• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #ifndef V8_ARM_MACRO_ASSEMBLER_ARM_H_
6 #define V8_ARM_MACRO_ASSEMBLER_ARM_H_
7 
8 #include "src/assembler.h"
9 #include "src/bailout-reason.h"
10 #include "src/frames.h"
11 #include "src/globals.h"
12 
13 namespace v8 {
14 namespace internal {
15 
16 // Give alias names to registers for calling conventions.
17 const Register kReturnRegister0 = {Register::kCode_r0};
18 const Register kReturnRegister1 = {Register::kCode_r1};
19 const Register kJSFunctionRegister = {Register::kCode_r1};
20 const Register kContextRegister = {Register::kCode_r7};
21 const Register kInterpreterAccumulatorRegister = {Register::kCode_r0};
22 const Register kInterpreterRegisterFileRegister = {Register::kCode_r4};
23 const Register kInterpreterBytecodeOffsetRegister = {Register::kCode_r5};
24 const Register kInterpreterBytecodeArrayRegister = {Register::kCode_r6};
25 const Register kInterpreterDispatchTableRegister = {Register::kCode_r8};
26 const Register kJavaScriptCallArgCountRegister = {Register::kCode_r0};
27 const Register kJavaScriptCallNewTargetRegister = {Register::kCode_r3};
28 const Register kRuntimeCallFunctionRegister = {Register::kCode_r1};
29 const Register kRuntimeCallArgCountRegister = {Register::kCode_r0};
30 
31 // ----------------------------------------------------------------------------
32 // Static helper functions
33 
34 // Generate a MemOperand for loading a field from an object.
FieldMemOperand(Register object,int offset)35 inline MemOperand FieldMemOperand(Register object, int offset) {
36   return MemOperand(object, offset - kHeapObjectTag);
37 }
38 
39 
40 // Give alias names to registers
41 const Register cp = {Register::kCode_r7};  // JavaScript context pointer.
42 const Register pp = {Register::kCode_r8};  // Constant pool pointer.
43 const Register kRootRegister = {Register::kCode_r10};  // Roots array pointer.
44 
45 // Flags used for AllocateHeapNumber
46 enum TaggingMode {
47   // Tag the result.
48   TAG_RESULT,
49   // Don't tag
50   DONT_TAG_RESULT
51 };
52 
53 
54 enum RememberedSetAction { EMIT_REMEMBERED_SET, OMIT_REMEMBERED_SET };
55 enum SmiCheck { INLINE_SMI_CHECK, OMIT_SMI_CHECK };
56 enum PointersToHereCheck {
57   kPointersToHereMaybeInteresting,
58   kPointersToHereAreAlwaysInteresting
59 };
60 enum LinkRegisterStatus { kLRHasNotBeenSaved, kLRHasBeenSaved };
61 
62 
63 Register GetRegisterThatIsNotOneOf(Register reg1,
64                                    Register reg2 = no_reg,
65                                    Register reg3 = no_reg,
66                                    Register reg4 = no_reg,
67                                    Register reg5 = no_reg,
68                                    Register reg6 = no_reg);
69 
70 
71 #ifdef DEBUG
72 bool AreAliased(Register reg1,
73                 Register reg2,
74                 Register reg3 = no_reg,
75                 Register reg4 = no_reg,
76                 Register reg5 = no_reg,
77                 Register reg6 = no_reg,
78                 Register reg7 = no_reg,
79                 Register reg8 = no_reg);
80 #endif
81 
82 
83 enum TargetAddressStorageMode {
84   CAN_INLINE_TARGET_ADDRESS,
85   NEVER_INLINE_TARGET_ADDRESS
86 };
87 
88 // MacroAssembler implements a collection of frequently used macros.
89 class MacroAssembler: public Assembler {
90  public:
91   MacroAssembler(Isolate* isolate, void* buffer, int size,
92                  CodeObjectRequired create_code_object);
93 
94 
95   // Returns the size of a call in instructions. Note, the value returned is
96   // only valid as long as no entries are added to the constant pool between
97   // checking the call size and emitting the actual call.
98   static int CallSize(Register target, Condition cond = al);
99   int CallSize(Address target, RelocInfo::Mode rmode, Condition cond = al);
100   int CallStubSize(CodeStub* stub,
101                    TypeFeedbackId ast_id = TypeFeedbackId::None(),
102                    Condition cond = al);
103   static int CallSizeNotPredictableCodeSize(Isolate* isolate,
104                                             Address target,
105                                             RelocInfo::Mode rmode,
106                                             Condition cond = al);
107 
108   // Jump, Call, and Ret pseudo instructions implementing inter-working.
109   void Jump(Register target, Condition cond = al);
110   void Jump(Address target, RelocInfo::Mode rmode, Condition cond = al);
111   void Jump(Handle<Code> code, RelocInfo::Mode rmode, Condition cond = al);
112   void Call(Register target, Condition cond = al);
113   void Call(Address target, RelocInfo::Mode rmode,
114             Condition cond = al,
115             TargetAddressStorageMode mode = CAN_INLINE_TARGET_ADDRESS);
116   int CallSize(Handle<Code> code,
117                RelocInfo::Mode rmode = RelocInfo::CODE_TARGET,
118                TypeFeedbackId ast_id = TypeFeedbackId::None(),
119                Condition cond = al);
120   void Call(Handle<Code> code,
121             RelocInfo::Mode rmode = RelocInfo::CODE_TARGET,
122             TypeFeedbackId ast_id = TypeFeedbackId::None(),
123             Condition cond = al,
124             TargetAddressStorageMode mode = CAN_INLINE_TARGET_ADDRESS);
125   void Ret(Condition cond = al);
126 
127   // Emit code to discard a non-negative number of pointer-sized elements
128   // from the stack, clobbering only the sp register.
