• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1/*M///////////////////////////////////////////////////////////////////////////////////////
2//
3//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
4//
5//  By downloading, copying, installing or using the software you agree to this license.
6//  If you do not agree to this license, do not download, install,
7//  copy or use the software.
8//
9//
10//                           License Agreement
11//                For Open Source Computer Vision Library
12//
13// Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved.
14// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved.
15// Third party copyrights are property of their respective owners.
16//
17// @Authors
18//    Jin Ma jin@multicorewareinc.com
19//
20// Redistribution and use in source and binary forms, with or without modification,
21// are permitted provided that the following conditions are met:
22//
23//   * Redistribution's of source code must retain the above copyright notice,
24//     this list of conditions and the following disclaimer.
25//
26//   * Redistribution's in binary form must reproduce the above copyright notice,
27//     this list of conditions and the following disclaimer in the documentation
28//     and/or other materials provided with the distribution.
29//
30//   * The name of the copyright holders may not be used to endorse or promote products
31//     derived from this software without specific prior written permission.
32//
33// This software is provided by the copyright holders and contributors as is and
34// any express or implied warranties, including, but not limited to, the implied
35// warranties of merchantability and fitness for a particular purpose are disclaimed.
36// In no event shall the Intel Corporation or contributors be liable for any direct,
37// indirect, incidental, special, exemplary, or consequential damages
38// (including, but not limited to, procurement of substitute goods or services;
39// loss of use, data, or profits; or business interruption) however caused
40// and on any theory of liability, whether in contract, strict liability,
41// or tort (including negligence or otherwise) arising in any way out of
42// the use of this software, even if advised of the possibility of such damage.
43//
44//M*/
45
46__kernel void centeredGradientKernel(__global const float* src_ptr, int src_col, int src_row, int src_step,
47                                     __global float* dx, __global float* dy, int d_step)
48{
49    int x = get_global_id(0);
50    int y = get_global_id(1);
51
52    if((x < src_col)&&(y < src_row))
53    {
54        int src_x1 = (x + 1) < (src_col -1)? (x + 1) : (src_col - 1);
55        int src_x2 = (x - 1) > 0 ? (x -1) : 0;
56        dx[y * d_step+ x] = 0.5f * (src_ptr[y * src_step + src_x1] - src_ptr[y * src_step+ src_x2]);
57
58        int src_y1 = (y+1) < (src_row - 1) ? (y + 1) : (src_row - 1);
59        int src_y2 = (y - 1) > 0 ? (y - 1) : 0;
60        dy[y * d_step+ x] = 0.5f * (src_ptr[src_y1 * src_step + x] - src_ptr[src_y2 * src_step+ x]);
61    }
62
63}
64
65inline float bicubicCoeff(float x_)
66{
67
68    float x = fabs(x_);
69    if (x <= 1.0f)
70        return x * x * (1.5f * x - 2.5f) + 1.0f;
71    else if (x < 2.0f)
72        return x * (x * (-0.5f * x + 2.5f) - 4.0f) + 2.0f;
73    else
74        return 0.0f;
75}
76
77__kernel void warpBackwardKernel(__global const float* I0, int I0_step, int I0_col, int I0_row,
78    image2d_t tex_I1, image2d_t tex_I1x, image2d_t tex_I1y,
79    __global const float* u1, int u1_step,
