• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2015 Google Inc.
3  *
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the LICENSE file.
6  */
7 
8 #include "SkBitmapScaler.h"
9 #include "SkBitmapFilter.h"
10 #include "SkConvolver.h"
11 #include "SkImageInfo.h"
12 #include "SkPixmap.h"
13 #include "SkRect.h"
14 #include "SkTArray.h"
15 
16 // SkResizeFilter ----------------------------------------------------------------
17 
18 // Encapsulates computation and storage of the filters required for one complete
19 // resize operation.
20 class SkResizeFilter {
21 public:
22     SkResizeFilter(SkBitmapScaler::ResizeMethod method,
23                    int srcFullWidth, int srcFullHeight,
24                    float destWidth, float destHeight,
25                    const SkRect& destSubset,
26                    const SkConvolutionProcs& convolveProcs);
~SkResizeFilter()27     ~SkResizeFilter() { delete fBitmapFilter; }
28 
29     // Returns the filled filter values.
xFilter()30     const SkConvolutionFilter1D& xFilter() { return fXFilter; }
yFilter()31     const SkConvolutionFilter1D& yFilter() { return fYFilter; }
32 
33 private:
34 
35     SkBitmapFilter* fBitmapFilter;
36 
37     // Computes one set of filters either horizontally or vertically. The caller
38     // will specify the "min" and "max" rather than the bottom/top and
39     // right/bottom so that the same code can be re-used in each dimension.
40     //
41     // |srcDependLo| and |srcDependSize| gives the range for the source
42     // depend rectangle (horizontally or vertically at the caller's discretion
43     // -- see above for what this means).
44     //
45     // Likewise, the range of destination values to compute and the scale factor
46     // for the transform is also specified.
47 
48     void computeFilters(int srcSize,
49                         float destSubsetLo, float destSubsetSize,
50                         float scale,
51                         SkConvolutionFilter1D* output,
52                         const SkConvolutionProcs& convolveProcs);
53 
54     SkConvolutionFilter1D fXFilter;
55     SkConvolutionFilter1D fYFilter;
56 };
57 
SkResizeFilter(SkBitmapScaler::ResizeMethod method,int srcFullWidth,int srcFullHeight,float destWidth,float destHeight,const SkRect & destSubset,const SkConvolutionProcs & convolveProcs)58 SkResizeFilter::SkResizeFilter(SkBitmapScaler::ResizeMethod method,
59                                int srcFullWidth, int srcFullHeight,
60                                float destWidth, float destHeight,
61                                const SkRect& destSubset,
62                                const SkConvolutionProcs& convolveProcs) {
63 
64     SkASSERT(method >= SkBitmapScaler::RESIZE_FirstMethod &&
65              method <= SkBitmapScaler::RESIZE_LastMethod);
66 
67     fBitmapFilter = nullptr;
68     switch(method) {
69         case SkBitmapScaler::RESIZE_BOX:
70             fBitmapFilter = new SkBoxFilter;
71             break;
72         case SkBitmapScaler::RESIZE_TRIANGLE:
73             fBitmapFilter = new SkTriangleFilter;
74             break;
75         case SkBitmapScaler::RESIZE_MITCHELL:
76             fBitmapFilter = new SkMitchellFilter;
77             break;
78         case SkBitmapScaler::RESIZE_HAMMING:
79             fBitmapFilter = new SkHammingFilter;
80             break;
81         case SkBitmapScaler::RESIZE_LANCZOS3:
82             fBitmapFilter = new SkLanczosFilter;
83             break;
84     }
85 
86 
87     float scaleX = destWidth / srcFullWidth;
88     float scaleY = destHeight / srcFullHeight;
89 
90     this->computeFilters(srcFullWidth, destSubset.fLeft, destSubset.width(),
91                          scaleX, &fXFilter, convolveProcs);
92     if (srcFullWidth == srcFullHeight &&
93         destSubset.fLeft == destSubset.fTop &&
94         destSubset.width() == destSubset.height()&&
95         scaleX == scaleY) {
96         fYFilter = fXFilter;
97     } else {
98         this->computeFilters(srcFullHeight, destSubset.fTop, destSubset.height(),
99                           scaleY, &fYFilter, convolveProcs);
100     }
101 }
102 
103 // TODO(egouriou): Take advantage of periods in the convolution.
104 // Practical resizing filters are periodic outside of the border area.