129   void Drop(int count, Condition cond = al);
130 
131   void Ret(int drop, Condition cond = al);
132 
133   // Swap two registers.  If the scratch register is omitted then a slightly
134   // less efficient form using xor instead of mov is emitted.
135   void Swap(Register reg1,
136             Register reg2,
137             Register scratch = no_reg,
138             Condition cond = al);
139 
140   void Mls(Register dst, Register src1, Register src2, Register srcA,
141            Condition cond = al);
142   void And(Register dst, Register src1, const Operand& src2,
143            Condition cond = al);
144   void Ubfx(Register dst, Register src, int lsb, int width,
145             Condition cond = al);
146   void Sbfx(Register dst, Register src, int lsb, int width,
147             Condition cond = al);
148   // The scratch register is not used for ARMv7.
149   // scratch can be the same register as src (in which case it is trashed), but
150   // not the same as dst.
151   void Bfi(Register dst,
152            Register src,
153            Register scratch,
154            int lsb,
155            int width,
156            Condition cond = al);
157   void Bfc(Register dst, Register src, int lsb, int width, Condition cond = al);
158   void Usat(Register dst, int satpos, const Operand& src,
159             Condition cond = al);
160 
161   void Call(Label* target);
Push(Register src)162   void Push(Register src) { push(src); }
Pop(Register dst)163   void Pop(Register dst) { pop(dst); }
164 
165   // Register move. May do nothing if the registers are identical.
Move(Register dst,Smi * smi)166   void Move(Register dst, Smi* smi) { mov(dst, Operand(smi)); }
167   void Move(Register dst, Handle<Object> value);
168   void Move(Register dst, Register src, Condition cond = al);
169   void Move(Register dst, const Operand& src, SBit sbit = LeaveCC,
170             Condition cond = al) {
171     if (!src.is_reg() || !src.rm().is(dst) || sbit != LeaveCC) {
172       mov(dst, src, sbit, cond);
173     }
174   }
175   void Move(DwVfpRegister dst, DwVfpRegister src);
176 
177   void Load(Register dst, const MemOperand& src, Representation r);
178   void Store(Register src, const MemOperand& dst, Representation r);
179 
180   // Load an object from the root table.
181   void LoadRoot(Register destination,
182                 Heap::RootListIndex index,
183                 Condition cond = al);
184   // Store an object to the root table.
185   void StoreRoot(Register source,
186                  Heap::RootListIndex index,
187                  Condition cond = al);
188 
189   // ---------------------------------------------------------------------------
190   // GC Support
191 
192   void IncrementalMarkingRecordWriteHelper(Register object,
193                                            Register value,
194                                            Register address);
195 
196   enum RememberedSetFinalAction {
197     kReturnAtEnd,
198     kFallThroughAtEnd
199   };
200 
201   // Record in the remembered set the fact that we have a pointer to new space
202   // at the address pointed to by the addr register.  Only works if addr is not
203   // in new space.
204   void RememberedSetHelper(Register object,  // Used for debug code.
205                            Register addr,
206                            Register scratch,
207                            SaveFPRegsMode save_fp,
208                            RememberedSetFinalAction and_then);
209 
210   void CheckPageFlag(Register object,
211                      Register scratch,
212                      int mask,
213                      Condition cc,
214                      Label* condition_met);
215 
216   // Check if object is in new space.  Jumps if the object is not in new space.
217   // The register scratch can be object itself, but scratch will be clobbered.
JumpIfNotInNewSpace(Register object,Register scratch,Label * branch)218   void JumpIfNotInNewSpace(Register object,
219                            Register scratch,
220                            Label* branch) {
221     InNewSpace(object, scratch, ne, branch);
222   }
223 
224   // Check if object is in new space.  Jumps if the object is in new space.
225   // The register scratch can be object itself, but it will be clobbered.
JumpIfInNewSpace(Register object,Register scratch,Label * branch)226   void JumpIfInNewSpace(Register object,
227                         Register scratch,
228                         Label* branch) {
229     InNewSpace(object, scratch, eq, branch);
230   }
231 
232   // Check if an object has a given incremental marking color.
233   void HasColor(Register object,
234                 Register scratch0,
235                 Register scratch1,
236                 Label* has_color,
237                 int first_bit,
238                 int second_bit);
239 
240   void JumpIfBlack(Register object,
241                    Register scratch0,
242                    Register scratch1,
243                    Label* on_black);
244 
245   // Checks the color of an object.  If the object is white we jump to the
246   // incremental marker.
247   void JumpIfWhite(Register value, Register scratch1, Register scratch2,
248                    Register scratch3, Label* value_is_white);
249 
250   // Notify the garbage collector that we wrote a pointer into an object.
251   // |object| is the object being stored into, |value| is the object being
252   // stored.  value and scratch registers are clobbered by the operation.
253   // The offset is the offset from the start of the object, not the offset from
254   // the tagged HeapObject pointer.  For use with FieldMemOperand(reg, off).
