• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*M///////////////////////////////////////////////////////////////////////////////////////
2 //
3 //  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
4 //
5 //  By downloading, copying, installing or using the software you agree to this license.
6 //  If you do not agree to this license, do not download, install,
7 //  copy or use the software.
8 //
9 //
10 //                           License Agreement
11 //                For Open Source Computer Vision Library
12 //
13 // Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
14 // Copyright (C) 2009, Willow Garage Inc., all rights reserved.
15 // Third party copyrights are property of their respective owners.
16 //
17 // Redistribution and use in source and binary forms, with or without modification,
18 // are permitted provided that the following conditions are met:
19 //
20 //   * Redistribution's of source code must retain the above copyright notice,
21 //     this list of conditions and the following disclaimer.
22 //
23 //   * Redistribution's in binary form must reproduce the above copyright notice,
24 //     this list of conditions and the following disclaimer in the documentation
25 //     and/or other materials provided with the distribution.
26 //
27 //   * The name of the copyright holders may not be used to endorse or promote products
28 //     derived from this software without specific prior written permission.
29 //
30 // This software is provided by the copyright holders and contributors "as is" and
31 // any express or implied warranties, including, but not limited to, the implied
32 // warranties of merchantability and fitness for a particular purpose are disclaimed.
33 // In no event shall the Intel Corporation or contributors be liable for any direct,
34 // indirect, incidental, special, exemplary, or consequential damages
35 // (including, but not limited to, procurement of substitute goods or services;
36 // loss of use, data, or profits; or business interruption) however caused
37 // and on any theory of liability, whether in contract, strict liability,
38 // or tort (including negligence or otherwise) arising in any way out of
39 // the use of this software, even if advised of the possibility of such damage.
40 //
41 //M*/
42 
43 #include "opencv2/core/cuda/common.hpp"
44 #include "opencv2/core/cuda/vec_traits.hpp"
45 #include "opencv2/core/cuda/vec_math.hpp"
46 #include "opencv2/core/cuda/functional.hpp"
47 #include "opencv2/core/cuda/reduce.hpp"
48 #include "opencv2/core/cuda/border_interpolate.hpp"
49 
50 using namespace cv::cuda;
51 
52 typedef unsigned char uchar;
53 typedef unsigned short ushort;
54 
55 //////////////////////////////////////////////////////////////////////////////////
56 //// Non Local Means Denosing
57 
58 namespace cv { namespace cuda { namespace device
59 {
60     namespace imgproc
61     {
norm2(const float & v)62         __device__ __forceinline__ float norm2(const float& v) { return v*v; }
norm2(const float2 & v)63         __device__ __forceinline__ float norm2(const float2& v) { return v.x*v.x + v.y*v.y; }
norm2(const float3 & v)64         __device__ __forceinline__ float norm2(const float3& v) { return v.x*v.x + v.y*v.y + v.z*v.z; }
norm2(const float4 & v)65         __device__ __forceinline__ float norm2(const float4& v) { return v.x*v.x + v.y*v.y + v.z*v.z  + v.w*v.w; }
66 
67         template<typename T, typename B>
nlm_kernel(const PtrStep<T> src,PtrStepSz<T> dst,const B b,int search_radius,int block_radius,float noise_mult)68         __global__ void nlm_kernel(const PtrStep<T> src, PtrStepSz<T> dst, const B b, int search_radius, int block_radius, float noise_mult)
69         {
70             typedef typename TypeVec<float, VecTraits<T>::cn>::vec_type value_type;
71 
72             const int i = blockDim.y * blockIdx.y + threadIdx.y;
73             const int j = blockDim.x * blockIdx.x + threadIdx.x;
74 
75             if (j >= dst.cols || i >= dst.rows)
