• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * jchuff.c
3  *
4  * Copyright (C) 1991-1997, Thomas G. Lane.
5  * This file is part of the Independent JPEG Group's software.
6  * For conditions of distribution and use, see the accompanying README file.
7  *
8  * This file contains Huffman entropy encoding routines.
9  *
10  * Much of the complexity here has to do with supporting output suspension.
11  * If the data destination module demands suspension, we want to be able to
12  * back up to the start of the current MCU.  To do this, we copy state
13  * variables into local working storage, and update them back to the
14  * permanent JPEG objects only upon successful completion of an MCU.
15  */
16 
17 #define JPEG_INTERNALS
18 #include "jinclude.h"
19 #include "jpeglib.h"
20 #include "jchuff.h"		/* Declarations shared with jcphuff.c */
21 
22 #ifdef _FX_MANAGED_CODE_
23 #define savable_state	savable_state_c
24 #endif
25 
26 /* Expanded entropy encoder object for Huffman encoding.
27  *
28  * The savable_state subrecord contains fields that change within an MCU,
29  * but must not be updated permanently until we complete the MCU.
30  */
31 
32 typedef struct {
33   INT32 put_buffer;		/* current bit-accumulation buffer */
34   int put_bits;			/* # of bits now in it */
35   int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
36 } savable_state;
37 
38 /* This macro is to work around compilers with missing or broken
39  * structure assignment.  You'll need to fix this code if you have
40  * such a compiler and you change MAX_COMPS_IN_SCAN.
41  */
42 
43 #ifndef NO_STRUCT_ASSIGN
44 #define ASSIGN_STATE(dest,src)  ((dest) = (src))
45 #else
46 #if MAX_COMPS_IN_SCAN == 4
47 #define ASSIGN_STATE(dest,src)  \
48 	((dest).put_buffer = (src).put_buffer, \
49 	 (dest).put_bits = (src).put_bits, \
50 	 (dest).last_dc_val[0] = (src).last_dc_val[0], \
51 	 (dest).last_dc_val[1] = (src).last_dc_val[1], \
52 	 (dest).last_dc_val[2] = (src).last_dc_val[2], \
53 	 (dest).last_dc_val[3] = (src).last_dc_val[3])
54 #endif
55 #endif
56 
57 
58 typedef struct {
59   struct jpeg_entropy_encoder pub; /* public fields */
60 
61   savable_state saved;		/* Bit buffer & DC state at start of MCU */
62 
63   /* These fields are NOT loaded into local working state. */
64   unsigned int restarts_to_go;	/* MCUs left in this restart interval */
65   int next_restart_num;		/* next restart number to write (0-7) */
66 
67   /* Pointers to derived tables (these workspaces have image lifespan) */
68   c_derived_tbl * dc_derived_tbls[NUM_HUFF_TBLS];
69   c_derived_tbl * ac_derived_tbls[NUM_HUFF_TBLS];
70 
71 #ifdef ENTROPY_OPT_SUPPORTED	/* Statistics tables for optimization */
72   long * dc_count_ptrs[NUM_HUFF_TBLS];
73   long * ac_count_ptrs[NUM_HUFF_TBLS];
74 #endif
75 } huff_entropy_encoder;
76 
77 typedef huff_entropy_encoder * huff_entropy_ptr;
78 
79 /* Working state while writing an MCU.
80  * This struct contains all the fields that are needed by subroutines.
81  */
82 
83 typedef struct {
84   JOCTET * next_output_byte;	/* => next byte to write in buffer */
85   size_t free_in_buffer;	/* # of byte spaces remaining in buffer */
86   savable_state cur;		/* Current bit buffer & DC state */
87   j_compress_ptr cinfo;		/* dump_buffer needs access to this */
88 } working_state;
89 
90 
91 /* Forward declarations */
92 METHODDEF(boolean) encode_mcu_huff JPP((j_compress_ptr cinfo,
93 					JBLOCKROW *MCU_data));
94 METHODDEF(void) finish_pass_huff JPP((j_compress_ptr cinfo));
95 #ifdef ENTROPY_OPT_SUPPORTED
96 METHODDEF(boolean) encode_mcu_gather JPP((j_compress_ptr cinfo,
97 					  JBLOCKROW *MCU_data));
98 METHODDEF(void) finish_pass_gather JPP((j_compress_ptr cinfo));
99 #endif
100 
101 
102 /*
103  * Initialize for a Huffman-compressed scan.
104  * If gather_statistics is TRUE, we do not output anything during the scan,
105  * just count the Huffman symbols used and generate Huffman code tables.
