• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 #include <iostream>
2 
3 #include "opencv2/opencv_modules.hpp"
4 
5 #ifdef HAVE_OPENCV_XFEATURES2D
6 
7 #include <opencv2/features2d.hpp>
8 #include <opencv2/xfeatures2d.hpp>
9 #include <opencv2/imgcodecs.hpp>
10 #include <opencv2/opencv.hpp>
11 #include <vector>
12 
13 // If you find this code useful, please add a reference to the following paper in your work:
14 // Gil Levi and Tal Hassner, "LATCH: Learned Arrangements of Three Patch Codes", arXiv preprint arXiv:1501.03719, 15 Jan. 2015
15 
16 using namespace std;
17 using namespace cv;
18 
19 const float inlier_threshold = 2.5f; // Distance threshold to identify inliers
20 const float nn_match_ratio = 0.8f;   // Nearest neighbor matching ratio
21 
main(void)22 int main(void)
23 {
24     Mat img1 = imread("../data/graf1.png", IMREAD_GRAYSCALE);
25     Mat img2 = imread("../data/graf3.png", IMREAD_GRAYSCALE);
26 
27 
28     Mat homography;
29     FileStorage fs("../data/H1to3p.xml", FileStorage::READ);
30 
31     fs.getFirstTopLevelNode() >> homography;
32 
33     vector<KeyPoint> kpts1, kpts2;
34     Mat desc1, desc2;
35 
36     Ptr<cv::ORB> orb_detector = cv::ORB::create(10000);
37 
38     Ptr<xfeatures2d::LATCH> latch = xfeatures2d::LATCH::create();
39 
40 
41     orb_detector->detect(img1, kpts1);
42     latch->compute(img1, kpts1, desc1);
43 
44     orb_detector->detect(img2, kpts2);
45     latch->compute(img2, kpts2, desc2);
46 
47     BFMatcher matcher(NORM_HAMMING);
48     vector< vector<DMatch> > nn_matches;
49     matcher.knnMatch(desc1, desc2, nn_matches, 2);
50 
51     vector<KeyPoint> matched1, matched2, inliers1, inliers2;
52     vector<DMatch> good_matches;
53     for (size_t i = 0; i < nn_matches.size(); i++) {
54         DMatch first = nn_matches[i][0];
55         float dist1 = nn_matches[i][0].distance;
56         float dist2 = nn_matches[i][1].distance;
57 
58         if (dist1 < nn_match_ratio * dist2) {
59             matched1.push_back(kpts1[first.queryIdx]);
60             matched2.push_back(kpts2[first.trainIdx]);
61         }
62     }
63 
64     for (unsigned i = 0; i < matched1.size(); i++) {
65         Mat col = Mat::ones(3, 1, CV_64F);
66         col.at<double>(0) = matched1[i].pt.x;
67         col.at<double>(1) = matched1[i].pt.y;
68 
69         col = homography * col;
70         col /= col.at<double>(2);
71         double dist = sqrt(pow(col.at<double>(0) - matched2[i].pt.x, 2) +
72             pow(col.at<double>(1) - matched2[i].pt.y, 2));
73 
74         if (dist < inlier_threshold) {
75             int new_i = static_cast<int>(inliers1.size());
76             inliers1.push_back(matched1[i]);
77             inliers2.push_back(matched2[i]);
78             good_matches.push_back(DMatch(new_i, new_i, 0));
79         }
80     }
81 
82     Mat res;
83     drawMatches(img1, inliers1, img2, inliers2, good_matches, res);
84     imwrite("../../samples/data/latch_res.png", res);
85 
86 
87     double inlier_ratio = inliers1.size() * 1.0 / matched1.size();
88     cout << "LATCH Matching Results" << endl;
89     cout << "*******************************" << endl;
90     cout << "# Keypoints 1:                        \t" << kpts1.size() << endl;
91     cout << "# Keypoints 2:                        \t" << kpts2.size() << endl;
92     cout << "# Matches:                            \t" << matched1.size() << endl;
93     cout << "# Inliers:                            \t" << inliers1.size() << endl;
94     cout << "# Inliers Ratio:                      \t" << inlier_ratio << endl;
95     cout << endl;
96     return 0;
97 }
98 
99 #else
100 
main()101 int main()
102 {
103     std::cerr << "OpenCV was built without xfeatures2d module" << std::endl;
104     return 0;
105 }
106 
107 #endif
108