1 #include "opencv2/highgui.hpp"
2 #include "opencv2/core.hpp"
3 #include "opencv2/imgproc.hpp"
4 #include <iostream>
5
6 using namespace cv;
7 using namespace std;
8
9 // static void help()
10 // {
11 // cout << "\nThis program demonstrates kmeans clustering.\n"
12 // "It generates an image with random points, then assigns a random number of cluster\n"
13 // "centers and uses kmeans to move those cluster centers to their representitive location\n"
14 // "Call\n"
15 // "./kmeans\n" << endl;
16 // }
17
main(int,char **)18 int main( int /*argc*/, char** /*argv*/ )
19 {
20 const int MAX_CLUSTERS = 5;
21 Scalar colorTab[] =
22 {
23 Scalar(0, 0, 255),
24 Scalar(0,255,0),
25 Scalar(255,100,100),
26 Scalar(255,0,255),
27 Scalar(0,255,255)
28 };
29
30 Mat img(500, 500, CV_8UC3);
31 RNG rng(12345);
32
33 for(;;)
34 {
35 int k, clusterCount = rng.uniform(2, MAX_CLUSTERS+1);
36 int i, sampleCount = rng.uniform(1, 1001);
37 Mat points(sampleCount, 1, CV_32FC2), labels;
38
39 clusterCount = MIN(clusterCount, sampleCount);
40 Mat centers;
41
42 /* generate random sample from multigaussian distribution */
43 for( k = 0; k < clusterCount; k++ )
44 {
45 Point center;
46 center.x = rng.uniform(0, img.cols);
47 center.y = rng.uniform(0, img.rows);
48 Mat pointChunk = points.rowRange(k*sampleCount/clusterCount,
49 k == clusterCount - 1 ? sampleCount :
50 (k+1)*sampleCount/clusterCount);
51 rng.fill(pointChunk, RNG::NORMAL, Scalar(center.x, center.y), Scalar(img.cols*0.05, img.rows*0.05));
52 }
53
54 randShuffle(points, 1, &rng);
55
56 kmeans(points, clusterCount, labels,
57 TermCriteria( TermCriteria::EPS+TermCriteria::COUNT, 10, 1.0),
58 3, KMEANS_PP_CENTERS, centers);
59
60 img = Scalar::all(0);
61
62 for( i = 0; i < sampleCount; i++ )
63 {
64 int clusterIdx = labels.at<int>(i);
65 Point ipt = points.at<Point2f>(i);
66 circle( img, ipt, 2, colorTab[clusterIdx], FILLED, LINE_AA );
67 }
68
69 imshow("clusters", img);
70
71 char key = (char)waitKey();
72 if( key == 27 || key == 'q' || key == 'Q' ) // 'ESC'
73 break;
74 }
75
76 return 0;
77 }
78