106  */
107 
108 METHODDEF(void)
start_pass_huff(j_compress_ptr cinfo,boolean gather_statistics)109 start_pass_huff (j_compress_ptr cinfo, boolean gather_statistics)
110 {
111   huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
112   int ci, dctbl, actbl;
113   jpeg_component_info * compptr;
114 
115   if (gather_statistics) {
116 #ifdef ENTROPY_OPT_SUPPORTED
117     entropy->pub.encode_mcu = encode_mcu_gather;
118     entropy->pub.finish_pass = finish_pass_gather;
119 #else
120     ERREXIT(cinfo, JERR_NOT_COMPILED);
121 #endif
122   } else {
123     entropy->pub.encode_mcu = encode_mcu_huff;
124     entropy->pub.finish_pass = finish_pass_huff;
125   }
126 
127   for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
128     compptr = cinfo->cur_comp_info[ci];
129     dctbl = compptr->dc_tbl_no;
130     actbl = compptr->ac_tbl_no;
131     if (gather_statistics) {
132 #ifdef ENTROPY_OPT_SUPPORTED
133       /* Check for invalid table indexes */
134       /* (make_c_derived_tbl does this in the other path) */
135       if (dctbl < 0 || dctbl >= NUM_HUFF_TBLS)
136 	ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, dctbl);
137       if (actbl < 0 || actbl >= NUM_HUFF_TBLS)
138 	ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, actbl);
139       /* Allocate and zero the statistics tables */
140       /* Note that jpeg_gen_optimal_table expects 257 entries in each table! */
141       if (entropy->dc_count_ptrs[dctbl] == NULL)
142 	entropy->dc_count_ptrs[dctbl] = (long *)
143 	  (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
144 				      257 * SIZEOF(long));
145       MEMZERO(entropy->dc_count_ptrs[dctbl], 257 * SIZEOF(long));
146       if (entropy->ac_count_ptrs[actbl] == NULL)
147 	entropy->ac_count_ptrs[actbl] = (long *)
148 	  (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
149 				      257 * SIZEOF(long));
150       MEMZERO(entropy->ac_count_ptrs[actbl], 257 * SIZEOF(long));
151 #endif
152     } else {
153       /* Compute derived values for Huffman tables */
154       /* We may do this more than once for a table, but it's not expensive */
155       jpeg_make_c_derived_tbl(cinfo, TRUE, dctbl,
156 			      & entropy->dc_derived_tbls[dctbl]);
157       jpeg_make_c_derived_tbl(cinfo, FALSE, actbl,
158 			      & entropy->ac_derived_tbls[actbl]);
159     }
160     /* Initialize DC predictions to 0 */
161     entropy->saved.last_dc_val[ci] = 0;
162   }
163 
164   /* Initialize bit buffer to empty */
165   entropy->saved.put_buffer = 0;
166   entropy->saved.put_bits = 0;
167 
168   /* Initialize restart stuff */
169   entropy->restarts_to_go = cinfo->restart_interval;
170   entropy->next_restart_num = 0;
171 }
172 
173 
174 /*
175  * Compute the derived values for a Huffman table.
176  * This routine also performs some validation checks on the table.
177  *
178  * Note this is also used by jcphuff.c.
179  */
180 
181 GLOBAL(void)
jpeg_make_c_derived_tbl(j_compress_ptr cinfo,boolean isDC,int tblno,c_derived_tbl ** pdtbl)182 jpeg_make_c_derived_tbl (j_compress_ptr cinfo, boolean isDC, int tblno,
183 			 c_derived_tbl ** pdtbl)
184 {
185   JHUFF_TBL *htbl;
186   c_derived_tbl *dtbl;
187   int p, i, l, lastp, _si, maxsymbol;
188   char huffsize[257];
189   unsigned int huffcode[257];
190   unsigned int code;
191 
192   /* Note that huffsize[] and huffcode[] are filled in code-length order,
193    * paralleling the order of the symbols themselves in htbl->huffval[].
