1 /*M///////////////////////////////////////////////////////////////////////////////////////
2 //
3 // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
4 //
5 // By downloading, copying, installing or using the software you agree to this license.
6 // If you do not agree to this license, do not download, install,
7 // copy or use the software.
8 //
9 //
10 // License Agreement
11 // For Open Source Computer Vision Library
12 //
13 // Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
14 // Copyright (C) 2009, Willow Garage Inc., all rights reserved.
15 // Third party copyrights are property of their respective owners.
16 //
17 // Redistribution and use in source and binary forms, with or without modification,
18 // are permitted provided that the following conditions are met:
19 //
20 // * Redistribution's of source code must retain the above copyright notice,
21 // this list of conditions and the following disclaimer.
22 //
23 // * Redistribution's in binary form must reproduce the above copyright notice,
24 // this list of conditions and the following disclaimer in the documentation
25 // and/or other materials provided with the distribution.
26 //
27 // * The name of the copyright holders may not be used to endorse or promote products
28 // derived from this software without specific prior written permission.
29 //
30 // This software is provided by the copyright holders and contributors "as is" and
31 // any express or implied warranties, including, but not limited to, the implied
32 // warranties of merchantability and fitness for a particular purpose are disclaimed.
33 // In no event shall the Intel Corporation or contributors be liable for any direct,
34 // indirect, incidental, special, exemplary, or consequential damages
35 // (including, but not limited to, procurement of substitute goods or services;
36 // loss of use, data, or profits; or business interruption) however caused
37 // and on any theory of liability, whether in contract, strict liability,
38 // or tort (including negligence or otherwise) arising in any way out of
39 // the use of this software, even if advised of the possibility of such damage.
40 //
41 //M*/
42
43 #include "precomp.hpp"
44 #include <iterator>
45 #include <limits>
46
47 //#define DEBUG_BLOB_DETECTOR
48
49 #ifdef DEBUG_BLOB_DETECTOR
50 # include "opencv2/opencv_modules.hpp"
51 # ifdef HAVE_OPENCV_HIGHGUI
52 # include "opencv2/highgui.hpp"
53 # else
54 # undef DEBUG_BLOB_DETECTOR
55 # endif
56 #endif
57
58 namespace cv
59 {
60
61 class CV_EXPORTS_W SimpleBlobDetectorImpl : public SimpleBlobDetector
62 {
63 public:
64
65 explicit SimpleBlobDetectorImpl(const SimpleBlobDetector::Params ¶meters = SimpleBlobDetector::Params());
66
67 virtual void read( const FileNode& fn );
68 virtual void write( FileStorage& fs ) const;
69
70 protected:
71 struct CV_EXPORTS Center
72 {
73 Point2d location;
74 double radius;
75 double confidence;
76 };
77
78 virtual void detect( InputArray image, std::vector<KeyPoint>& keypoints, InputArray mask=noArray() );
79 virtual void findBlobs(InputArray image, InputArray binaryImage, std::vector<Center> ¢ers) const;
80
81 Params params;
82 };
83
84 /*
85 * SimpleBlobDetector
86 */
Params()87 SimpleBlobDetector::Params::Params()
88 {
89 thresholdStep = 10;
90 minThreshold = 50;
91 maxThreshold = 220;
92 minRepeatability = 2;
93 minDistBetweenBlobs = 10;
94
95 filterByColor = true;
96 blobColor = 0;
97
98 filterByArea = true;
99 minArea = 25;
100 maxArea = 5000;
101
102 filterByCircularity = false;
103 minCircularity = 0.8f;
104 maxCircularity = std::numeric_limits<float>::max();
105
106 filterByInertia = true;
107 //minInertiaRatio = 0.6;
108 minInertiaRatio = 0.1f;
109 maxInertiaRatio = std::numeric_limits<float>::max();
110
111 filterByConvexity = true;
112 //minConvexity = 0.8;
113 minConvexity = 0.95f;
114 maxConvexity = std::numeric_limits<float>::max();
115 }
116
read(const cv::FileNode & fn)117 void SimpleBlobDetector::Params::read(const cv::FileNode& fn )
118 {
119 thresholdStep = fn["thresholdStep"];
120 minThreshold = fn["minThreshold"];
121 maxThreshold = fn["maxThreshold"];
122