255   void RecordWriteField(
256       Register object,
257       int offset,
258       Register value,
259       Register scratch,
260       LinkRegisterStatus lr_status,
261       SaveFPRegsMode save_fp,
262       RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
263       SmiCheck smi_check = INLINE_SMI_CHECK,
264       PointersToHereCheck pointers_to_here_check_for_value =
265           kPointersToHereMaybeInteresting);
266 
267   // As above, but the offset has the tag presubtracted.  For use with
268   // MemOperand(reg, off).
269   inline void RecordWriteContextSlot(
270       Register context,
271       int offset,
272       Register value,
273       Register scratch,
274       LinkRegisterStatus lr_status,
275       SaveFPRegsMode save_fp,
276       RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
277       SmiCheck smi_check = INLINE_SMI_CHECK,
278       PointersToHereCheck pointers_to_here_check_for_value =
279           kPointersToHereMaybeInteresting) {
280     RecordWriteField(context,
281                      offset + kHeapObjectTag,
282                      value,
283                      scratch,
284                      lr_status,
285                      save_fp,
286                      remembered_set_action,
287                      smi_check,
288                      pointers_to_here_check_for_value);
289   }
290 
291   void RecordWriteForMap(
292       Register object,
293       Register map,
294       Register dst,
295       LinkRegisterStatus lr_status,
296       SaveFPRegsMode save_fp);
297 
298   // For a given |object| notify the garbage collector that the slot |address|
299   // has been written.  |value| is the object being stored. The value and
300   // address registers are clobbered by the operation.
301   void RecordWrite(
302       Register object,
303       Register address,
304       Register value,
305       LinkRegisterStatus lr_status,
306       SaveFPRegsMode save_fp,
307       RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
308       SmiCheck smi_check = INLINE_SMI_CHECK,
309       PointersToHereCheck pointers_to_here_check_for_value =
310           kPointersToHereMaybeInteresting);
311 
312   // Push a handle.
313   void Push(Handle<Object> handle);
Push(Smi * smi)314   void Push(Smi* smi) { Push(Handle<Smi>(smi, isolate())); }
315 
316   // Push two registers.  Pushes leftmost register first (to highest address).
317   void Push(Register src1, Register src2, Condition cond = al) {
318     DCHECK(!src1.is(src2));
319     if (src1.code() > src2.code()) {
320       stm(db_w, sp, src1.bit() | src2.bit(), cond);
321     } else {
322       str(src1, MemOperand(sp, 4, NegPreIndex), cond);
323       str(src2, MemOperand(sp, 4, NegPreIndex), cond);
324     }
325   }
326 
327   // Push three registers.  Pushes leftmost register first (to highest address).
328   void Push(Register src1, Register src2, Register src3, Condition cond = al) {
329     DCHECK(!AreAliased(src1, src2, src3));
330     if (src1.code() > src2.code()) {
331       if (src2.code() > src3.code()) {
332         stm(db_w, sp, src1.bit() | src2.bit() | src3.bit(), cond);
333       } else {
334         stm(db_w, sp, src1.bit() | src2.bit(), cond);
335         str(src3, MemOperand(sp, 4, NegPreIndex), cond);
336       }
337     } else {
338       str(src1, MemOperand(sp, 4, NegPreIndex), cond);
339       Push(src2, src3, cond);
340     }
341   }
342 
343   // Push four registers.  Pushes leftmost register first (to highest address).
344   void Push(Register src1,
345             Register src2,
346             Register src3,
347             Register src4,
348             Condition cond = al) {
349     DCHECK(!AreAliased(src1, src2, src3, src4));
350     if (src1.code() > src2.code()) {
351       if (src2.code() > src3.code()) {
352         if (src3.code() > src4.code()) {
353           stm(db_w,
354               sp,
355               src1.bit() | src2.bit() | src3.bit() | src4.bit(),
356               cond);
357         } else {
358           stm(db_w, sp, src1.bit() | src2.bit() | src3.bit(), cond);
359           str(src4, MemOperand(sp, 4, NegPreIndex), cond);
360         }
361       } else {
362         stm(db_w, sp, src1.bit() | src2.bit(), cond);
363         Push(src3, src4, cond);
364       }
365     } else {
366       str(src1, MemOperand(sp, 4, NegPreIndex), cond);
367       Push(src2, src3, src4, cond);
368     }
369   }
370 
371   // Push five registers.  Pushes leftmost register first (to highest address).
372   void Push(Register src1, Register src2, Register src3, Register src4,
373             Register src5, Condition cond = al) {
374     DCHECK(!AreAliased(src1, src2, src3, src4, src5));
375     if (src1.code() > src2.code()) {
376       if (src2.code() > src3.code()) {
377         if (src3.code() > src4.code()) {
378           if (src4.code() > src5.code()) {
379             stm(db_w, sp,
380                 src1.bit() | src2.bit() | src3.bit() | src4.bit() | src5.bit(),
381                 cond);
382           } else {
383             stm(db_w, sp, src1.bit() | src2.bit() | src3.bit() | src4.bit(),
384                 cond);
385             str(src5, MemOperand(sp, 4, NegPreIndex), cond);
386           }
387         } else {
388           stm(db_w, sp, src1.bit() | src2.bit() | src3.bit(), cond);
389           Push(src4, src5, cond);
390         }
391       } else {
392         stm(db_w, sp, src1.bit() | src2.bit(), cond);
393         Push(src3, src4, src5, cond);
394       }
395     } else {
396       str(src1, MemOperand(sp, 4, NegPreIndex), cond);
397       Push(src2, src3, src4, src5, cond);
398     }
399   }
400 
401   // Pop two registers. Pops rightmost register first (from lower address).