76                 return;
77 
78             int bsize = search_radius + block_radius;
79             int search_window = 2 * search_radius + 1;
80             float minus_search_window2_inv = -1.f/(search_window * search_window);
81 
82             value_type sum1 = VecTraits<value_type>::all(0);
83             float sum2 = 0.f;
84 
85             if (j - bsize >= 0 && j + bsize < dst.cols && i - bsize >= 0 && i + bsize < dst.rows)
86             {
87                 for(float y = -search_radius; y <= search_radius; ++y)
88                     for(float x = -search_radius; x <= search_radius; ++x)
89                     {
90                         float dist2 = 0;
91                         for(float ty = -block_radius; ty <= block_radius; ++ty)
92                             for(float tx = -block_radius; tx <= block_radius; ++tx)
93                             {
94                                 value_type bv = saturate_cast<value_type>(src(i + y + ty, j + x + tx));
95                                 value_type av = saturate_cast<value_type>(src(i +     ty, j +     tx));
96 
97                                 dist2 += norm2(av - bv);
98                             }
99 
100                         float w = __expf(dist2 * noise_mult + (x * x + y * y) * minus_search_window2_inv);
101 
102                         /*if (i == 255 && j == 255)
103                             printf("%f %f\n", w, dist2 * minus_h2_inv + (x * x + y * y) * minus_search_window2_inv);*/
104 
105                         sum1 = sum1 + w * saturate_cast<value_type>(src(i + y, j + x));
106                         sum2 += w;
107                     }
108             }
109             else
110             {
111                 for(float y = -search_radius; y <= search_radius; ++y)
112                     for(float x = -search_radius; x <= search_radius; ++x)
113                     {
114                         float dist2 = 0;
115                         for(float ty = -block_radius; ty <= block_radius; ++ty)
116                             for(float tx = -block_radius; tx <= block_radius; ++tx)
117                             {
118                                 value_type bv = saturate_cast<value_type>(b.at(i + y + ty, j + x + tx, src));
119                                 value_type av = saturate_cast<value_type>(b.at(i +     ty, j +     tx, src));
120                                 dist2 += norm2(av - bv);
121                             }
122 
123                         float w = __expf(dist2 * noise_mult + (x * x + y * y) * minus_search_window2_inv);
124 
125                         sum1 = sum1 + w * saturate_cast<value_type>(b.at(i + y, j + x, src));
126                         sum2 += w;
127                     }
128 
129             }
130 
131             dst(i, j) = saturate_cast<T>(sum1 / sum2);
132 
133         }
134 
135         template<typename T, template <typename> class B>
nlm_caller(const PtrStepSzb src,PtrStepSzb dst,int search_radius,int block_radius,float h,cudaStream_t stream)136         void nlm_caller(const PtrStepSzb src, PtrStepSzb dst, int search_radius, int block_radius, float h, cudaStream_t stream)
137         {
138             dim3 block (32, 8);
139             dim3 grid (divUp (src.cols, block.x), divUp (src.rows, block.y));
140 
141             B<T> b(src.rows, src.cols);
142 
143             int block_window = 2 * block_radius + 1;
144             float minus_h2_inv = -1.f/(h * h * VecTraits<T>::cn);
145             float noise_mult = minus_h2_inv/(block_window * block_window);
146 
147             cudaSafeCall( cudaFuncSetCacheConfig (nlm_kernel<T, B<T> >, cudaFuncCachePreferL1) );
148             nlm_kernel<<<grid, block>>>((PtrStepSz<T>)src, (PtrStepSz<T>)dst, b, search_radius, block_radius, noise_mult);
149             cudaSafeCall ( cudaGetLastError () );
150 
151             if (stream == 0)
152                 cudaSafeCall( cudaDeviceSynchronize() );
153         }
154 
155         template<typename T>
