::DeviceInfo, MatType, Inverse, Interpolation)
238 {
239 cv::cuda::DeviceInfo devInfo;
240 int type;
241 bool inverse;
242 int interpolation;
243
244 virtual void SetUp()
245 {
246 devInfo = GET_PARAM(0);
247 type = GET_PARAM(1);
248 inverse = GET_PARAM(2);
249 interpolation = GET_PARAM(3);
250
251 cv::cuda::setDevice(devInfo.deviceID());
252 }
253 };
254
CUDA_TEST_P(WarpAffineNPP,Accuracy)255 CUDA_TEST_P(WarpAffineNPP, Accuracy)
256 {
257 cv::Mat src = readImageType("stereobp/aloe-L.png", type);
258 ASSERT_FALSE(src.empty());
259
260 cv::Mat M = createTransfomMatrix(src.size(), CV_PI / 4);
261 int flags = interpolation;
262 if (inverse)
263 flags |= cv::WARP_INVERSE_MAP;
264
265 cv::cuda::GpuMat dst;
266 cv::cuda::warpAffine(loadMat(src), dst, M, src.size(), flags);
267
268 cv::Mat dst_gold;
269 warpAffineGold(src, M, inverse, src.size(), dst_gold, interpolation, cv::BORDER_CONSTANT, cv::Scalar::all(0));
270
271 EXPECT_MAT_SIMILAR(dst_gold, dst, 2e-2);
272 }
273
274 INSTANTIATE_TEST_CASE_P(CUDA_Warping, WarpAffineNPP, testing::Combine(
275 ALL_DEVICES,
276 testing::Values(MatType(CV_8UC1), MatType(CV_8UC3), MatType(CV_8UC4), MatType(CV_32FC1), MatType(CV_32FC3), MatType(CV_32FC4)),
277 DIRECT_INVERSE,
278 testing::Values(Interpolation(cv::INTER_NEAREST), Interpolation(cv::INTER_LINEAR), Interpolation(cv::INTER_CUBIC))));
279
280 #endif // HAVE_CUDA
281