• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*M///////////////////////////////////////////////////////////////////////////////////////
2 //
3 //  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
4 //
5 //  By downloading, copying, installing or using the software you agree to this license.
6 //  If you do not agree to this license, do not download, install,
7 //  copy or use the software.
8 //
9 //
10 //                           License Agreement
11 //                For Open Source Computer Vision Library
12 //
13 // Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
14 // Copyright (C) 2009, Willow Garage Inc., all rights reserved.
15 // Third party copyrights are property of their respective owners.
16 //
17 // Redistribution and use in source and binary forms, with or without modification,
18 // are permitted provided that the following conditions are met:
19 //
20 //   * Redistribution's of source code must retain the above copyright notice,
21 //     this list of conditions and the following disclaimer.
22 //
23 //   * Redistribution's in binary form must reproduce the above copyright notice,
24 //     this list of conditions and the following disclaimer in the documentation
25 //     and/or other materials provided with the distribution.
26 //
27 //   * The name of the copyright holders may not be used to endorse or promote products
28 //     derived from this software without specific prior written permission.
29 //
30 // This software is provided by the copyright holders and contributors "as is" and
31 // any express or implied warranties, including, but not limited to, the implied
32 // warranties of merchantability and fitness for a particular purpose are disclaimed.
33 // In no event shall the Intel Corporation or contributors be liable for any direct,
34 // indirect, incidental, special, exemplary, or consequential damages
35 // (including, but not limited to, procurement of substitute goods or services;
36 // loss of use, data, or profits; or business interruption) however caused
37 // and on any theory of liability, whether in contract, strict liability,
38 // or tort (including negligence or otherwise) arising in any way out of
39 // the use of this software, even if advised of the possibility of such damage.
40 //
41 //M*/
42 
43 #include "precomp.hpp"
44 #include <iterator>
45 #include <limits>
46 
47 //#define DEBUG_BLOB_DETECTOR
48 
49 #ifdef DEBUG_BLOB_DETECTOR
50 #  include "opencv2/opencv_modules.hpp"
51 #  ifdef HAVE_OPENCV_HIGHGUI
52 #    include "opencv2/highgui.hpp"
53 #  else
54 #    undef DEBUG_BLOB_DETECTOR
55 #  endif
56 #endif
57 
58 namespace cv
59 {
60 
61 class CV_EXPORTS_W SimpleBlobDetectorImpl : public SimpleBlobDetector
62 {
63 public:
64 
65   explicit SimpleBlobDetectorImpl(const SimpleBlobDetector::Params &parameters = SimpleBlobDetector::Params());
66 
67   virtual void read( const FileNode& fn );
68   virtual void write( FileStorage& fs ) const;
69 
70 protected:
71   struct CV_EXPORTS Center
72   {
73       Point2d location;
74       double radius;
75       double confidence;
76   };
77 
78   virtual void detect( InputArray image, std::vector<KeyPoint>& keypoints, InputArray mask=noArray() );
79   virtual void findBlobs(InputArray image, InputArray binaryImage, std::vector<Center> &centers) const;
80 
81   Params params;
82 };
83 
84 /*
85 *  SimpleBlobDetector
86 */
Params()87 SimpleBlobDetector::Params::Params()
88 {
89     thresholdStep = 10;
90     minThreshold = 50;
91     maxThreshold = 220;
92     minRepeatability = 2;
93     minDistBetweenBlobs = 10;
94 
95     filterByColor = true;
96     blobColor = 0;
97 
98     filterByArea = true;
99     minArea = 25;
100     maxArea = 5000;
101 
102     filterByCircularity = false;
103     minCircularity = 0.8f;
104     maxCircularity = std::numeric_limits<float>::max();
105 
106     filterByInertia = true;
107     //minInertiaRatio = 0.6;
108     minInertiaRatio = 0.1f;
109     maxInertiaRatio = std::numeric_limits<float>::max();
110 
111     filterByConvexity = true;
112     //minConvexity = 0.8;
113     minConvexity = 0.95f;
114     maxConvexity = std::numeric_limits<float>::max();
115 }
116 
read(const cv::FileNode & fn)117 void SimpleBlobDetector::Params::read(const cv::FileNode& fn )
118 {
119     thresholdStep = fn["thresholdStep"];
120     minThreshold = fn["minThreshold"];
121     maxThreshold = fn["maxThreshold"];
122 
123     minRepeatability = (size_t)(int)fn["minRepeatability"];
124     minDistBetweenBlobs = fn["minDistBetweenBlobs"];
125 
126     filterByColor = (int)fn["filterByColor"] != 0 ? true : false;
127     blobColor = (uchar)(int)fn["blobColor"];
128 
129     filterByArea = (int)fn["filterByArea"] != 0 ? true : false;
130     minArea = fn["minArea"];
131     maxArea = fn["maxArea"];
132 