nlm_bruteforce_gpu(const PtrStepSzb & src,PtrStepSzb dst,int search_radius,int block_radius,float h,int borderMode,cudaStream_t stream)156         void nlm_bruteforce_gpu(const PtrStepSzb& src, PtrStepSzb dst, int search_radius, int block_radius, float h, int borderMode, cudaStream_t stream)
157         {
158             typedef void (*func_t)(const PtrStepSzb src, PtrStepSzb dst, int search_radius, int block_radius, float h, cudaStream_t stream);
159 
160             static func_t funcs[] =
161             {
162                 nlm_caller<T, BrdConstant>,
163                 nlm_caller<T, BrdReplicate>,
164                 nlm_caller<T, BrdReflect>,
165                 nlm_caller<T, BrdWrap>,
166                 nlm_caller<T, BrdReflect101>
167             };
168             funcs[borderMode](src, dst, search_radius, block_radius, h, stream);
169         }
170 
171         template void nlm_bruteforce_gpu<uchar>(const PtrStepSzb&, PtrStepSzb, int, int, float, int, cudaStream_t);
172         template void nlm_bruteforce_gpu<uchar2>(const PtrStepSzb&, PtrStepSzb, int, int, float, int, cudaStream_t);
173         template void nlm_bruteforce_gpu<uchar3>(const PtrStepSzb&, PtrStepSzb, int, int, float, int, cudaStream_t);
174     }
175 }}}
176 
177 //////////////////////////////////////////////////////////////////////////////////
178 //// Non Local Means Denosing (fast approximate version)
179 
180 namespace cv { namespace cuda { namespace device
181 {
182     namespace imgproc
183     {
184 
185         template <int cn> struct Unroll;
186         template <> struct Unroll<1>
187         {
188             template <int BLOCK_SIZE>
smem_tuplecv::cuda::device::imgproc::Unroll189             static __device__ __forceinline__ thrust::tuple<volatile float*, volatile float*> smem_tuple(float* smem)
190             {
191                 return cv::cuda::device::smem_tuple(smem, smem + BLOCK_SIZE);
192             }
193 
tiecv::cuda::device::imgproc::Unroll194             static __device__ __forceinline__ thrust::tuple<float&, float&> tie(float& val1, float& val2)
195             {
196                 return thrust::tie(val1, val2);
197             }
198 
opcv::cuda::device::imgproc::Unroll199             static __device__ __forceinline__ const thrust::tuple<plus<float>, plus<float> > op()
200             {
201                 plus<float> op;
202                 return thrust::make_tuple(op, op);
203             }
204         };
205         template <> struct Unroll<2>
206         {
207             template <int BLOCK_SIZE>
smem_tuplecv::cuda::device::imgproc::Unroll208             static __device__ __forceinline__ thrust::tuple<volatile float*, volatile float*, volatile float*> smem_tuple(float* smem)
209             {
210                 return cv::cuda::device::smem_tuple(smem, smem + BLOCK_SIZE, smem + 2 * BLOCK_SIZE);
211             }
212 
tiecv::cuda::device::imgproc::Unroll213             static __device__ __forceinline__ thrust::tuple<float&, float&, float&> tie(float& val1, float2& val2)
214             {
215                 return thrust::tie(val1, val2.x, val2.y);
216             }
217 
opcv::cuda::device::imgproc::Unroll218             static __device__ __forceinline__ const thrust::tuple<plus<float>, plus<float>, plus<float> > op()
219             {
220                 plus<float> op;
221                 return thrust::make_tuple(op, op, op);
222             }
223         };
224         template <> struct Unroll<3>
225         {
226             template <int BLOCK_SIZE>
smem_tuplecv::cuda::device::imgproc::Unroll227             static __device__ __forceinline__ thrust::tuple<volatile float*, volatile float*, volatile float*, volatile float*> smem_tuple(float* smem)
228             {
229                 return cv::cuda::device::smem_tuple(smem, smem + BLOCK_SIZE, smem + 2 * BLOCK_SIZE, smem + 3 * BLOCK_SIZE);
230             }
231 
tiecv::cuda::device::imgproc::Unroll232             static __device__ __forceinline__ thrust::tuple<float&, float&, float&, float&> tie(float& val1, float3& val2)