80    __global const float* u2,
81    __global float* I1w,
82    __global float* I1wx, /*int I1wx_step,*/
83    __global float* I1wy, /*int I1wy_step,*/
84    __global float* grad, /*int grad_step,*/
85    __global float* rho,
86    int I1w_step,
87    int u2_step,
88    int u1_offset_x,
89    int u1_offset_y,
90    int u2_offset_x,
91    int u2_offset_y)
92{
93    int x = get_global_id(0);
94    int y = get_global_id(1);
95
96    if(x < I0_col&&y < I0_row)
97    {
98        //float u1Val = u1(y, x);
99        float u1Val = u1[(y + u1_offset_y) * u1_step + x + u1_offset_x];
100        //float u2Val = u2(y, x);
101        float u2Val = u2[(y + u2_offset_y) * u2_step + x + u2_offset_x];
102
103        float wx = x + u1Val;
104        float wy = y + u2Val;
105
106        int xmin = ceil(wx - 2.0f);
107        int xmax = floor(wx + 2.0f);
108
109        int ymin = ceil(wy - 2.0f);
110        int ymax = floor(wy + 2.0f);
111
112        float sum  = 0.0f;
113        float sumx = 0.0f;
114        float sumy = 0.0f;
115        float wsum = 0.0f;
116        sampler_t sampleri = CLK_NORMALIZED_COORDS_FALSE | CLK_ADDRESS_CLAMP_TO_EDGE | CLK_FILTER_NEAREST;
117        for (int cy = ymin; cy <= ymax; ++cy)
118        {
119            for (int cx = xmin; cx <= xmax; ++cx)
120            {
121                float w = bicubicCoeff(wx - cx) * bicubicCoeff(wy - cy);
122                //sum  += w * tex2D(tex_I1 , cx, cy);
123                int2 cood = (int2)(cx, cy);
124                sum += w * read_imagef(tex_I1, sampleri, cood).x;
125                //sumx += w * tex2D(tex_I1x, cx, cy);
126                sumx += w * read_imagef(tex_I1x, sampleri, cood).x;
127                //sumy += w * tex2D(tex_I1y, cx, cy);
128                sumy += w * read_imagef(tex_I1y, sampleri, cood).x;
129                wsum += w;
130            }
131        }
132        float coeff = 1.0f / wsum;
133        float I1wVal  = sum  * coeff;
134        float I1wxVal = sumx * coeff;
135        float I1wyVal = sumy * coeff;
136        I1w[y * I1w_step + x]  = I1wVal;
137        I1wx[y * I1w_step + x] = I1wxVal;
138        I1wy[y * I1w_step + x] = I1wyVal;
139        float Ix2 = I1wxVal * I1wxVal;
140        float Iy2 = I1wyVal * I1wyVal;
141
142        // store the |Grad(I1)|^2
143        grad[y * I1w_step + x] = Ix2 + Iy2;
144
145        // compute the constant part of the rho function
146        float I0Val = I0[y * I0_step + x];
147        rho[y * I1w_step + x] = I1wVal - I1wxVal * u1Val - I1wyVal * u2Val - I0Val;
148    }
149}
150
151inline float readImage(__global float *image,  int x,  int y,  int rows,  int cols, int elemCntPerRow)
152{
153    int i0 = clamp(x, 0, cols - 1);
154    int j0 = clamp(y, 0, rows - 1);
155
156    return image[j0 * elemCntPerRow + i0];
157}
158
159__kernel void warpBackwardKernelNoImage2d(__global const float* I0, int I0_step, int I0_col, int I0_row,
160    __global const float* tex_I1, __global const float* tex_I1x, __global const float* tex_I1y,
161    __global const float* u1, int u1_step,
162    __global const float* u2,
163    __global float* I1w,
164    __global float* I1wx, /*int I1wx_step,*/
165    __global float* I1wy, /*int I1wy_step,*/
166    __global float* grad, /*int grad_step,*/
167    __global float* rho,
168    int I1w_step,
169    int u2_step,
170    int I1_step,
171    int I1x_step)
172{
173    int x = get_global_id(0);
174    int y = get_global_id(1);
175
176    if(x < I0_col&&y < I0_row)
177    {
178        //float u1Val = u1(y, x);
179        float u1Val = u1[y * u1_step + x];