194    */
195 
196   /* Find the input Huffman table */
197   if (tblno < 0 || tblno >= NUM_HUFF_TBLS)
198     ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
199   htbl =
200     isDC ? cinfo->dc_huff_tbl_ptrs[tblno] : cinfo->ac_huff_tbl_ptrs[tblno];
201   if (htbl == NULL)
202     ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
203 
204   /* Allocate a workspace if we haven't already done so. */
205   if (*pdtbl == NULL)
206     *pdtbl = (c_derived_tbl *)
207       (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
208 				  SIZEOF(c_derived_tbl));
209   dtbl = *pdtbl;
210 
211   /* Figure C.1: make table of Huffman code length for each symbol */
212 
213   p = 0;
214   for (l = 1; l <= 16; l++) {
215     i = (int) htbl->bits[l];
216     if (i < 0 || p + i > 256)	/* protect against table overrun */
217       ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
218     while (i--)
219       huffsize[p++] = (char) l;
220   }
221   huffsize[p] = 0;
222   lastp = p;
223 
224   /* Figure C.2: generate the codes themselves */
225   /* We also validate that the counts represent a legal Huffman code tree. */
226 
227   code = 0;
228   _si = huffsize[0];
229   p = 0;
230   while (huffsize[p]) {
231     while (((int) huffsize[p]) == _si) {
232       huffcode[p++] = code;
233       code++;
234     }
235     /* code is now 1 more than the last code used for codelength si; but
236      * it must still fit in si bits, since no code is allowed to be all ones.
237      */
238     if (((INT32) code) >= (((INT32) 1) << _si))
239       ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
240     code <<= 1;
241     _si++;
242   }
243 
244   /* Figure C.3: generate encoding tables */
245   /* These are code and size indexed by symbol value */
246 
247   /* Set all codeless symbols to have code length 0;
248    * this lets us detect duplicate VAL entries here, and later
249    * allows emit_bits to detect any attempt to emit such symbols.
250    */
251   MEMZERO(dtbl->ehufsi, SIZEOF(dtbl->ehufsi));
252 
253   /* This is also a convenient place to check for out-of-range
254    * and duplicated VAL entries.  We allow 0..255 for AC symbols
255    * but only 0..15 for DC.  (We could constrain them further
256    * based on data depth and mode, but this seems enough.)
257    */
258   maxsymbol = isDC ? 15 : 255;
259 
260   for (p = 0; p < lastp; p++) {
261     i = htbl->huffval[p];
262     if (i < 0 || i > maxsymbol || dtbl->ehufsi[i])
263       ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
264     dtbl->ehufco[i] = huffcode[p];
265     dtbl->ehufsi[i] = huffsize[p];
266   }
267 }
268 
269 
270 /* Outputting bytes to the file */
271 
272 /* Emit a byte, taking 'action' if must suspend. */
273 #define emit_byte(state,val,action)  \
274 	{ *(state)->next_output_byte++ = (JOCTET) (val);  \
275 	  if (--(state)->free_in_buffer == 0)  \
276 	    if (! dump_buffer(state))  \
277 	      { action; } }
278 
279 
280 LOCAL(boolean)
dump_buffer(working_state * state)281 dump_buffer (working_state * state)
282 /* Empty the output buffer; return TRUE if successful, FALSE if must suspend */
283 {
284   struct jpeg_destination_mgr * dest = state->cinfo->dest;
285 
286   if (! (*dest->empty_output_buffer) (state->cinfo))
287     return FALSE;
288   /* After a successful buffer dump, must reset buffer pointers */
289   state->next_output_byte = dest->next_output_byte;
290   state->free_in_buffer = dest->free_in_buffer;
291   return TRUE;
292 }
293 
294 
295 /* Outputting bits to the file */
296 
297 /* Only the right 24 bits of put_buffer are used; the valid bits are
298  * left-justified in this part.  At most 16 bits can be passed to emit_bits
299  * in one call, and we never retain more than 7 bits in put_buffer
300  * between calls, so 24 bits are sufficient.