233             {
234                 return thrust::tie(val1, val2.x, val2.y, val2.z);
235             }
236 
opcv::cuda::device::imgproc::Unroll237             static __device__ __forceinline__ const thrust::tuple<plus<float>, plus<float>, plus<float>, plus<float> > op()
238             {
239                 plus<float> op;
240                 return thrust::make_tuple(op, op, op, op);
241             }
242         };
243         template <> struct Unroll<4>
244         {
245             template <int BLOCK_SIZE>
smem_tuplecv::cuda::device::imgproc::Unroll246             static __device__ __forceinline__ thrust::tuple<volatile float*, volatile float*, volatile float*, volatile float*, volatile float*> smem_tuple(float* smem)
247             {
248                 return cv::cuda::device::smem_tuple(smem, smem + BLOCK_SIZE, smem + 2 * BLOCK_SIZE, smem + 3 * BLOCK_SIZE, smem + 4 * BLOCK_SIZE);
249             }
250 
tiecv::cuda::device::imgproc::Unroll251             static __device__ __forceinline__ thrust::tuple<float&, float&, float&, float&, float&> tie(float& val1, float4& val2)
252             {
253                 return thrust::tie(val1, val2.x, val2.y, val2.z, val2.w);
254             }
255 
opcv::cuda::device::imgproc::Unroll256             static __device__ __forceinline__ const thrust::tuple<plus<float>, plus<float>, plus<float>, plus<float>, plus<float> > op()
257             {
258                 plus<float> op;
259                 return thrust::make_tuple(op, op, op, op, op);
260             }
261         };
262 
calcDist(const uchar & a,const uchar & b)263         __device__ __forceinline__ int calcDist(const uchar&  a, const uchar&  b) { return (a-b)*(a-b); }
calcDist(const uchar2 & a,const uchar2 & b)264         __device__ __forceinline__ int calcDist(const uchar2& a, const uchar2& b) { return (a.x-b.x)*(a.x-b.x) + (a.y-b.y)*(a.y-b.y); }
calcDist(const uchar3 & a,const uchar3 & b)265         __device__ __forceinline__ int calcDist(const uchar3& a, const uchar3& b) { return (a.x-b.x)*(a.x-b.x) + (a.y-b.y)*(a.y-b.y) + (a.z-b.z)*(a.z-b.z); }
266 
267         template <class T> struct FastNonLocalMeans
268         {
269             enum
270             {
271                 CTA_SIZE = 128,
272 
273                 TILE_COLS = 128,
274                 TILE_ROWS = 32,
275 
276                 STRIDE = CTA_SIZE
277             };
278 
279             struct plus
280             {
operator ()cv::cuda::device::imgproc::FastNonLocalMeans::plus281                 __device__ __forceinline__ float operator()(float v1, float v2) const { return v1 + v2; }
282             };
283 
284             int search_radius;
285             int block_radius;
286 
287             int search_window;
288             int block_window;
289             float minus_h2_inv;
290 
FastNonLocalMeanscv::cuda::device::imgproc::FastNonLocalMeans291             FastNonLocalMeans(int search_window_, int block_window_, float h) : search_radius(search_window_/2), block_radius(block_window_/2),
292                 search_window(search_window_), block_window(block_window_), minus_h2_inv(-1.f/(h * h * VecTraits<T>::cn)) {}
293 
294             PtrStep<T> src;
295             mutable PtrStepi buffer;
296 
initSums_BruteForcecv::cuda::device::imgproc::FastNonLocalMeans297             __device__ __forceinline__ void initSums_BruteForce(int i, int j, int* dist_sums, PtrStepi& col_sums, PtrStepi& up_col_sums) const
298             {
299                 for(int index = threadIdx.x; index < search_window * search_window; index += STRIDE)
300                 {
301                     dist_sums[index] = 0;
302 
303                     for(int tx = 0; tx < block_window; ++tx)
304                         col_sums(tx, index) = 0;
305 
306                     int y = index / search_window;
307                     int x = index - y * search_window;
308 
309                     int ay = i;
310                     int ax = j;