105 // For Lanczos, a scaling by a (reduced) factor of p/q (q pixels in the
106 // source become p pixels in the destination) will have a period of p.
107 // A nice consequence is a period of 1 when downscaling by an integral
108 // factor. Downscaling from typical display resolutions is also bound
109 // to produce interesting periods as those are chosen to have multiple
110 // small factors.
111 // Small periods reduce computational load and improve cache usage if
112 // the coefficients can be shared. For periods of 1 we can consider
113 // loading the factors only once outside the borders.
computeFilters(int srcSize,float destSubsetLo,float destSubsetSize,float scale,SkConvolutionFilter1D * output,const SkConvolutionProcs & convolveProcs)114 void SkResizeFilter::computeFilters(int srcSize,
115                                   float destSubsetLo, float destSubsetSize,
116                                   float scale,
117                                   SkConvolutionFilter1D* output,
118                                   const SkConvolutionProcs& convolveProcs) {
119   float destSubsetHi = destSubsetLo + destSubsetSize;  // [lo, hi)
120 
121   // When we're doing a magnification, the scale will be larger than one. This
122   // means the destination pixels are much smaller than the source pixels, and
123   // that the range covered by the filter won't necessarily cover any source
124   // pixel boundaries. Therefore, we use these clamped values (max of 1) for
125   // some computations.
126   float clampedScale = SkTMin(1.0f, scale);
127 
128   // This is how many source pixels from the center we need to count
129   // to support the filtering function.
130   float srcSupport = fBitmapFilter->width() / clampedScale;
131 
132   float invScale = 1.0f / scale;
133 
134   SkSTArray<64, float, true> filterValuesArray;
135   SkSTArray<64, SkConvolutionFilter1D::ConvolutionFixed, true> fixedFilterValuesArray;
136 
137   // Loop over all pixels in the output range. We will generate one set of
138   // filter values for each one. Those values will tell us how to blend the
139   // source pixels to compute the destination pixel.
140 
141   // This is the pixel in the source directly under the pixel in the dest.
142   // Note that we base computations on the "center" of the pixels. To see
143   // why, observe that the destination pixel at coordinates (0, 0) in a 5.0x
144   // downscale should "cover" the pixels around the pixel with *its center*
145   // at coordinates (2.5, 2.5) in the source, not those around (0, 0).
146   // Hence we need to scale coordinates (0.5, 0.5), not (0, 0).
147   destSubsetLo = SkScalarFloorToScalar(destSubsetLo);
148   destSubsetHi = SkScalarCeilToScalar(destSubsetHi);
149   float srcPixel = (destSubsetLo + 0.5f) * invScale;
150   int destLimit = SkScalarTruncToInt(destSubsetHi - destSubsetLo);
151   output->reserveAdditional(destLimit, SkScalarCeilToInt(destLimit * srcSupport * 2));
152   for (int destI = 0; destI < destLimit; srcPixel += invScale, destI++)
153   {
154     // Compute the (inclusive) range of source pixels the filter covers.
155     float srcBegin = SkTMax(0.f, SkScalarFloorToScalar(srcPixel - srcSupport));
156     float srcEnd = SkTMin(srcSize - 1.f, SkScalarCeilToScalar(srcPixel + srcSupport));
157 
158     // Compute the unnormalized filter value at each location of the source
159     // it covers.
160 
161     // Sum of the filter values for normalizing.
162     // Distance from the center of the filter, this is the filter coordinate
163     // in source space. We also need to consider the center of the pixel
164     // when comparing distance against 'srcPixel'. In the 5x downscale
165     // example used above the distance from the center of the filter to
166     // the pixel with coordinates (2, 2) should be 0, because its center
167     // is at (2.5, 2.5).
168     float destFilterDist = (srcBegin + 0.5f - srcPixel) * clampedScale;
169     int filterCount = SkScalarTruncToInt(srcEnd - srcBegin) + 1;
170     SkASSERT(filterCount > 0);
171     filterValuesArray.reset(filterCount);
172     float filterSum = fBitmapFilter->evaluate_n(destFilterDist, clampedScale, filterCount,
173                                                 filterValuesArray.begin());
174 
175     // The filter must be normalized so that we don't affect the brightness of
176     // the image. Convert to normalized fixed point.