301  */
302 
303 INLINE
LOCAL(boolean)304 LOCAL(boolean)
305 emit_bits (working_state * state, unsigned int code, int size)
306 /* Emit some bits; return TRUE if successful, FALSE if must suspend */
307 {
308   /* This routine is heavily used, so it's worth coding tightly. */
309   register INT32 put_buffer = (INT32) code;
310   register int put_bits = state->cur.put_bits;
311 
312   /* if size is 0, caller used an invalid Huffman table entry */
313   if (size == 0)
314     ERREXIT(state->cinfo, JERR_HUFF_MISSING_CODE);
315 
316   put_buffer &= (((INT32) 1)<<size) - 1; /* mask off any extra bits in code */
317 
318   put_bits += size;		/* new number of bits in buffer */
319 
320   put_buffer <<= 24 - put_bits; /* align incoming bits */
321 
322   put_buffer |= state->cur.put_buffer; /* and merge with old buffer contents */
323 
324   while (put_bits >= 8) {
325     int c = (int) ((put_buffer >> 16) & 0xFF);
326 
327     emit_byte(state, c, return FALSE);
328     if (c == 0xFF) {		/* need to stuff a zero byte? */
329       emit_byte(state, 0, return FALSE);
330     }
331     put_buffer <<= 8;
332     put_bits -= 8;
333   }
334 
335   state->cur.put_buffer = put_buffer; /* update state variables */
336   state->cur.put_bits = put_bits;
337 
338   return TRUE;
339 }
340 
341 
342 LOCAL(boolean)
flush_bits(working_state * state)343 flush_bits (working_state * state)
344 {
345   if (! emit_bits(state, 0x7F, 7)) /* fill any partial byte with ones */
346     return FALSE;
347   state->cur.put_buffer = 0;	/* and reset bit-buffer to empty */
348   state->cur.put_bits = 0;
349   return TRUE;
350 }
351 
352 
353 /* Encode a single block's worth of coefficients */
354 
355 LOCAL(boolean)
encode_one_block(working_state * state,JCOEFPTR block,int last_dc_val,c_derived_tbl * dctbl,c_derived_tbl * actbl)356 encode_one_block (working_state * state, JCOEFPTR block, int last_dc_val,
357 		  c_derived_tbl *dctbl, c_derived_tbl *actbl)
358 {
359   register int temp, temp2;
360   register int nbits;
361   register int k, r, i;
362 
363   /* Encode the DC coefficient difference per section F.1.2.1 */
364 
365   temp = temp2 = block[0] - last_dc_val;
366 
367   if (temp < 0) {
368     temp = -temp;		/* temp is abs value of input */
369     /* For a negative input, want temp2 = bitwise complement of abs(input) */
370     /* This code assumes we are on a two's complement machine */
371     temp2--;
372   }
373 
374   /* Find the number of bits needed for the magnitude of the coefficient */
375   nbits = 0;
376   while (temp) {
377     nbits++;
378     temp >>= 1;
379   }
380   /* Check for out-of-range coefficient values.
381    * Since we're encoding a difference, the range limit is twice as much.
382    */
383   if (nbits > MAX_COEF_BITS+1)
384     ERREXIT(state->cinfo, JERR_BAD_DCT_COEF);
385 
386   /* Emit the Huffman-coded symbol for the number of bits */
387   if (! emit_bits(state, dctbl->ehufco[nbits], dctbl->ehufsi[nbits]))
388     return FALSE;
389 
390   /* Emit that number of bits of the value, if positive, */
391   /* or the complement of its magnitude, if negative. */
392   if (nbits)			/* emit_bits rejects calls with size 0 */
393     if (! emit_bits(state, (unsigned int) temp2, nbits))
394       return FALSE;
395 
396   /* Encode the AC coefficients per section F.1.2.2 */
397 
398   r = 0;			/* r = run length of zeros */
399 
400   for (k = 1; k < DCTSIZE2; k++) {
401     if ((temp = block[jpeg_natural_order[k]]) == 0) {
402       r++;
403     } else {
404       /* if run length > 15, must emit special run-length-16 codes (0xF0) */
405       while (r > 15) {
406 	if (! emit_bits(state, actbl->ehufco[0xF0], actbl->ehufsi[0xF0]))
407 	  return FALSE;
408 	r -= 16;
409       }
410 
411       temp2 = temp;
412       if (temp < 0) {
413 	temp = -temp;		/* temp is abs value of input */
414 	/* This code assumes we are on a two's complement machine */
415 	temp2--;
416       }
417 
418       /* Find the number of bits needed for the magnitude of the coefficient */
419       nbits = 1;		/* there must be at least one 1 bit */
420       while ((temp >>= 1))
421 	nbits++;
422       /* Check for out-of-range coefficient values */
423       if (nbits > MAX_COEF_BITS)
424 	ERREXIT(state->cinfo, JERR_BAD_DCT_COEF);
425 
426       /* Emit Huffman symbol for run length / number of bits */
427       i = (r << 4) + nbits;
428       if (! emit_bits(state, actbl->ehufco[i], actbl->ehufsi[i]))
429 	return FALSE;
430 
431       /* Emit that number of bits of the value, if positive, */
432       /* or the complement of its magnitude, if negative. */
433       if (! emit_bits(state, (unsigned int) temp2, nbits))
434 	return FALSE;
435 
436       r = 0;
437     }
438   }
439 
440   /* If the last coef(s) were zero, emit an end-of-block code */
441   if (r > 0)
442     if (! emit_bits(state, actbl->ehufco[0], actbl->ehufsi[0]))
443       return FALSE;
444 
445   return TRUE;
446 }
447 
448 
449 /*
450  * Emit a restart marker & resynchronize predictions.
