1#!/usr/bin/env python 2 3''' 4Affine invariant feature-based image matching sample. 5 6This sample is similar to find_obj.py, but uses the affine transformation 7space sampling technique, called ASIFT [1]. While the original implementation 8is based on SIFT, you can try to use SURF or ORB detectors instead. Homography RANSAC 9is used to reject outliers. Threading is used for faster affine sampling. 10 11[1] http://www.ipol.im/pub/algo/my_affine_sift/ 12 13USAGE 14 asift.py [--feature=<sift|surf|orb|brisk>[-flann]] [ <image1> <image2> ] 15 16 --feature - Feature to use. Can be sift, surf, orb or brisk. Append '-flann' 17 to feature name to use Flann-based matcher instead bruteforce. 18 19 Press left mouse button on a feature point to see its matching point. 20''' 21 22import numpy as np 23import cv2 24 25# built-in modules 26import itertools as it 27from multiprocessing.pool import ThreadPool 28 29# local modules 30from common import Timer 31from find_obj import init_feature, filter_matches, explore_match 32 33 34def affine_skew(tilt, phi, img, mask=None): 35 ''' 36 affine_skew(tilt, phi, img, mask=None) -> skew_img, skew_mask, Ai 37 38 Ai - is an affine transform matrix from skew_img to img 39 ''' 40 h, w = img.shape[:2] 41 if mask is None: 42 mask = np.zeros((h, w), np.uint8) 43 mask[:] = 255 44 A = np.float32([[1, 0, 0], [0, 1, 0]]) 45 if phi != 0.0: 46 phi = np.deg2rad(phi) 47 s, c = np.sin(phi), np.cos(phi) 48 A = np.float32([[c,-s], [ s, c]]) 49 corners = [[0, 0], [w, 0], [w, h], [0, h]] 50 tcorners = np.int32( np.dot(corners, A.T) ) 51 x, y, w, h = cv2.boundingRect(tcorners.reshape(1,-1,2)) 52 A = np.hstack([A, [[-x], [-y]]]) 53 img = cv2.warpAffine(img, A, (w, h), flags=cv2.INTER_LINEAR, borderMode=cv2.BORDER_REPLICATE) 54 if tilt != 1.0: 55 s = 0.8*np.sqrt(tilt*tilt-1) 56 img = cv2.GaussianBlur(img, (0, 0), sigmaX=s, sigmaY=0.01) 57 img = cv2.resize(img, (0, 0), fx=1.0/tilt, fy=1.0, interpolation=cv2.INTER_NEAREST) 58 A[0] /= tilt 59 if phi != 0.0 or tilt != 1.0: 60 h, w = img.shape[:2] 61 mask = cv2.warpAffine(mask, A, (w, h), flags=cv2.INTER_NEAREST) 62 Ai = cv2.invertAffineTransform(A) 63 return img, mask, Ai 64 65 66def affine_detect(detector, img, mask=None, pool=None): 67 ''' 68 affine_detect(detector, img, mask=None, pool=None) -> keypoints, descrs 69 70 Apply a set of affine transormations to the image, detect keypoints and 71 reproject them into initial image coordinates. 72 See http://www.ipol.im/pub/algo/my_affine_sift/ for the details. 73 74 ThreadPool object may be passed to speedup the computation. 75 ''' 76 params = [(1.0, 0.0)] 77 for t in 2**(0.5*np.arange(1,6)): 78 for phi in np.arange(0, 180, 72.0 / t): 79 params.append((t, phi)) 80 81 def f(p): 82 t, phi = p 83 timg, tmask, Ai = affine_skew(t, phi, img) 84 keypoints, descrs = detector.detectAndCompute(timg, tmask) 85 for kp in keypoints: 86 x, y = kp.pt 87 kp.pt = tuple( np.dot(Ai, (x, y, 1)) ) 88 if descrs is None: 89 descrs = [] 90 return keypoints, descrs 91 92 keypoints, descrs = [], [] 93 if pool is None: 94 ires = it.imap(f, params) 95 else: 96 ires = pool.imap(f, params) 97 98 for i, (k, d) in enumerate(ires): 99 print 'affine sampling: %d / %d\r' % (i+1, len(params)), 100 keypoints.extend(k) 101 descrs.extend(d) 102 103 print 104 return keypoints, np.array(descrs) 105 106if __name__ == '__main__': 107 print __doc__ 108 109 import sys, getopt 110 opts, args = getopt.getopt(sys.argv[1:], '', ['feature=']) 111 opts = dict(opts) 112 feature_name = opts.get('--feature', 'sift-flann') 113 try: 114 fn1, fn2 = args 115 except: 116 fn1 = '../data/aero1.jpg' 117 fn2 = '../data/aero3.jpg' 118 119 img1 = cv2.imread(fn1, 0) 120 img2 = cv2.imread(fn2, 0) 121 detector, matcher = init_feature(feature_name) 122 123 if img1 is None: 124 print 'Failed to load fn1:', fn1 125 sys.exit(1) 126 127 if img2 is None: 128 print 'Failed to load fn2:', fn2 129 sys.exit(1) 130 131 if detector is None: 132 print 'unknown feature:', feature_name 133 sys.exit(1) 134 135 print 'using', feature_name 136 137 pool=ThreadPool(processes = cv2.getNumberOfCPUs()) 138 kp1, desc1 = affine_detect(detector, img1, pool=pool) 139 kp2, desc2 = affine_detect(detector, img2, pool=pool) 140 print 'img1 - %d features, img2 - %d features' % (len(kp1), len(kp2)) 141 142 def match_and_draw(win): 143 with Timer('matching'): 144 raw_matches = matcher.knnMatch(desc1, trainDescriptors = desc2, k = 2) #2 145 p1, p2, kp_pairs = filter_matches(kp1, kp2, raw_matches) 146 if len(p1) >= 4: 147 H, status = cv2.findHomography(p1, p2, cv2.RANSAC, 5.0) 148 print '%d / %d inliers/matched' % (np.sum(status), len(status)) 149 # do not draw outliers (there will be a lot of them) 150 kp_pairs = [kpp for kpp, flag in zip(kp_pairs, status) if flag] 151 else: 152 H, status = None, None 153 print '%d matches found, not enough for homography estimation' % len(p1) 154 155 vis = explore_match(win, img1, img2, kp_pairs, None, H) 156 157 158 match_and_draw('affine find_obj') 159 cv2.waitKey() 160 cv2.destroyAllWindows() 161