402   void Pop(Register src1, Register src2, Condition cond = al) {
403     DCHECK(!src1.is(src2));
404     if (src1.code() > src2.code()) {
405       ldm(ia_w, sp, src1.bit() | src2.bit(), cond);
406     } else {
407       ldr(src2, MemOperand(sp, 4, PostIndex), cond);
408       ldr(src1, MemOperand(sp, 4, PostIndex), cond);
409     }
410   }
411 
412   // Pop three registers.  Pops rightmost register first (from lower address).
413   void Pop(Register src1, Register src2, Register src3, Condition cond = al) {
414     DCHECK(!AreAliased(src1, src2, src3));
415     if (src1.code() > src2.code()) {
416       if (src2.code() > src3.code()) {
417         ldm(ia_w, sp, src1.bit() | src2.bit() | src3.bit(), cond);
418       } else {
419         ldr(src3, MemOperand(sp, 4, PostIndex), cond);
420         ldm(ia_w, sp, src1.bit() | src2.bit(), cond);
421       }
422     } else {
423       Pop(src2, src3, cond);
424       ldr(src1, MemOperand(sp, 4, PostIndex), cond);
425     }
426   }
427 
428   // Pop four registers.  Pops rightmost register first (from lower address).
429   void Pop(Register src1,
430            Register src2,
431            Register src3,
432            Register src4,
433            Condition cond = al) {
434     DCHECK(!AreAliased(src1, src2, src3, src4));
435     if (src1.code() > src2.code()) {
436       if (src2.code() > src3.code()) {
437         if (src3.code() > src4.code()) {
438           ldm(ia_w,
439               sp,
440               src1.bit() | src2.bit() | src3.bit() | src4.bit(),
441               cond);
442         } else {
443           ldr(src4, MemOperand(sp, 4, PostIndex), cond);
444           ldm(ia_w, sp, src1.bit() | src2.bit() | src3.bit(), cond);
445         }
446       } else {
447         Pop(src3, src4, cond);
448         ldm(ia_w, sp, src1.bit() | src2.bit(), cond);
449       }
450     } else {
451       Pop(src2, src3, src4, cond);
452       ldr(src1, MemOperand(sp, 4, PostIndex), cond);
453     }
454   }
455 
456   // Push a fixed frame, consisting of lr, fp, constant pool (if
457   // FLAG_enable_embedded_constant_pool), context and JS function / marker id if
458   // marker_reg is a valid register.
459   void PushFixedFrame(Register marker_reg = no_reg);
460   void PopFixedFrame(Register marker_reg = no_reg);
461 
462   // Push and pop the registers that can hold pointers, as defined by the
463   // RegList constant kSafepointSavedRegisters.
464   void PushSafepointRegisters();
465   void PopSafepointRegisters();
466   // Store value in register src in the safepoint stack slot for
467   // register dst.
468   void StoreToSafepointRegisterSlot(Register src, Register dst);
469   // Load the value of the src register from its safepoint stack slot
470   // into register dst.
471   void LoadFromSafepointRegisterSlot(Register dst, Register src);
472 
473   // Load two consecutive registers with two consecutive memory locations.
474   void Ldrd(Register dst1,
475             Register dst2,
476             const MemOperand& src,
477             Condition cond = al);
478 
479   // Store two consecutive registers to two consecutive memory locations.
480   void Strd(Register src1,
481             Register src2,
482             const MemOperand& dst,
483             Condition cond = al);
484 
485   // Ensure that FPSCR contains values needed by JavaScript.
486   // We need the NaNModeControlBit to be sure that operations like
487   // vadd and vsub generate the Canonical NaN (if a NaN must be generated).
488   // In VFP3 it will be always the Canonical NaN.
489   // In VFP2 it will be either the Canonical NaN or the negative version
490   // of the Canonical NaN. It doesn't matter if we have two values. The aim
491   // is to be sure to never generate the hole NaN.
492   void VFPEnsureFPSCRState(Register scratch);
493 
494   // If the value is a NaN, canonicalize the value else, do nothing.
495   void VFPCanonicalizeNaN(const DwVfpRegister dst,
496                           const DwVfpRegister src,
497                           const Condition cond = al);
498   void VFPCanonicalizeNaN(const DwVfpRegister value,
499                           const Condition cond = al) {
500     VFPCanonicalizeNaN(value, value, cond);
501   }
502 
503   // Compare single values and move the result to the normal condition flags.
504   void VFPCompareAndSetFlags(const SwVfpRegister src1, const SwVfpRegister src2,
505                              const Condition cond = al);
506   void VFPCompareAndSetFlags(const SwVfpRegister src1, const float src2,
507                              const Condition cond = al);
508 
509   // Compare double values and move the result to the normal condition flags.
510   void VFPCompareAndSetFlags(const DwVfpRegister src1,
511                              const DwVfpRegister src2,
512                              const Condition cond = al);
513   void VFPCompareAndSetFlags(const DwVfpRegister src1,
514                              const double src2,
515                              const Condition cond = al);
516 
517   // Compare single values and then load the fpscr flags to a register.