451  */
452 
453 LOCAL(boolean)
emit_restart(working_state * state,int restart_num)454 emit_restart (working_state * state, int restart_num)
455 {
456   int ci;
457 
458   if (! flush_bits(state))
459     return FALSE;
460 
461   emit_byte(state, 0xFF, return FALSE);
462   emit_byte(state, JPEG_RST0 + restart_num, return FALSE);
463 
464   /* Re-initialize DC predictions to 0 */
465   for (ci = 0; ci < state->cinfo->comps_in_scan; ci++)
466     state->cur.last_dc_val[ci] = 0;
467 
468   /* The restart counter is not updated until we successfully write the MCU. */
469 
470   return TRUE;
471 }
472 
473 
474 /*
475  * Encode and output one MCU's worth of Huffman-compressed coefficients.
476  */
477 
478 METHODDEF(boolean)
encode_mcu_huff(j_compress_ptr cinfo,JBLOCKROW * MCU_data)479 encode_mcu_huff (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
480 {
481   huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
482   working_state state;
483   int blkn, ci;
484   jpeg_component_info * compptr;
485 
486   /* Load up working state */
487   state.next_output_byte = cinfo->dest->next_output_byte;
488   state.free_in_buffer = cinfo->dest->free_in_buffer;
489   ASSIGN_STATE(state.cur, entropy->saved);
490   state.cinfo = cinfo;
491 
492   /* Emit restart marker if needed */
493   if (cinfo->restart_interval) {
494     if (entropy->restarts_to_go == 0)
495       if (! emit_restart(&state, entropy->next_restart_num))
496 	return FALSE;
497   }
498 
499   /* Encode the MCU data blocks */
500   for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
501     ci = cinfo->MCU_membership[blkn];
502     compptr = cinfo->cur_comp_info[ci];
503     if (! encode_one_block(&state,
504 			   MCU_data[blkn][0], state.cur.last_dc_val[ci],
505 			   entropy->dc_derived_tbls[compptr->dc_tbl_no],
506 			   entropy->ac_derived_tbls[compptr->ac_tbl_no]))
507       return FALSE;
508     /* Update last_dc_val */
509     state.cur.last_dc_val[ci] = MCU_data[blkn][0][0];
510   }
511 
512   /* Completed MCU, so update state */
513   cinfo->dest->next_output_byte = state.next_output_byte;
514   cinfo->dest->free_in_buffer = state.free_in_buffer;
515   ASSIGN_STATE(entropy->saved, state.cur);
516 
517   /* Update restart-interval state too */
518   if (cinfo->restart_interval) {
519     if (entropy->restarts_to_go == 0) {
520       entropy->restarts_to_go = cinfo->restart_interval;
521       entropy->next_restart_num++;
522       entropy->next_restart_num &= 7;
523     }
524     entropy->restarts_to_go--;
525   }
526 
527   return TRUE;
528 }
529 
530 
531 /*
532  * Finish up at the end of a Huffman-compressed scan.
533  */
534 
535 METHODDEF(void)
finish_pass_huff(j_compress_ptr cinfo)536 finish_pass_huff (j_compress_ptr cinfo)
537 {
538   huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
539   working_state state;
540 
541   /* Load up working state ... flush_bits needs it */
542   state.next_output_byte = cinfo->dest->next_output_byte;
543   state.free_in_buffer = cinfo->dest->free_in_buffer;
544   ASSIGN_STATE(state.cur, entropy->saved);
545   state.cinfo = cinfo;
546 
547   /* Flush out the last data */
548   if (! flush_bits(&state))
549     ERREXIT(cinfo, JERR_CANT_SUSPEND);
550 
551   /* Update state */
552   cinfo->dest->next_output_byte = state.next_output_byte;
553   cinfo->dest->free_in_buffer = state.free_in_buffer;
554   ASSIGN_STATE(entropy->saved, state.cur);
555 }
556 
557 
558 /*
559  * Huffman coding optimization.
560  *
561  * We first scan the supplied data and count the number of uses of each symbol
562  * that is to be Huffman-coded. (This process MUST agree with the code above.)
563  * Then we build a Huffman coding tree for the observed counts.
564  * Symbols which are not needed at all for the particular image are not
565  * assigned any code, which saves space in the DHT marker as well as in
566  * the compressed data.