123 minRepeatability = (size_t)(int)fn["minRepeatability"];
124 minDistBetweenBlobs = fn["minDistBetweenBlobs"];
125
126 filterByColor = (int)fn["filterByColor"] != 0 ? true : false;
127 blobColor = (uchar)(int)fn["blobColor"];
128
129 filterByArea = (int)fn["filterByArea"] != 0 ? true : false;
130 minArea = fn["minArea"];
131 maxArea = fn["maxArea"];
132
133 filterByCircularity = (int)fn["filterByCircularity"] != 0 ? true : false;
134 minCircularity = fn["minCircularity"];
135 maxCircularity = fn["maxCircularity"];
136
137 filterByInertia = (int)fn["filterByInertia"] != 0 ? true : false;
138 minInertiaRatio = fn["minInertiaRatio"];
139 maxInertiaRatio = fn["maxInertiaRatio"];
140
141 filterByConvexity = (int)fn["filterByConvexity"] != 0 ? true : false;
142 minConvexity = fn["minConvexity"];
143 maxConvexity = fn["maxConvexity"];
144 }
145
write(cv::FileStorage & fs) const146 void SimpleBlobDetector::Params::write(cv::FileStorage& fs) const
147 {
148 fs << "thresholdStep" << thresholdStep;
149 fs << "minThreshold" << minThreshold;
150 fs << "maxThreshold" << maxThreshold;
151
152 fs << "minRepeatability" << (int)minRepeatability;
153 fs << "minDistBetweenBlobs" << minDistBetweenBlobs;
154
155 fs << "filterByColor" << (int)filterByColor;
156 fs << "blobColor" << (int)blobColor;
157
158 fs << "filterByArea" << (int)filterByArea;
159 fs << "minArea" << minArea;
160 fs << "maxArea" << maxArea;
161
162 fs << "filterByCircularity" << (int)filterByCircularity;
163 fs << "minCircularity" << minCircularity;
164 fs << "maxCircularity" << maxCircularity;
165
166 fs << "filterByInertia" << (int)filterByInertia;
167 fs << "minInertiaRatio" << minInertiaRatio;
168 fs << "maxInertiaRatio" << maxInertiaRatio;
169
170 fs << "filterByConvexity" << (int)filterByConvexity;
171 fs << "minConvexity" << minConvexity;
172 fs << "maxConvexity" << maxConvexity;
173 }
174
SimpleBlobDetectorImpl(const SimpleBlobDetector::Params & parameters)175 SimpleBlobDetectorImpl::SimpleBlobDetectorImpl(const SimpleBlobDetector::Params ¶meters) :
176 params(parameters)
177 {
178 }
179
read(const cv::FileNode & fn)180 void SimpleBlobDetectorImpl::read( const cv::FileNode& fn )
181 {
182 params.read(fn);
183 }
184
write(cv::FileStorage & fs) const185 void SimpleBlobDetectorImpl::write( cv::FileStorage& fs ) const
186 {
187 params.write(fs);
188 }
189
findBlobs(InputArray _image,InputArray _binaryImage,std::vector<Center> & centers) const190 void SimpleBlobDetectorImpl::findBlobs(InputArray _image, InputArray _binaryImage, std::vector<Center> ¢ers) const
191 {
192 Mat image = _image.getMat(), binaryImage = _binaryImage.getMat();
193 (void)image;
194 centers.clear();
195
196 std::vector < std::vector<Point> > contours;
197 Mat tmpBinaryImage = binaryImage.clone();
198 findContours(tmpBinaryImage, contours, RETR_LIST, CHAIN_APPROX_NONE);
199
200 #ifdef DEBUG_BLOB_DETECTOR
201 // Mat keypointsImage;
202 // cvtColor( binaryImage, keypointsImage, CV_GRAY2RGB );
203 //
204 // Mat contoursImage;
205 // cvtColor( binaryImage, contoursImage, CV_GRAY2RGB );
206 // drawContours( contoursImage, contours, -1, Scalar(0,255,0) );
207 // imshow("contours", contoursImage );
208 #endif
209
210 for (size_t contourIdx = 0; contourIdx < contours.size(); contourIdx++)
211 {
212 Center center;
213 center.confidence = 1;
214 Moments moms = moments(Mat(contours[contourIdx]));
215 if (params.filterByArea)
216 {
217 double area = moms.m00;
218 if (area < params.minArea || area >= params.maxArea)
219 continue;
220 }
221
222 if (params.filterByCircularity)
223 {
224 double area = moms.m00;
225 double perimeter = arcLength(Mat(contours[contourIdx]), true);
226 double ratio = 4 * CV_PI * area / (perimeter * perimeter);
227 if (ratio < params.minCircularity || ratio >= params.maxCircularity)
228 continue;
229 }
230
231 if (params.filterByInertia)
232 {
233 double denominator = std::sqrt(std::pow(2 * moms.mu11, 2) + std::pow(moms.mu20 - moms.mu02, 2));
234 const double eps = 1e-2;
235 double ratio;
236 if (denominator > eps)
237 {
238 double cosmin = (moms.mu20 - moms.mu02) / denominator;
239 double sinmin = 2 * moms.mu11 / denominator;
240 double cosmax = -cosmin;