518   void VFPCompareAndLoadFlags(const SwVfpRegister src1,
519                               const SwVfpRegister src2,
520                               const Register fpscr_flags,
521                               const Condition cond = al);
522   void VFPCompareAndLoadFlags(const SwVfpRegister src1, const float src2,
523                               const Register fpscr_flags,
524                               const Condition cond = al);
525 
526   // Compare double values and then load the fpscr flags to a register.
527   void VFPCompareAndLoadFlags(const DwVfpRegister src1,
528                               const DwVfpRegister src2,
529                               const Register fpscr_flags,
530                               const Condition cond = al);
531   void VFPCompareAndLoadFlags(const DwVfpRegister src1,
532                               const double src2,
533                               const Register fpscr_flags,
534                               const Condition cond = al);
535 
536   void Vmov(const DwVfpRegister dst,
537             const double imm,
538             const Register scratch = no_reg);
539 
540   void VmovHigh(Register dst, DwVfpRegister src);
541   void VmovHigh(DwVfpRegister dst, Register src);
542   void VmovLow(Register dst, DwVfpRegister src);
543   void VmovLow(DwVfpRegister dst, Register src);
544 
545   // Loads the number from object into dst register.
546   // If |object| is neither smi nor heap number, |not_number| is jumped to
547   // with |object| still intact.
548   void LoadNumber(Register object,
549                   LowDwVfpRegister dst,
550                   Register heap_number_map,
551                   Register scratch,
552                   Label* not_number);
553 
554   // Loads the number from object into double_dst in the double format.
555   // Control will jump to not_int32 if the value cannot be exactly represented
556   // by a 32-bit integer.
557   // Floating point value in the 32-bit integer range that are not exact integer
558   // won't be loaded.
559   void LoadNumberAsInt32Double(Register object,
560                                DwVfpRegister double_dst,
561                                Register heap_number_map,
562                                Register scratch,
563                                LowDwVfpRegister double_scratch,
564                                Label* not_int32);
565 
566   // Loads the number from object into dst as a 32-bit integer.
567   // Control will jump to not_int32 if the object cannot be exactly represented
568   // by a 32-bit integer.
569   // Floating point value in the 32-bit integer range that are not exact integer
570   // won't be converted.
571   void LoadNumberAsInt32(Register object,
572                          Register dst,
573                          Register heap_number_map,
574                          Register scratch,
575                          DwVfpRegister double_scratch0,
576                          LowDwVfpRegister double_scratch1,
577                          Label* not_int32);
578 
579   // Generates function and stub prologue code.
580   void StubPrologue();
581   void Prologue(bool code_pre_aging);
582 
583   // Enter exit frame.
584   // stack_space - extra stack space, used for alignment before call to C.
585   void EnterExitFrame(bool save_doubles, int stack_space = 0);
586 
587   // Leave the current exit frame. Expects the return value in r0.
588   // Expect the number of values, pushed prior to the exit frame, to
589   // remove in a register (or no_reg, if there is nothing to remove).
590   void LeaveExitFrame(bool save_doubles, Register argument_count,
591                       bool restore_context,
592                       bool argument_count_is_length = false);
593 
594   // Get the actual activation frame alignment for target environment.
595   static int ActivationFrameAlignment();
596 
597   void LoadContext(Register dst, int context_chain_length);
598 
599   // Load the global object from the current context.
LoadGlobalObject(Register dst)600   void LoadGlobalObject(Register dst) {
601     LoadNativeContextSlot(Context::EXTENSION_INDEX, dst);
602   }
603 
604   // Load the global proxy from the current context.
LoadGlobalProxy(Register dst)605   void LoadGlobalProxy(Register dst) {
606     LoadNativeContextSlot(Context::GLOBAL_PROXY_INDEX, dst);
607   }
608 
609   // Conditionally load the cached Array transitioned map of type
610   // transitioned_kind from the native context if the map in register
611   // map_in_out is the cached Array map in the native context of
612   // expected_kind.
613   void LoadTransitionedArrayMapConditional(
614       ElementsKind expected_kind,
615       ElementsKind transitioned_kind,
616       Register map_in_out,
617       Register scratch,
618       Label* no_map_match);
619 
620   void LoadNativeContextSlot(int index, Register dst);
621 
622   // Load the initial map from the global function. The registers
623   // function and map can be the same, function is then overwritten.
624   void LoadGlobalFunctionInitialMap(Register function,
625                                     Register map,
626                                     Register scratch);
627 
InitializeRootRegister()628   void InitializeRootRegister() {
629     ExternalReference roots_array_start =
630         ExternalReference::roots_array_start(isolate());
631     mov(kRootRegister, Operand(roots_array_start));
632   }
633 
634   // ---------------------------------------------------------------------------
635   // JavaScript invokes
636 
637   // Invoke the JavaScript function code by either calling or jumping.
638   void InvokeFunctionCode(Register function, Register new_target,
639                           const ParameterCount& expected,
640                           const ParameterCount& actual, InvokeFlag flag,
641                           const CallWrapper& call_wrapper);
642 
643   void FloodFunctionIfStepping(Register fun, Register new_target,
644                                const ParameterCount& expected,
645                                const ParameterCount& actual);
646 
647   // Invoke the JavaScript function in the given register. Changes the
648   // current context to the context in the function before invoking.