567  */
568 
569 #ifdef ENTROPY_OPT_SUPPORTED
570 
571 
572 /* Process a single block's worth of coefficients */
573 
574 LOCAL(void)
htest_one_block(j_compress_ptr cinfo,JCOEFPTR block,int last_dc_val,long dc_counts[],long ac_counts[])575 htest_one_block (j_compress_ptr cinfo, JCOEFPTR block, int last_dc_val,
576 		 long dc_counts[], long ac_counts[])
577 {
578   register int temp;
579   register int nbits;
580   register int k, r;
581 
582   /* Encode the DC coefficient difference per section F.1.2.1 */
583 
584   temp = block[0] - last_dc_val;
585   if (temp < 0)
586     temp = -temp;
587 
588   /* Find the number of bits needed for the magnitude of the coefficient */
589   nbits = 0;
590   while (temp) {
591     nbits++;
592     temp >>= 1;
593   }
594   /* Check for out-of-range coefficient values.
595    * Since we're encoding a difference, the range limit is twice as much.
596    */
597   if (nbits > MAX_COEF_BITS+1)
598     ERREXIT(cinfo, JERR_BAD_DCT_COEF);
599 
600   /* Count the Huffman symbol for the number of bits */
601   dc_counts[nbits]++;
602 
603   /* Encode the AC coefficients per section F.1.2.2 */
604 
605   r = 0;			/* r = run length of zeros */
606 
607   for (k = 1; k < DCTSIZE2; k++) {
608     if ((temp = block[jpeg_natural_order[k]]) == 0) {
609       r++;
610     } else {
611       /* if run length > 15, must emit special run-length-16 codes (0xF0) */
612       while (r > 15) {
613 	ac_counts[0xF0]++;
614 	r -= 16;
615       }
616 
617       /* Find the number of bits needed for the magnitude of the coefficient */
618       if (temp < 0)
619 	temp = -temp;
620 
621       /* Find the number of bits needed for the magnitude of the coefficient */
622       nbits = 1;		/* there must be at least one 1 bit */
623       while ((temp >>= 1))
624 	nbits++;
625       /* Check for out-of-range coefficient values */
626       if (nbits > MAX_COEF_BITS)
627 	ERREXIT(cinfo, JERR_BAD_DCT_COEF);
628 
629       /* Count Huffman symbol for run length / number of bits */
630       ac_counts[(r << 4) + nbits]++;
631 
632       r = 0;
633     }
634   }
635 
636   /* If the last coef(s) were zero, emit an end-of-block code */
637   if (r > 0)
638     ac_counts[0]++;
639 }
640 
641 
642 /*
643  * Trial-encode one MCU's worth of Huffman-compressed coefficients.
644  * No data is actually output, so no suspension return is possible.
645  */
646 
647 METHODDEF(boolean)
encode_mcu_gather(j_compress_ptr cinfo,JBLOCKROW * MCU_data)648 encode_mcu_gather (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
649 {
650   huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
651   int blkn, ci;
652   jpeg_component_info * compptr;
653 
654   /* Take care of restart intervals if needed */
655   if (cinfo->restart_interval) {
656     if (entropy->restarts_to_go == 0) {
657       /* Re-initialize DC predictions to 0 */
658       for (ci = 0; ci < cinfo->comps_in_scan; ci++)
659 	entropy->saved.last_dc_val[ci] = 0;
660       /* Update restart state */
661       entropy->restarts_to_go = cinfo->restart_interval;
662     }
663     entropy->restarts_to_go--;
664   }
665 
666   for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
667     ci = cinfo->MCU_membership[blkn];
668     compptr = cinfo->cur_comp_info[ci];
669     htest_one_block(cinfo, MCU_data[blkn][0], entropy->saved.last_dc_val[ci],
670 		    entropy->dc_count_ptrs[compptr->dc_tbl_no],
671 		    entropy->ac_count_ptrs[compptr->ac_tbl_no]);
672     entropy->saved.last_dc_val[ci] = MCU_data[blkn][0][0];
673   }
674 
675   return TRUE;
676 }
677 
678 
679 /*
680  * Generate the best Huffman code table for the given counts, fill htbl.
681  * Note this is also used by jcphuff.c.
682  *
683  * The JPEG standard requires that no symbol be assigned a codeword of all
684  * one bits (so that padding bits added at the end of a compressed segment
685  * can't look like a valid code).  Because of the canonical ordering of
686  * codewords, this just means that there must be an unused slot in the
687  * longest codeword length category.  Section K.2 of the JPEG spec suggests
688  * reserving such a slot by pretending that symbol 256 is a valid symbol
689  * with count 1.  In theory that's not optimal; giving it count zero but
690  * including it in the symbol set anyway should give a better Huffman code.