133     filterByCircularity = (int)fn["filterByCircularity"] != 0 ? true : false;
134     minCircularity = fn["minCircularity"];
135     maxCircularity = fn["maxCircularity"];
136 
137     filterByInertia = (int)fn["filterByInertia"] != 0 ? true : false;
138     minInertiaRatio = fn["minInertiaRatio"];
139     maxInertiaRatio = fn["maxInertiaRatio"];
140 
141     filterByConvexity = (int)fn["filterByConvexity"] != 0 ? true : false;
142     minConvexity = fn["minConvexity"];
143     maxConvexity = fn["maxConvexity"];
144 }
145 
write(cv::FileStorage & fs) const146 void SimpleBlobDetector::Params::write(cv::FileStorage& fs) const
147 {
148     fs << "thresholdStep" << thresholdStep;
149     fs << "minThreshold" << minThreshold;
150     fs << "maxThreshold" << maxThreshold;
151 
152     fs << "minRepeatability" << (int)minRepeatability;
153     fs << "minDistBetweenBlobs" << minDistBetweenBlobs;
154 
155     fs << "filterByColor" << (int)filterByColor;
156     fs << "blobColor" << (int)blobColor;
157 
158     fs << "filterByArea" << (int)filterByArea;
159     fs << "minArea" << minArea;
160     fs << "maxArea" << maxArea;
161 
162     fs << "filterByCircularity" << (int)filterByCircularity;
163     fs << "minCircularity" << minCircularity;
164     fs << "maxCircularity" << maxCircularity;
165 
166     fs << "filterByInertia" << (int)filterByInertia;
167     fs << "minInertiaRatio" << minInertiaRatio;
168     fs << "maxInertiaRatio" << maxInertiaRatio;
169 
170     fs << "filterByConvexity" << (int)filterByConvexity;
171     fs << "minConvexity" << minConvexity;
172     fs << "maxConvexity" << maxConvexity;
173 }
174 
SimpleBlobDetectorImpl(const SimpleBlobDetector::Params & parameters)175 SimpleBlobDetectorImpl::SimpleBlobDetectorImpl(const SimpleBlobDetector::Params &parameters) :
176 params(parameters)
177 {
178 }
179 
read(const cv::FileNode & fn)180 void SimpleBlobDetectorImpl::read( const cv::FileNode& fn )
181 {
182     params.read(fn);
183 }
184 
write(cv::FileStorage & fs) const185 void SimpleBlobDetectorImpl::write( cv::FileStorage& fs ) const
186 {
187     params.write(fs);
188 }
189 
findBlobs(InputArray _image,InputArray _binaryImage,std::vector<Center> & centers) const190 void SimpleBlobDetectorImpl::findBlobs(InputArray _image, InputArray _binaryImage, std::vector<Center> &centers) const
191 {
192     Mat image = _image.getMat(), binaryImage = _binaryImage.getMat();
193     (void)image;
194     centers.clear();
195 
196     std::vector < std::vector<Point> > contours;
197     Mat tmpBinaryImage = binaryImage.clone();
198     findContours(tmpBinaryImage, contours, RETR_LIST, CHAIN_APPROX_NONE);
199 
200 #ifdef DEBUG_BLOB_DETECTOR
201     //  Mat keypointsImage;
202     //  cvtColor( binaryImage, keypointsImage, CV_GRAY2RGB );
203     //
204     //  Mat contoursImage;
205     //  cvtColor( binaryImage, contoursImage, CV_GRAY2RGB );
206     //  drawContours( contoursImage, contours, -1, Scalar(0,255,0) );
207     //  imshow("contours", contoursImage );
208 #endif
209 
210     for (size_t contourIdx = 0; contourIdx < contours.size(); contourIdx++)
211     {
212         Center center;
213         center.confidence = 1;
214         Moments moms = moments(Mat(contours[contourIdx]));
215         if (params.filterByArea)
216         {
217             double area = moms.m00;
218             if (area < params.minArea || area >= params.maxArea)
219                 continue;
220         }
221 
222         if (params.filterByCircularity)
223         {
224             double area = moms.m00;
225             double perimeter = arcLength(Mat(contours[contourIdx]), true);
226             double ratio = 4 * CV_PI * area / (perimeter * perimeter);
227             if (ratio < params.minCircularity || ratio >= params.maxCircularity)
228                 continue;
229         }
230 
231         if (params.filterByInertia)
232         {
233             double denominator = std::sqrt(std::pow(2 * moms.mu11, 2) + std::pow(moms.mu20 - moms.mu02, 2));
234             const double eps = 1e-2;
235             double ratio;
236             if (denominator > eps)
237             {
238                 double cosmin = (moms.mu20 - moms.mu02) / denominator;
239                 double sinmin = 2 * moms.mu11 / denominator;
240                 double cosmax = -cosmin;
241                 double sinmax = -sinmin;
242 
243                 double imin = 0.5 * (moms.mu20 + moms.mu02) - 0.5 * (moms.mu20 - moms.mu02) * cosmin - moms.mu11 * sinmin;
244                 double imax = 0.5 * (moms.mu20 + moms.mu02) - 0.5 * (moms.mu20 - moms.mu02) * cosmax - moms.mu11 * sinmax;
245                 ratio = imin / imax;
246             }
247             else
248             {
249                 ratio = 1;
250             }
251 