649   void InvokeFunction(Register function,
650                       Register new_target,
651                       const ParameterCount& actual,
652                       InvokeFlag flag,
653                       const CallWrapper& call_wrapper);
654 
655   void InvokeFunction(Register function,
656                       const ParameterCount& expected,
657                       const ParameterCount& actual,
658                       InvokeFlag flag,
659                       const CallWrapper& call_wrapper);
660 
661   void InvokeFunction(Handle<JSFunction> function,
662                       const ParameterCount& expected,
663                       const ParameterCount& actual,
664                       InvokeFlag flag,
665                       const CallWrapper& call_wrapper);
666 
667   void IsObjectJSStringType(Register object,
668                             Register scratch,
669                             Label* fail);
670 
671   void IsObjectNameType(Register object,
672                         Register scratch,
673                         Label* fail);
674 
675   // ---------------------------------------------------------------------------
676   // Debugger Support
677 
678   void DebugBreak();
679 
680   // ---------------------------------------------------------------------------
681   // Exception handling
682 
683   // Push a new stack handler and link into stack handler chain.
684   void PushStackHandler();
685 
686   // Unlink the stack handler on top of the stack from the stack handler chain.
687   // Must preserve the result register.
688   void PopStackHandler();
689 
690   // ---------------------------------------------------------------------------
691   // Inline caching support
692 
693   // Generate code for checking access rights - used for security checks
694   // on access to global objects across environments. The holder register
695   // is left untouched, whereas both scratch registers are clobbered.
696   void CheckAccessGlobalProxy(Register holder_reg,
697                               Register scratch,
698                               Label* miss);
699 
700   void GetNumberHash(Register t0, Register scratch);
701 
702   void LoadFromNumberDictionary(Label* miss,
703                                 Register elements,
704                                 Register key,
705                                 Register result,
706                                 Register t0,
707                                 Register t1,
708                                 Register t2);
709 
710 
MarkCode(NopMarkerTypes type)711   inline void MarkCode(NopMarkerTypes type) {
712     nop(type);
713   }
714 
715   // Check if the given instruction is a 'type' marker.
716   // i.e. check if is is a mov r<type>, r<type> (referenced as nop(type))
717   // These instructions are generated to mark special location in the code,
718   // like some special IC code.
IsMarkedCode(Instr instr,int type)719   static inline bool IsMarkedCode(Instr instr, int type) {
720     DCHECK((FIRST_IC_MARKER <= type) && (type < LAST_CODE_MARKER));
721     return IsNop(instr, type);
722   }
723 
724 
GetCodeMarker(Instr instr)725   static inline int GetCodeMarker(Instr instr) {
726     int dst_reg_offset = 12;
727     int dst_mask = 0xf << dst_reg_offset;
728     int src_mask = 0xf;
729     int dst_reg = (instr & dst_mask) >> dst_reg_offset;
730     int src_reg = instr & src_mask;
731     uint32_t non_register_mask = ~(dst_mask | src_mask);
732     uint32_t mov_mask = al | 13 << 21;
733 
734     // Return <n> if we have a mov rn rn, else return -1.
735     int type = ((instr & non_register_mask) == mov_mask) &&
736                (dst_reg == src_reg) &&
737                (FIRST_IC_MARKER <= dst_reg) && (dst_reg < LAST_CODE_MARKER)
738                    ? src_reg
739                    : -1;
740     DCHECK((type == -1) ||
741            ((FIRST_IC_MARKER <= type) && (type < LAST_CODE_MARKER)));
742     return type;
743   }
744 
745 
746   // ---------------------------------------------------------------------------
747   // Allocation support
748 
749   // Allocate an object in new space or old space. The object_size is
750   // specified either in bytes or in words if the allocation flag SIZE_IN_WORDS
751   // is passed. If the space is exhausted control continues at the gc_required
752   // label. The allocated object is returned in result. If the flag
753   // tag_allocated_object is true the result is tagged as as a heap object.
754   // All registers are clobbered also when control continues at the gc_required
755   // label.
756   void Allocate(int object_size,
757                 Register result,
758                 Register scratch1,
759                 Register scratch2,
760                 Label* gc_required,
761                 AllocationFlags flags);
762 
763   void Allocate(Register object_size, Register result, Register result_end,
764                 Register scratch, Label* gc_required, AllocationFlags flags);
765 
766   void AllocateTwoByteString(Register result,
767                              Register length,
768                              Register scratch1,
769                              Register scratch2,
770                              Register scratch3,
771                              Label* gc_required);
772   void AllocateOneByteString(Register result, Register length,
773                              Register scratch1, Register scratch2,
774                              Register scratch3, Label* gc_required);
775   void AllocateTwoByteConsString(Register result,
776                                  Register length,
777                                  Register scratch1,
778                                  Register scratch2,
779                                  Label* gc_required);
780   void AllocateOneByteConsString(Register result, Register length,
781                                  Register scratch1, Register scratch2,
782                                  Label* gc_required);
783   void AllocateTwoByteSlicedString(Register result,
784                                    Register length,
785                                    Register scratch1,
786                                    Register scratch2,
787                                    Label* gc_required);
788   void AllocateOneByteSlicedString(Register result, Register length,
789                                    Register scratch1, Register scratch2,
790                                    Label* gc_required);
791 
792   // Allocates a heap number or jumps to the gc_required label if the young
793   // space is full and a scavenge is needed. All registers are clobbered also
794   // when control continues at the gc_required label.