311 
312                     int by = i + y - search_radius;
313                     int bx = j + x - search_radius;
314 
315 #if 1
316                     for (int tx = -block_radius; tx <= block_radius; ++tx)
317                     {
318                         int col_sum = 0;
319                         for (int ty = -block_radius; ty <= block_radius; ++ty)
320                         {
321                             int dist = calcDist(src(ay + ty, ax + tx), src(by + ty, bx + tx));
322 
323                             dist_sums[index] += dist;
324                             col_sum += dist;
325                         }
326                         col_sums(tx + block_radius, index) = col_sum;
327                     }
328 #else
329                     for (int ty = -block_radius; ty <= block_radius; ++ty)
330                         for (int tx = -block_radius; tx <= block_radius; ++tx)
331                         {
332                             int dist = calcDist(src(ay + ty, ax + tx), src(by + ty, bx + tx));
333 
334                             dist_sums[index] += dist;
335                             col_sums(tx + block_radius, index) += dist;
336                         }
337 #endif
338 
339                     up_col_sums(j, index) = col_sums(block_window - 1, index);
340                 }
341             }
342 
shiftRight_FirstRowcv::cuda::device::imgproc::FastNonLocalMeans343             __device__ __forceinline__ void shiftRight_FirstRow(int i, int j, int first, int* dist_sums, PtrStepi& col_sums, PtrStepi& up_col_sums) const
344             {
345                 for(int index = threadIdx.x; index < search_window * search_window; index += STRIDE)
346                 {
347                     int y = index / search_window;
348                     int x = index - y * search_window;
349 
350                     int ay = i;
351                     int ax = j + block_radius;
352 
353                     int by = i + y - search_radius;
354                     int bx = j + x - search_radius + block_radius;
355 
356                     int col_sum = 0;
357 
358                     for (int ty = -block_radius; ty <= block_radius; ++ty)
359                         col_sum += calcDist(src(ay + ty, ax), src(by + ty, bx));
360 
361                     dist_sums[index] += col_sum - col_sums(first, index);
362 
363                     col_sums(first, index) = col_sum;
364                     up_col_sums(j, index) = col_sum;
365                 }
366             }
367 
shiftRight_UpSumscv::cuda::device::imgproc::FastNonLocalMeans368             __device__ __forceinline__ void shiftRight_UpSums(int i, int j, int first, int* dist_sums, PtrStepi& col_sums, PtrStepi& up_col_sums) const
369             {
370                 int ay = i;
371                 int ax = j + block_radius;
372 
373                 T a_up   = src(ay - block_radius - 1, ax);
374                 T a_down = src(ay + block_radius, ax);
375 
376                 for(int index = threadIdx.x; index < search_window * search_window; index += STRIDE)
377                 {
378                     int y = index / search_window;
379                     int x = index - y * search_window;
380 
381                     int by = i + y - search_radius;
382                     int bx = j + x - search_radius + block_radius;
383 
384                     T b_up   = src(by - block_radius - 1, bx);
385                     T b_down = src(by + block_radius, bx);
386 
387                     int col_sum = up_col_sums(j, index) + calcDist(a_down, b_down) - calcDist(a_up, b_up);
388 
389                     dist_sums[index] += col_sum  - col_sums(first, index);
390                     col_sums(first, index) = col_sum;
391                     up_col_sums(j, index) = col_sum;
392                 }
393             }
394 
convolve_windowcv::cuda::device::imgproc::FastNonLocalMeans395             __device__ __forceinline__ void convolve_window(int i, int j, const int* dist_sums, T& dst) const