180        //float u2Val = u2(y, x);
181        float u2Val = u2[y * u2_step + x];
182
183        float wx = x + u1Val;
184        float wy = y + u2Val;
185
186        int xmin = ceil(wx - 2.0f);
187        int xmax = floor(wx + 2.0f);
188
189        int ymin = ceil(wy - 2.0f);
190        int ymax = floor(wy + 2.0f);
191
192        float sum  = 0.0f;
193        float sumx = 0.0f;
194        float sumy = 0.0f;
195        float wsum = 0.0f;
196
197        for (int cy = ymin; cy <= ymax; ++cy)
198        {
199            for (int cx = xmin; cx <= xmax; ++cx)
200            {
201                float w = bicubicCoeff(wx - cx) * bicubicCoeff(wy - cy);
202
203                int2 cood = (int2)(cx, cy);
204                sum += w * readImage(tex_I1, cood.x, cood.y, I0_col, I0_row, I1_step);
205                sumx += w * readImage(tex_I1x, cood.x, cood.y, I0_col, I0_row, I1x_step);
206                sumy += w * readImage(tex_I1y, cood.x, cood.y, I0_col, I0_row, I1x_step);
207                wsum += w;
208            }
209        }
210
211        float coeff = 1.0f / wsum;
212
213        float I1wVal  = sum  * coeff;
214        float I1wxVal = sumx * coeff;
215        float I1wyVal = sumy * coeff;
216
217        I1w[y * I1w_step + x]  = I1wVal;
218        I1wx[y * I1w_step + x] = I1wxVal;
219        I1wy[y * I1w_step + x] = I1wyVal;
220
221        float Ix2 = I1wxVal * I1wxVal;
222        float Iy2 = I1wyVal * I1wyVal;
223
224        // store the |Grad(I1)|^2
225        grad[y * I1w_step + x] = Ix2 + Iy2;
226
227        // compute the constant part of the rho function
228        float I0Val = I0[y * I0_step + x];
229        rho[y * I1w_step + x] = I1wVal - I1wxVal * u1Val - I1wyVal * u2Val - I0Val;
230    }
231
232}
233
234
235__kernel void estimateDualVariablesKernel(__global const float* u1, int u1_col, int u1_row, int u1_step,
236    __global const float* u2,
237    __global float* p11, int p11_step,
238    __global float* p12,
239    __global float* p21,
240    __global float* p22,
241    float taut,
242    int u2_step,
243    int u1_offset_x,
244    int u1_offset_y,
245    int u2_offset_x,
246    int u2_offset_y)
247{
248    int x = get_global_id(0);
249    int y = get_global_id(1);
250
251    if(x < u1_col && y < u1_row)
252    {
253        int src_x1 = (x + 1) < (u1_col - 1) ? (x + 1) : (u1_col - 1);
254        float u1x = u1[(y + u1_offset_y) * u1_step + src_x1 + u1_offset_x] - u1[(y + u1_offset_y) * u1_step + x + u1_offset_x];
255
256        int src_y1 = (y + 1) < (u1_row - 1) ? (y + 1) : (u1_row - 1);
257        float u1y = u1[(src_y1 + u1_offset_y) * u1_step + x + u1_offset_x] - u1[(y + u1_offset_y) * u1_step + x + u1_offset_x];
258
259        int src_x2 = (x + 1) < (u1_col - 1) ? (x + 1) : (u1_col - 1);
260        float u2x = u2[(y + u2_offset_y) * u2_step + src_x2 + u2_offset_x] - u2[(y + u2_offset_y) * u2_step + x + u2_offset_x];
261
262        int src_y2 = (y + 1) <  (u1_row - 1) ? (y + 1) : (u1_row - 1);
263        float u2y = u2[(src_y2 + u2_offset_y) * u2_step + x + u2_offset_x] - u2[(y + u2_offset_y) * u2_step + x + u2_offset_x];
264
265        float g1 = hypot(u1x, u1y);
266        float g2 = hypot(u2x, u2y);
267
268        float ng1 = 1.0f + taut * g1;
269        float ng2 = 1.0f + taut * g2;
270
271        p11[y * p11_step + x] = (p11[y * p11_step + x] + taut * u1x) / ng1;
272        p12[y * p11_step + x] = (p12[y * p11_step + x] + taut * u1y) / ng1;
273        p21[y * p11_step + x] = (p21[y * p11_step + x] + taut * u2x) / ng2;
274        p22[y * p11_step + x] = (p22[y * p11_step + x] + taut * u2y) / ng2;