795   void AllocateHeapNumber(Register result,
796                           Register scratch1,
797                           Register scratch2,
798                           Register heap_number_map,
799                           Label* gc_required,
800                           TaggingMode tagging_mode = TAG_RESULT,
801                           MutableMode mode = IMMUTABLE);
802   void AllocateHeapNumberWithValue(Register result,
803                                    DwVfpRegister value,
804                                    Register scratch1,
805                                    Register scratch2,
806                                    Register heap_number_map,
807                                    Label* gc_required);
808 
809   // Allocate and initialize a JSValue wrapper with the specified {constructor}
810   // and {value}.
811   void AllocateJSValue(Register result, Register constructor, Register value,
812                        Register scratch1, Register scratch2,
813                        Label* gc_required);
814 
815   // Copies a number of bytes from src to dst. All registers are clobbered. On
816   // exit src and dst will point to the place just after where the last byte was
817   // read or written and length will be zero.
818   void CopyBytes(Register src,
819                  Register dst,
820                  Register length,
821                  Register scratch);
822 
823   // Initialize fields with filler values.  Fields starting at |current_address|
824   // not including |end_address| are overwritten with the value in |filler|.  At
825   // the end the loop, |current_address| takes the value of |end_address|.
826   void InitializeFieldsWithFiller(Register current_address,
827                                   Register end_address, Register filler);
828 
829   // ---------------------------------------------------------------------------
830   // Support functions.
831 
832   // Machine code version of Map::GetConstructor().
833   // |temp| holds |result|'s map when done, and |temp2| its instance type.
834   void GetMapConstructor(Register result, Register map, Register temp,
835                          Register temp2);
836 
837   // Try to get function prototype of a function and puts the value in
838   // the result register. Checks that the function really is a
839   // function and jumps to the miss label if the fast checks fail. The
840   // function register will be untouched; the other registers may be
841   // clobbered.
842   void TryGetFunctionPrototype(Register function, Register result,
843                                Register scratch, Label* miss);
844 
845   // Compare object type for heap object.  heap_object contains a non-Smi
846   // whose object type should be compared with the given type.  This both
847   // sets the flags and leaves the object type in the type_reg register.
848   // It leaves the map in the map register (unless the type_reg and map register
849   // are the same register).  It leaves the heap object in the heap_object
850   // register unless the heap_object register is the same register as one of the
851   // other registers.
852   // Type_reg can be no_reg. In that case ip is used.
853   void CompareObjectType(Register heap_object,
854                          Register map,
855                          Register type_reg,
856                          InstanceType type);
857 
858   // Compare instance type in a map.  map contains a valid map object whose
859   // object type should be compared with the given type.  This both
860   // sets the flags and leaves the object type in the type_reg register.
861   void CompareInstanceType(Register map,
862                            Register type_reg,
863                            InstanceType type);
864 
865 
866   // Check if a map for a JSObject indicates that the object has fast elements.
867   // Jump to the specified label if it does not.
868   void CheckFastElements(Register map,
869                          Register scratch,
870                          Label* fail);
871 
872   // Check if a map for a JSObject indicates that the object can have both smi
873   // and HeapObject elements.  Jump to the specified label if it does not.
874   void CheckFastObjectElements(Register map,
875                                Register scratch,
876                                Label* fail);
877 
878   // Check if a map for a JSObject indicates that the object has fast smi only
879   // elements.  Jump to the specified label if it does not.
880   void CheckFastSmiElements(Register map,
881                             Register scratch,
882                             Label* fail);
883 
884   // Check to see if maybe_number can be stored as a double in
885   // FastDoubleElements. If it can, store it at the index specified by key in
886   // the FastDoubleElements array elements. Otherwise jump to fail.
887   void StoreNumberToDoubleElements(Register value_reg,
888                                    Register key_reg,
889                                    Register elements_reg,
890                                    Register scratch1,
891                                    LowDwVfpRegister double_scratch,
892                                    Label* fail,
893                                    int elements_offset = 0);
894 
895   // Compare an object's map with the specified map and its transitioned
896   // elements maps if mode is ALLOW_ELEMENT_TRANSITION_MAPS. Condition flags are
897   // set with result of map compare. If multiple map compares are required, the
898   // compare sequences branches to early_success.
899   void CompareMap(Register obj,
900                   Register scratch,
901                   Handle<Map> map,
902                   Label* early_success);
903 
904   // As above, but the map of the object is already loaded into the register
905   // which is preserved by the code generated.
906   void CompareMap(Register obj_map,
907                   Handle<Map> map,
908                   Label* early_success);
909 
910   // Check if the map of an object is equal to a specified map and branch to
911   // label if not. Skip the smi check if not required (object is known to be a
912   // heap object). If mode is ALLOW_ELEMENT_TRANSITION_MAPS, then also match
913   // against maps that are ElementsKind transition maps of the specified map.
914   void CheckMap(Register obj,
915                 Register scratch,
916                 Handle<Map> map,
917                 Label* fail,
918                 SmiCheckType smi_check_type);
919 
920 
921   void CheckMap(Register obj,
922                 Register scratch,
923                 Heap::RootListIndex index,
924                 Label* fail,
925                 SmiCheckType smi_check_type);
926 
927 
928   // Check if the map of an object is equal to a specified weak map and branch
929   // to a specified target if equal. Skip the smi check if not required
930   // (object is known to be a heap object)
931   void DispatchWeakMap(Register obj, Register scratch1, Register scratch2,
932                        Handle<WeakCell> cell, Handle<Code> success,
933                        SmiCheckType smi_check_type);
934 
935   // Compare the given value and the value of weak cell.