241 double sinmax = -sinmin;
242
243 double imin = 0.5 * (moms.mu20 + moms.mu02) - 0.5 * (moms.mu20 - moms.mu02) * cosmin - moms.mu11 * sinmin;
244 double imax = 0.5 * (moms.mu20 + moms.mu02) - 0.5 * (moms.mu20 - moms.mu02) * cosmax - moms.mu11 * sinmax;
245 ratio = imin / imax;
246 }
247 else
248 {
249 ratio = 1;
250 }
251
252 if (ratio < params.minInertiaRatio || ratio >= params.maxInertiaRatio)
253 continue;
254
255 center.confidence = ratio * ratio;
256 }
257
258 if (params.filterByConvexity)
259 {
260 std::vector < Point > hull;
261 convexHull(Mat(contours[contourIdx]), hull);
262 double area = contourArea(Mat(contours[contourIdx]));
263 double hullArea = contourArea(Mat(hull));
264 double ratio = area / hullArea;
265 if (ratio < params.minConvexity || ratio >= params.maxConvexity)
266 continue;
267 }
268
269 if(moms.m00 == 0.0)
270 continue;
271 center.location = Point2d(moms.m10 / moms.m00, moms.m01 / moms.m00);
272
273 if (params.filterByColor)
274 {
275 if (binaryImage.at<uchar> (cvRound(center.location.y), cvRound(center.location.x)) != params.blobColor)
276 continue;
277 }
278
279 //compute blob radius
280 {
281 std::vector<double> dists;
282 for (size_t pointIdx = 0; pointIdx < contours[contourIdx].size(); pointIdx++)
283 {
284 Point2d pt = contours[contourIdx][pointIdx];
285 dists.push_back(norm(center.location - pt));
286 }
287 std::sort(dists.begin(), dists.end());
288 center.radius = (dists[(dists.size() - 1) / 2] + dists[dists.size() / 2]) / 2.;
289 }
290
291 centers.push_back(center);
292
293
294 #ifdef DEBUG_BLOB_DETECTOR
295 // circle( keypointsImage, center.location, 1, Scalar(0,0,255), 1 );
296 #endif
297 }
298 #ifdef DEBUG_BLOB_DETECTOR
299 // imshow("bk", keypointsImage );
300 // waitKey();
301 #endif
302 }
303
detect(InputArray image,std::vector<cv::KeyPoint> & keypoints,InputArray)304 void SimpleBlobDetectorImpl::detect(InputArray image, std::vector<cv::KeyPoint>& keypoints, InputArray)
305 {
306 //TODO: support mask
307 keypoints.clear();
308 Mat grayscaleImage;
309 if (image.channels() == 3)
310 cvtColor(image, grayscaleImage, COLOR_BGR2GRAY);
311 else
312 grayscaleImage = image.getMat();
313
314 std::vector < std::vector<Center> > centers;
315 for (double thresh = params.minThreshold; thresh < params.maxThreshold; thresh += params.thresholdStep)
316 {
317 Mat binarizedImage;
318 threshold(grayscaleImage, binarizedImage, thresh, 255, THRESH_BINARY);
319
320 std::vector < Center > curCenters;
321 findBlobs(grayscaleImage, binarizedImage, curCenters);
322 std::vector < std::vector<Center> > newCenters;
323 for (size_t i = 0; i < curCenters.size(); i++)
324 {
325 bool isNew = true;
326 for (size_t j = 0; j < centers.size(); j++)
327 {
328 double dist = norm(centers[j][ centers[j].size() / 2 ].location - curCenters[i].location);
329 isNew = dist >= params.minDistBetweenBlobs && dist >= centers[j][ centers[j].size() / 2 ].radius && dist >= curCenters[i].radius;
330 if (!isNew)
331 {
332 centers[j].push_back(curCenters[i]);
333
334 size_t k = centers[j].size() - 1;
335 while( k > 0 && centers[j][k].radius < centers[j][k-1].radius )
336 {
337 centers[j][k] = centers[j][k-1];
338 k--;
339 }
340 centers[j][k] = curCenters[i];
341
342 break;
343 }
344 }
345 if (isNew)
346 newCenters.push_back(std::vector<Center> (1, curCenters[i]));
347 }
348 std::copy(newCenters.begin(), newCenters.end(), std::back_inserter(centers));
349 }
350
351 for (size_t i = 0; i < centers.size(); i++)
352 {
353 if (centers[i].size() < params.minRepeatability)
354 continue;
355 Point2d sumPoint(0, 0);
356 double normalizer = 0;
357 for (size_t j = 0; j < centers[i].size(); j++)
358 {
359 sumPoint += centers[i][j].confidence * centers[i][j].location;
360 normalizer += centers[i][j].confidence;
361 }
362 sumPoint *= (1. / normalizer);
363 KeyPoint kpt(sumPoint, (float)(centers[i][centers[i].size() / 2].radius) * 2.0f);
364 keypoints.push_back(kpt);
365 }
366 }
367
create(const SimpleBlobDetector::Params & params)368 Ptr<SimpleBlobDetector> SimpleBlobDetector::create(const SimpleBlobDetector::Params& params)
369 {
370 return makePtr<SimpleBlobDetectorImpl>(params);
371 }
372
373 }
374