275    }
276
277}
278
279inline float divergence(__global const float* v1, __global const float* v2, int y, int x, int v1_step, int v2_step)
280{
281
282    if (x > 0 && y > 0)
283    {
284        float v1x = v1[y * v1_step + x] - v1[y * v1_step + x - 1];
285        float v2y = v2[y * v2_step + x] - v2[(y - 1) * v2_step + x];
286        return v1x + v2y;
287    }
288    else
289    {
290        if (y > 0)
291            return v1[y * v1_step + 0] + v2[y * v2_step + 0] - v2[(y - 1) * v2_step + 0];
292        else
293        {
294            if (x > 0)
295                return v1[0 * v1_step + x] - v1[0 * v1_step + x - 1] + v2[0 * v2_step + x];
296            else
297                return v1[0 * v1_step + 0] + v2[0 * v2_step + 0];
298        }
299    }
300
301}
302
303__kernel void estimateUKernel(__global const float* I1wx, int I1wx_col, int I1wx_row, int I1wx_step,
304    __global const float* I1wy, /*int I1wy_step,*/
305    __global const float* grad, /*int grad_step,*/
306    __global const float* rho_c, /*int rho_c_step,*/
307    __global const float* p11, /*int p11_step,*/
308    __global const float* p12, /*int p12_step,*/
309    __global const float* p21, /*int p21_step,*/
310    __global const float* p22, /*int p22_step,*/
311    __global float* u1, int u1_step,
312    __global float* u2,
313    __global float* error, float l_t, float theta, int u2_step,
314    int u1_offset_x,
315    int u1_offset_y,
316    int u2_offset_x,
317    int u2_offset_y,
318    char calc_error)
319{
320    int x = get_global_id(0);
321    int y = get_global_id(1);
322
323    if(x < I1wx_col && y < I1wx_row)
324    {
325        float I1wxVal = I1wx[y * I1wx_step + x];
326        float I1wyVal = I1wy[y * I1wx_step + x];
327        float gradVal = grad[y * I1wx_step + x];
328        float u1OldVal = u1[(y + u1_offset_y) * u1_step + x + u1_offset_x];
329        float u2OldVal = u2[(y + u2_offset_y) * u2_step + x + u2_offset_x];
330
331        float rho = rho_c[y * I1wx_step + x] + (I1wxVal * u1OldVal + I1wyVal * u2OldVal);
332
333        // estimate the values of the variable (v1, v2) (thresholding operator TH)
334
335        float d1 = 0.0f;
336        float d2 = 0.0f;
337
338        if (rho < -l_t * gradVal)
339        {
340            d1 = l_t * I1wxVal;
341            d2 = l_t * I1wyVal;
342        }
343        else if (rho > l_t * gradVal)
344        {
345            d1 = -l_t * I1wxVal;
346            d2 = -l_t * I1wyVal;
347        }
348        else if (gradVal > 1.192092896e-07f)
349        {
350            float fi = -rho / gradVal;
351            d1 = fi * I1wxVal;
352            d2 = fi * I1wyVal;
353        }
354
355        float v1 = u1OldVal + d1;
356        float v2 = u2OldVal + d2;
357
358        // compute the divergence of the dual variable (p1, p2)
359
360        float div_p1 = divergence(p11, p12, y, x, I1wx_step, I1wx_step);
361        float div_p2 = divergence(p21, p22, y, x, I1wx_step, I1wx_step);
362
363        // estimate the values of the optical flow (u1, u2)
364
365        float u1NewVal = v1 + theta * div_p1;
366        float u2NewVal = v2 + theta * div_p2;
367
368        u1[(y + u1_offset_y) * u1_step + x + u1_offset_x] = u1NewVal;
369        u2[(y + u2_offset_y) * u2_step + x + u2_offset_x] = u2NewVal;
370
371        if(calc_error)
372        {
373            float n1 = (u1OldVal - u1NewVal) * (u1OldVal - u1NewVal);
374            float n2 = (u2OldVal - u2NewVal) * (u2OldVal - u2NewVal);
375            error[y * I1wx_step + x] = n1 + n2;
376        }
377    }
378}
379