252             if (ratio < params.minInertiaRatio || ratio >= params.maxInertiaRatio)
253                 continue;
254 
255             center.confidence = ratio * ratio;
256         }
257 
258         if (params.filterByConvexity)
259         {
260             std::vector < Point > hull;
261             convexHull(Mat(contours[contourIdx]), hull);
262             double area = contourArea(Mat(contours[contourIdx]));
263             double hullArea = contourArea(Mat(hull));
264             double ratio = area / hullArea;
265             if (ratio < params.minConvexity || ratio >= params.maxConvexity)
266                 continue;
267         }
268 
269         if(moms.m00 == 0.0)
270             continue;
271         center.location = Point2d(moms.m10 / moms.m00, moms.m01 / moms.m00);
272 
273         if (params.filterByColor)
274         {
275             if (binaryImage.at<uchar> (cvRound(center.location.y), cvRound(center.location.x)) != params.blobColor)
276                 continue;
277         }
278 
279         //compute blob radius
280         {
281             std::vector<double> dists;
282             for (size_t pointIdx = 0; pointIdx < contours[contourIdx].size(); pointIdx++)
283             {
284                 Point2d pt = contours[contourIdx][pointIdx];
285                 dists.push_back(norm(center.location - pt));
286             }
287             std::sort(dists.begin(), dists.end());
288             center.radius = (dists[(dists.size() - 1) / 2] + dists[dists.size() / 2]) / 2.;
289         }
290 
291         centers.push_back(center);
292 
293 
294 #ifdef DEBUG_BLOB_DETECTOR
295         //    circle( keypointsImage, center.location, 1, Scalar(0,0,255), 1 );
296 #endif
297     }
298 #ifdef DEBUG_BLOB_DETECTOR
299     //  imshow("bk", keypointsImage );
300     //  waitKey();
301 #endif
302 }
303 
detect(InputArray image,std::vector<cv::KeyPoint> & keypoints,InputArray)304 void SimpleBlobDetectorImpl::detect(InputArray image, std::vector<cv::KeyPoint>& keypoints, InputArray)
305 {
306     //TODO: support mask
307     keypoints.clear();
308     Mat grayscaleImage;
309     if (image.channels() == 3)
310         cvtColor(image, grayscaleImage, COLOR_BGR2GRAY);
311     else
312         grayscaleImage = image.getMat();
313 
314     std::vector < std::vector<Center> > centers;
315     for (double thresh = params.minThreshold; thresh < params.maxThreshold; thresh += params.thresholdStep)
316     {
317         Mat binarizedImage;
318         threshold(grayscaleImage, binarizedImage, thresh, 255, THRESH_BINARY);
319 
320         std::vector < Center > curCenters;
321         findBlobs(grayscaleImage, binarizedImage, curCenters);
322         std::vector < std::vector<Center> > newCenters;
323         for (size_t i = 0; i < curCenters.size(); i++)
324         {
325             bool isNew = true;
326             for (size_t j = 0; j < centers.size(); j++)
327             {
328                 double dist = norm(centers[j][ centers[j].size() / 2 ].location - curCenters[i].location);
329                 isNew = dist >= params.minDistBetweenBlobs && dist >= centers[j][ centers[j].size() / 2 ].radius && dist >= curCenters[i].radius;
330                 if (!isNew)
331                 {
332                     centers[j].push_back(curCenters[i]);
333 
334                     size_t k = centers[j].size() - 1;
335                     while( k > 0 && centers[j][k].radius < centers[j][k-1].radius )
336                     {
337                         centers[j][k] = centers[j][k-1];
338                         k--;
339                     }
340                     centers[j][k] = curCenters[i];
341 
342                     break;
343                 }
344             }
345             if (isNew)
346                 newCenters.push_back(std::vector<Center> (1, curCenters[i]));
347         }
348         std::copy(newCenters.begin(), newCenters.end(), std::back_inserter(centers));
349     }
350 
351     for (size_t i = 0; i < centers.size(); i++)
352     {
353         if (centers[i].size() < params.minRepeatability)
354             continue;
355         Point2d sumPoint(0, 0);
356         double normalizer = 0;
357         for (size_t j = 0; j < centers[i].size(); j++)
358         {
359             sumPoint += centers[i][j].confidence * centers[i][j].location;
360             normalizer += centers[i][j].confidence;
361         }
362         sumPoint *= (1. / normalizer);
363         KeyPoint kpt(sumPoint, (float)(centers[i][centers[i].size() / 2].radius) * 2.0f);
364         keypoints.push_back(kpt);
365     }
366 }
367 
create(const SimpleBlobDetector::Params & params)368 Ptr<SimpleBlobDetector> SimpleBlobDetector::create(const SimpleBlobDetector::Params& params)
369 {
370     return makePtr<SimpleBlobDetectorImpl>(params);
371 }
372 
373 }
374