• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 #include "opencv2/highgui.hpp"
2 #include "opencv2/core.hpp"
3 #include "opencv2/imgproc.hpp"
4 #include <iostream>
5 
6 using namespace cv;
7 using namespace std;
8 
9 // static void help()
10 // {
11 //     cout << "\nThis program demonstrates kmeans clustering.\n"
12 //             "It generates an image with random points, then assigns a random number of cluster\n"
13 //             "centers and uses kmeans to move those cluster centers to their representitive location\n"
14 //             "Call\n"
15 //             "./kmeans\n" << endl;
16 // }
17 
main(int,char **)18 int main( int /*argc*/, char** /*argv*/ )
19 {
20     const int MAX_CLUSTERS = 5;
21     Scalar colorTab[] =
22     {
23         Scalar(0, 0, 255),
24         Scalar(0,255,0),
25         Scalar(255,100,100),
26         Scalar(255,0,255),
27         Scalar(0,255,255)
28     };
29 
30     Mat img(500, 500, CV_8UC3);
31     RNG rng(12345);
32 
33     for(;;)
34     {
35         int k, clusterCount = rng.uniform(2, MAX_CLUSTERS+1);
36         int i, sampleCount = rng.uniform(1, 1001);
37         Mat points(sampleCount, 1, CV_32FC2), labels;
38 
39         clusterCount = MIN(clusterCount, sampleCount);
40         Mat centers;
41 
42         /* generate random sample from multigaussian distribution */
43         for( k = 0; k < clusterCount; k++ )
44         {
45             Point center;
46             center.x = rng.uniform(0, img.cols);
47             center.y = rng.uniform(0, img.rows);
48             Mat pointChunk = points.rowRange(k*sampleCount/clusterCount,
49                                              k == clusterCount - 1 ? sampleCount :
50                                              (k+1)*sampleCount/clusterCount);
51             rng.fill(pointChunk, RNG::NORMAL, Scalar(center.x, center.y), Scalar(img.cols*0.05, img.rows*0.05));
52         }
53 
54         randShuffle(points, 1, &rng);
55 
56         kmeans(points, clusterCount, labels,
57             TermCriteria( TermCriteria::EPS+TermCriteria::COUNT, 10, 1.0),
58                3, KMEANS_PP_CENTERS, centers);
59 
60         img = Scalar::all(0);
61 
62         for( i = 0; i < sampleCount; i++ )
63         {
64             int clusterIdx = labels.at<int>(i);
65             Point ipt = points.at<Point2f>(i);
66             circle( img, ipt, 2, colorTab[clusterIdx], FILLED, LINE_AA );
67         }
68 
69         imshow("clusters", img);
70 
71         char key = (char)waitKey();
72         if( key == 27 || key == 'q' || key == 'Q' ) // 'ESC'
73             break;
74     }
75 
76     return 0;
77 }
78