177     int fixedSum = 0;
178     fixedFilterValuesArray.reset(filterCount);
179     const float* filterValues = filterValuesArray.begin();
180     SkConvolutionFilter1D::ConvolutionFixed* fixedFilterValues = fixedFilterValuesArray.begin();
181     float invFilterSum = 1 / filterSum;
182     for (int fixedI = 0; fixedI < filterCount; fixedI++) {
183       int curFixed = SkConvolutionFilter1D::FloatToFixed(filterValues[fixedI] * invFilterSum);
184       fixedSum += curFixed;
185       fixedFilterValues[fixedI] = SkToS16(curFixed);
186     }
187     SkASSERT(fixedSum <= 0x7FFF);
188 
189     // The conversion to fixed point will leave some rounding errors, which
190     // we add back in to avoid affecting the brightness of the image. We
191     // arbitrarily add this to the center of the filter array (this won't always
192     // be the center of the filter function since it could get clipped on the
193     // edges, but it doesn't matter enough to worry about that case).
194     int leftovers = SkConvolutionFilter1D::FloatToFixed(1) - fixedSum;
195     fixedFilterValues[filterCount / 2] += leftovers;
196 
197     // Now it's ready to go.
198     output->AddFilter(SkScalarFloorToInt(srcBegin), fixedFilterValues, filterCount);
199   }
200 
201   if (convolveProcs.fApplySIMDPadding) {
202       convolveProcs.fApplySIMDPadding(output);
203   }
204 }
205 
206 ///////////////////////////////////////////////////////////////////////////////////////////////////
207 
valid_for_resize(const SkPixmap & source,int dstW,int dstH)208 static bool valid_for_resize(const SkPixmap& source, int dstW, int dstH) {
209     // TODO: Seems like we shouldn't care about the swizzle of source, just that it's 8888
210     return source.addr() && source.colorType() == kN32_SkColorType &&
211            source.width() >= 1 && source.height() >= 1 && dstW >= 1 && dstH >= 1;
212 }
213 
Resize(const SkPixmap & result,const SkPixmap & source,ResizeMethod method)214 bool SkBitmapScaler::Resize(const SkPixmap& result, const SkPixmap& source, ResizeMethod method) {
215     if (!valid_for_resize(source, result.width(), result.height())) {
216         return false;
217     }
218     if (!result.addr() || result.colorType() != source.colorType()) {
219         return false;
220     }
221 
222     SkConvolutionProcs convolveProcs= { 0, nullptr, nullptr, nullptr, nullptr };
223     PlatformConvolutionProcs(&convolveProcs);
224 
225     SkRect destSubset = SkRect::MakeIWH(result.width(), result.height());
226 
227     SkResizeFilter filter(method, source.width(), source.height(),
228                           result.width(), result.height(), destSubset, convolveProcs);
229 
230     // Get a subset encompassing this touched area. We construct the
231     // offsets and row strides such that it looks like a new bitmap, while
232     // referring to the old data.
233     const uint8_t* sourceSubset = reinterpret_cast<const uint8_t*>(source.addr());
234 
235     return BGRAConvolve2D(sourceSubset, static_cast<int>(source.rowBytes()),
236                           !source.isOpaque(), filter.xFilter(), filter.yFilter(),
237                           static_cast<int>(result.rowBytes()),
238                           static_cast<unsigned char*>(result.writable_addr()),
239                           convolveProcs, true);
240 }
241 
Resize(SkBitmap * resultPtr,const SkPixmap & source,ResizeMethod method,int destWidth,int destHeight,SkBitmap::Allocator * allocator)242 bool SkBitmapScaler::Resize(SkBitmap* resultPtr, const SkPixmap& source, ResizeMethod method,
243                             int destWidth, int destHeight, SkBitmap::Allocator* allocator) {
244     // Preflight some of the checks, to avoid allocating the result if we don't need it.
245     if (!valid_for_resize(source, destWidth, destHeight)) {
246         return false;
247     }
248 
249     SkBitmap result;
250     result.setInfo(SkImageInfo::MakeN32(destWidth, destHeight, source.alphaType()));
251     result.allocPixels(allocator, nullptr);
252 
253     SkPixmap resultPM;
254     if (!result.peekPixels(&resultPM) || !Resize(resultPM, source, method)) {
255         return false;
256     }
257 
258     *resultPtr = result;
259     resultPtr->lockPixels();
260     SkASSERT(resultPtr->getPixels());
261     return true;
262 }
263 
264