691  * But the theoretically better code actually seems to come out worse in
692  * practice, because it produces more all-ones bytes (which incur stuffed
693  * zero bytes in the final file).  In any case the difference is tiny.
694  *
695  * The JPEG standard requires Huffman codes to be no more than 16 bits long.
696  * If some symbols have a very small but nonzero probability, the Huffman tree
697  * must be adjusted to meet the code length restriction.  We currently use
698  * the adjustment method suggested in JPEG section K.2.  This method is *not*
699  * optimal; it may not choose the best possible limited-length code.  But
700  * typically only very-low-frequency symbols will be given less-than-optimal
701  * lengths, so the code is almost optimal.  Experimental comparisons against
702  * an optimal limited-length-code algorithm indicate that the difference is
703  * microscopic --- usually less than a hundredth of a percent of total size.
704  * So the extra complexity of an optimal algorithm doesn't seem worthwhile.
705  */
706 
707 GLOBAL(void)
jpeg_gen_optimal_table(j_compress_ptr cinfo,JHUFF_TBL * htbl,long freq[])708 jpeg_gen_optimal_table (j_compress_ptr cinfo, JHUFF_TBL * htbl, long freq[])
709 {
710 #define MAX_CLEN 32		/* assumed maximum initial code length */
711   UINT8 bits[MAX_CLEN+1];	/* bits[k] = # of symbols with code length k */
712   int codesize[257];		/* codesize[k] = code length of symbol k */
713   int others[257];		/* next symbol in current branch of tree */
714   int c1, c2;
715   int p, i, j;
716   long v;
717 
718   /* This algorithm is explained in section K.2 of the JPEG standard */
719 
720   MEMZERO(bits, SIZEOF(bits));
721   MEMZERO(codesize, SIZEOF(codesize));
722   for (i = 0; i < 257; i++)
723     others[i] = -1;		/* init links to empty */
724 
725   freq[256] = 1;		/* make sure 256 has a nonzero count */
726   /* Including the pseudo-symbol 256 in the Huffman procedure guarantees
727    * that no real symbol is given code-value of all ones, because 256
728    * will be placed last in the largest codeword category.
729    */
730 
731   /* Huffman's basic algorithm to assign optimal code lengths to symbols */
732 
733   for (;;) {
734     /* Find the smallest nonzero frequency, set c1 = its symbol */
735     /* In case of ties, take the larger symbol number */
736     c1 = -1;
737     v = 1000000000L;
738     for (i = 0; i <= 256; i++) {
739       if (freq[i] && freq[i] <= v) {
740 	v = freq[i];
741 	c1 = i;
742       }
743     }
744 
745     /* Find the next smallest nonzero frequency, set c2 = its symbol */
746     /* In case of ties, take the larger symbol number */
747     c2 = -1;
748     v = 1000000000L;
749     for (i = 0; i <= 256; i++) {
750       if (freq[i] && freq[i] <= v && i != c1) {
751 	v = freq[i];
752 	c2 = i;
753       }
754     }
755 
756     /* Done if we've merged everything into one frequency */
757     if (c2 < 0)
758       break;
759 
760     /* Else merge the two counts/trees */
761     freq[c1] += freq[c2];
762     freq[c2] = 0;
763 
764     /* Increment the codesize of everything in c1's tree branch */
765     codesize[c1]++;
766     while (others[c1] >= 0) {
767       c1 = others[c1];
768       codesize[c1]++;
769     }
770 
771     others[c1] = c2;		/* chain c2 onto c1's tree branch */
772 
773     /* Increment the codesize of everything in c2's tree branch */
774     codesize[c2]++;
775     while (others[c2] >= 0) {
776       c2 = others[c2];
777       codesize[c2]++;
778     }
779   }
780 
781   /* Now count the number of symbols of each code length */
782   for (i = 0; i <= 256; i++) {
783     if (codesize[i]) {
784       /* The JPEG standard seems to think that this can't happen, */
785       /* but I'm paranoid... */
786       if (codesize[i] > MAX_CLEN)
787 	ERREXIT(cinfo, JERR_HUFF_CLEN_OVERFLOW);
788 
789       bits[codesize[i]]++;
790     }
791   }
792 
793   /* JPEG doesn't allow symbols with code lengths over 16 bits, so if the pure
794    * Huffman procedure assigned any such lengths, we must adjust the coding.
795    * Here is what the JPEG spec says about how this next bit works:
796    * Since symbols are paired for the longest Huffman code, the symbols are
797    * removed from this length category two at a time.  The prefix for the pair
798    * (which is one bit shorter) is allocated to one of the pair; then,
799    * skipping the BITS entry for that prefix length, a code word from the next
800    * shortest nonzero BITS entry is converted into a prefix for two code words
801    * one bit longer.