396             {
397                 typedef typename TypeVec<float, VecTraits<T>::cn>::vec_type sum_type;
398 
399                 float weights_sum = 0;
400                 sum_type sum = VecTraits<sum_type>::all(0);
401 
402                 float bw2_inv = 1.f/(block_window * block_window);
403 
404                 int sx = j - search_radius;
405                 int sy = i - search_radius;
406 
407                 for(int index = threadIdx.x; index < search_window * search_window; index += STRIDE)
408                 {
409                     int y = index / search_window;
410                     int x = index - y * search_window;
411 
412                     float avg_dist = dist_sums[index] * bw2_inv;
413                     float weight = __expf(avg_dist * minus_h2_inv);
414                     weights_sum += weight;
415 
416                     sum = sum + weight * saturate_cast<sum_type>(src(sy + y, sx + x));
417                 }
418 
419                 __shared__ float cta_buffer[CTA_SIZE * (VecTraits<T>::cn + 1)];
420 
421                 reduce<CTA_SIZE>(Unroll<VecTraits<T>::cn>::template smem_tuple<CTA_SIZE>(cta_buffer),
422                                  Unroll<VecTraits<T>::cn>::tie(weights_sum, sum),
423                                  threadIdx.x,
424                                  Unroll<VecTraits<T>::cn>::op());
425 
426                 if (threadIdx.x == 0)
427                     dst = saturate_cast<T>(sum / weights_sum);
428             }
429 
operator ()cv::cuda::device::imgproc::FastNonLocalMeans430             __device__ __forceinline__ void operator()(PtrStepSz<T>& dst) const
431             {
432                 int tbx = blockIdx.x * TILE_COLS;
433                 int tby = blockIdx.y * TILE_ROWS;
434 
435                 int tex = ::min(tbx + TILE_COLS, dst.cols);
436                 int tey = ::min(tby + TILE_ROWS, dst.rows);
437 
438                 PtrStepi col_sums;
439                 col_sums.data = buffer.ptr(dst.cols + blockIdx.x * block_window) + blockIdx.y * search_window * search_window;
440                 col_sums.step = buffer.step;
441 
442                 PtrStepi up_col_sums;
443                 up_col_sums.data = buffer.data + blockIdx.y * search_window * search_window;
444                 up_col_sums.step = buffer.step;
445 
446                 extern __shared__ int dist_sums[]; //search_window * search_window
447 
448                 int first = 0;
449 
450                 for (int i = tby; i < tey; ++i)
451                     for (int j = tbx; j < tex; ++j)
452                     {
453                         __syncthreads();
454 
455                         if (j == tbx)
456                         {
457                             initSums_BruteForce(i, j, dist_sums, col_sums, up_col_sums);
458                             first = 0;
459                         }
460                         else
461                         {
462                             if (i == tby)
463                               shiftRight_FirstRow(i, j, first, dist_sums, col_sums, up_col_sums);
464                             else
465                               shiftRight_UpSums(i, j, first, dist_sums, col_sums, up_col_sums);
466 
467                             first = (first + 1) % block_window;
468                         }
469 
470                         __syncthreads();
471 
472                         convolve_window(i, j, dist_sums, dst(i, j));
473                     }
474             }
475 
476         };
477 
478         template<typename T>
fast_nlm_kernel(const FastNonLocalMeans<T> fnlm,PtrStepSz<T> dst)479         __global__ void fast_nlm_kernel(const FastNonLocalMeans<T> fnlm, PtrStepSz<T> dst) { fnlm(dst); }
480 
nln_fast_get_buffer_size(const PtrStepSzb & src,int search_window,int block_window,int & buffer_cols,int & buffer_rows)481         void nln_fast_get_buffer_size(const PtrStepSzb& src, int search_window, int block_window, int& buffer_cols, int& buffer_rows)
482         {
483             typedef FastNonLocalMeans<uchar> FNLM;
484             dim3 grid(divUp(src.cols, FNLM::TILE_COLS), divUp(src.rows, FNLM::TILE_ROWS));
485 
486             buffer_cols = search_window * search_window * grid.y;
487             buffer_rows = src.cols + block_window * grid.x;
488         }
489 
490         template<typename T>
nlm_fast_gpu(const PtrStepSzb & src,PtrStepSzb dst,PtrStepi buffer,int search_window,int block_window,float h,cudaStream_t stream)491         void nlm_fast_gpu(const PtrStepSzb& src, PtrStepSzb dst, PtrStepi buffer,
492                           int search_window, int block_window, float h, cudaStream_t stream)
493         {
494             typedef FastNonLocalMeans<T> FNLM;
495             FNLM fnlm(search_window, block_window, h);
496 
497             fnlm.src = (PtrStepSz<T>)src;
498             fnlm.buffer = buffer;
499 
500             dim3 block(FNLM::CTA_SIZE, 1);
501             dim3 grid(divUp(src.cols, FNLM::TILE_COLS), divUp(src.rows, FNLM::TILE_ROWS));
502             int smem = search_window * search_window * sizeof(int);
503 
504 
505             fast_nlm_kernel<<<grid, block, smem>>>(fnlm, (PtrStepSz<T>)dst);
506             cudaSafeCall ( cudaGetLastError () );
507             if (stream == 0)
508                 cudaSafeCall( cudaDeviceSynchronize() );
509         }
510 
511         template void nlm_fast_gpu<uchar>(const PtrStepSzb&, PtrStepSzb, PtrStepi, int, int, float,  cudaStream_t);
512         template void nlm_fast_gpu<uchar2>(const PtrStepSzb&, PtrStepSzb, PtrStepi, int, int, float, cudaStream_t);
513         template void nlm_fast_gpu<uchar3>(const PtrStepSzb&, PtrStepSzb, PtrStepi, int, int, float, cudaStream_t);
514 
515 
516 
fnlm_split_kernel(const PtrStepSz<uchar3> lab,PtrStepb l,PtrStep<uchar2> ab)517         __global__ void fnlm_split_kernel(const PtrStepSz<uchar3> lab, PtrStepb l, PtrStep<uchar2> ab)
518         {
519             int x = threadIdx.x + blockIdx.x * blockDim.x;
520             int y = threadIdx.y + blockIdx.y * blockDim.y;
521 
522             if (x < lab.cols && y < lab.rows)
523             {
524                 uchar3 p = lab(y, x);
525                 ab(y,x) = make_uchar2(p.y, p.z);
526                 l(y,x) = p.x;
527             }
528         }
529 
fnlm_split_channels(const PtrStepSz<uchar3> & lab,PtrStepb l,PtrStep<uchar2> ab,cudaStream_t stream)530         void fnlm_split_channels(const PtrStepSz<uchar3>& lab, PtrStepb l, PtrStep<uchar2> ab, cudaStream_t stream)
531         {
532             dim3 b(32, 8);
533             dim3 g(divUp(lab.cols, b.x), divUp(lab.rows, b.y));
534 
535             fnlm_split_kernel<<<g, b>>>(lab, l, ab);
536             cudaSafeCall ( cudaGetLastError () );
537             if (stream == 0)
538                 cudaSafeCall( cudaDeviceSynchronize() );
539         }
540 
fnlm_merge_kernel(const PtrStepb l,const PtrStep<uchar2> ab,PtrStepSz<uchar3> lab)541         __global__ void fnlm_merge_kernel(const PtrStepb l, const PtrStep<uchar2> ab, PtrStepSz<uchar3> lab)
542         {
543             int x = threadIdx.x + blockIdx.x * blockDim.x;
544             int y = threadIdx.y + blockIdx.y * blockDim.y;
545 
546             if (x < lab.cols && y < lab.rows)
547             {
548                 uchar2 p = ab(y, x);
549                 lab(y, x) = make_uchar3(l(y, x), p.x, p.y);
550             }
551         }
552 
fnlm_merge_channels(const PtrStepb & l,const PtrStep<uchar2> & ab,PtrStepSz<uchar3> lab,cudaStream_t stream)553         void fnlm_merge_channels(const PtrStepb& l, const PtrStep<uchar2>& ab, PtrStepSz<uchar3> lab, cudaStream_t stream)
554         {
555             dim3 b(32, 8);
556             dim3 g(divUp(lab.cols, b.x), divUp(lab.rows, b.y));
557 
558             fnlm_merge_kernel<<<g, b>>>(l, ab, lab);
559             cudaSafeCall ( cudaGetLastError () );
560             if (stream == 0)
561                 cudaSafeCall( cudaDeviceSynchronize() );
562         }
563     }
564 }}}
565