802    */
803 
804   for (i = MAX_CLEN; i > 16; i--) {
805     while (bits[i] > 0) {
806       j = i - 2;		/* find length of new prefix to be used */
807       while (bits[j] == 0)
808 	j--;
809 
810       bits[i] -= 2;		/* remove two symbols */
811       bits[i-1]++;		/* one goes in this length */
812       bits[j+1] += 2;		/* two new symbols in this length */
813       bits[j]--;		/* symbol of this length is now a prefix */
814     }
815   }
816 
817   /* Remove the count for the pseudo-symbol 256 from the largest codelength */
818   while (bits[i] == 0)		/* find largest codelength still in use */
819     i--;
820   bits[i]--;
821 
822   /* Return final symbol counts (only for lengths 0..16) */
823   MEMCOPY(htbl->bits, bits, SIZEOF(htbl->bits));
824 
825   /* Return a list of the symbols sorted by code length */
826   /* It's not real clear to me why we don't need to consider the codelength
827    * changes made above, but the JPEG spec seems to think this works.
828    */
829   p = 0;
830   for (i = 1; i <= MAX_CLEN; i++) {
831     for (j = 0; j <= 255; j++) {
832       if (codesize[j] == i) {
833 	htbl->huffval[p] = (UINT8) j;
834 	p++;
835       }
836     }
837   }
838 
839   /* Set sent_table FALSE so updated table will be written to JPEG file. */
840   htbl->sent_table = FALSE;
841 }
842 
843 
844 /*
845  * Finish up a statistics-gathering pass and create the new Huffman tables.
846  */
847 
848 METHODDEF(void)
finish_pass_gather(j_compress_ptr cinfo)849 finish_pass_gather (j_compress_ptr cinfo)
850 {
851   huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
852   int ci, dctbl, actbl;
853   jpeg_component_info * compptr;
854   JHUFF_TBL **htblptr;
855   boolean did_dc[NUM_HUFF_TBLS];
856   boolean did_ac[NUM_HUFF_TBLS];
857 
858   /* It's important not to apply jpeg_gen_optimal_table more than once
859    * per table, because it clobbers the input frequency counts!
860    */
861   MEMZERO(did_dc, SIZEOF(did_dc));
862   MEMZERO(did_ac, SIZEOF(did_ac));
863 
864   for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
865     compptr = cinfo->cur_comp_info[ci];
866     dctbl = compptr->dc_tbl_no;
867     actbl = compptr->ac_tbl_no;
868     if (! did_dc[dctbl]) {
869       htblptr = & cinfo->dc_huff_tbl_ptrs[dctbl];
870       if (*htblptr == NULL)
871 	*htblptr = jpeg_alloc_huff_table((j_common_ptr) cinfo);
872       jpeg_gen_optimal_table(cinfo, *htblptr, entropy->dc_count_ptrs[dctbl]);
873       did_dc[dctbl] = TRUE;
874     }
875     if (! did_ac[actbl]) {
876       htblptr = & cinfo->ac_huff_tbl_ptrs[actbl];
877       if (*htblptr == NULL)
878 	*htblptr = jpeg_alloc_huff_table((j_common_ptr) cinfo);
879       jpeg_gen_optimal_table(cinfo, *htblptr, entropy->ac_count_ptrs[actbl]);
880       did_ac[actbl] = TRUE;
881     }
882   }
883 }
884 
885 
886 #endif /* ENTROPY_OPT_SUPPORTED */
887 
888 
889 /*
890  * Module initialization routine for Huffman entropy encoding.
891  */
892 
893 GLOBAL(void)
jinit_huff_encoder(j_compress_ptr cinfo)894 jinit_huff_encoder (j_compress_ptr cinfo)
895 {
896   huff_entropy_ptr entropy;
897   int i;
898 
899   entropy = (huff_entropy_ptr)
900     (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
901 				SIZEOF(huff_entropy_encoder));
902   cinfo->entropy = (struct jpeg_entropy_encoder *) entropy;
903   entropy->pub.start_pass = start_pass_huff;
904 
905   /* Mark tables unallocated */
906   for (i = 0; i < NUM_HUFF_TBLS; i++) {
907     entropy->dc_derived_tbls[i] = entropy->ac_derived_tbls[i] = NULL;
908 #ifdef ENTROPY_OPT_SUPPORTED
909     entropy->dc_count_ptrs[i] = entropy->ac_count_ptrs[i] = NULL;
910 #endif
911   }
912 }
913