936   void CmpWeakValue(Register value, Handle<WeakCell> cell, Register scratch);
937 
938   void GetWeakValue(Register value, Handle<WeakCell> cell);
939 
940   // Load the value of the weak cell in the value register. Branch to the given
941   // miss label if the weak cell was cleared.
942   void LoadWeakValue(Register value, Handle<WeakCell> cell, Label* miss);
943 
944   // Compare the object in a register to a value from the root list.
945   // Uses the ip register as scratch.
946   void CompareRoot(Register obj, Heap::RootListIndex index);
PushRoot(Heap::RootListIndex index)947   void PushRoot(Heap::RootListIndex index) {
948     LoadRoot(ip, index);
949     Push(ip);
950   }
951 
952   // Compare the object in a register to a value and jump if they are equal.
JumpIfRoot(Register with,Heap::RootListIndex index,Label * if_equal)953   void JumpIfRoot(Register with, Heap::RootListIndex index, Label* if_equal) {
954     CompareRoot(with, index);
955     b(eq, if_equal);
956   }
957 
958   // Compare the object in a register to a value and jump if they are not equal.
JumpIfNotRoot(Register with,Heap::RootListIndex index,Label * if_not_equal)959   void JumpIfNotRoot(Register with, Heap::RootListIndex index,
960                      Label* if_not_equal) {
961     CompareRoot(with, index);
962     b(ne, if_not_equal);
963   }
964 
965   // Load and check the instance type of an object for being a string.
966   // Loads the type into the second argument register.
967   // Returns a condition that will be enabled if the object was a string
968   // and the passed-in condition passed. If the passed-in condition failed
969   // then flags remain unchanged.
970   Condition IsObjectStringType(Register obj,
971                                Register type,
972                                Condition cond = al) {
973     ldr(type, FieldMemOperand(obj, HeapObject::kMapOffset), cond);
974     ldrb(type, FieldMemOperand(type, Map::kInstanceTypeOffset), cond);
975     tst(type, Operand(kIsNotStringMask), cond);
976     DCHECK_EQ(0u, kStringTag);
977     return eq;
978   }
979 
980 
981   // Picks out an array index from the hash field.
982   // Register use:
983   //   hash - holds the index's hash. Clobbered.
984   //   index - holds the overwritten index on exit.
985   void IndexFromHash(Register hash, Register index);
986 
987   // Get the number of least significant bits from a register
988   void GetLeastBitsFromSmi(Register dst, Register src, int num_least_bits);
989   void GetLeastBitsFromInt32(Register dst, Register src, int mun_least_bits);
990 
991   // Load the value of a smi object into a double register.
992   // The register value must be between d0 and d15.
993   void SmiToDouble(LowDwVfpRegister value, Register smi);
994 
995   // Check if a double can be exactly represented as a signed 32-bit integer.
996   // Z flag set to one if true.
997   void TestDoubleIsInt32(DwVfpRegister double_input,
998                          LowDwVfpRegister double_scratch);
999 
1000   // Try to convert a double to a signed 32-bit integer.
1001   // Z flag set to one and result assigned if the conversion is exact.
1002   void TryDoubleToInt32Exact(Register result,
1003                              DwVfpRegister double_input,
1004                              LowDwVfpRegister double_scratch);
1005 
1006   // Floor a double and writes the value to the result register.
1007   // Go to exact if the conversion is exact (to be able to test -0),
1008   // fall through calling code if an overflow occurred, else go to done.
1009   // In return, input_high is loaded with high bits of input.
1010   void TryInt32Floor(Register result,
1011                      DwVfpRegister double_input,
1012                      Register input_high,
1013                      LowDwVfpRegister double_scratch,
1014                      Label* done,
1015                      Label* exact);
1016 
1017   // Performs a truncating conversion of a floating point number as used by
1018   // the JS bitwise operations. See ECMA-262 9.5: ToInt32. Goes to 'done' if it
1019   // succeeds, otherwise falls through if result is saturated. On return
1020   // 'result' either holds answer, or is clobbered on fall through.
1021   //
1022   // Only public for the test code in test-code-stubs-arm.cc.
1023   void TryInlineTruncateDoubleToI(Register result,
1024                                   DwVfpRegister input,
1025                                   Label* done);
1026 
1027   // Performs a truncating conversion of a floating point number as used by
1028   // the JS bitwise operations. See ECMA-262 9.5: ToInt32.
1029   // Exits with 'result' holding the answer.
1030   void TruncateDoubleToI(Register result, DwVfpRegister double_input);
1031 
1032   // Performs a truncating conversion of a heap number as used by
1033   // the JS bitwise operations. See ECMA-262 9.5: ToInt32. 'result' and 'input'
1034   // must be different registers.  Exits with 'result' holding the answer.
1035   void TruncateHeapNumberToI(Register result, Register object);
1036 
1037   // Converts the smi or heap number in object to an int32 using the rules
1038   // for ToInt32 as described in ECMAScript 9.5.: the value is truncated
1039   // and brought into the range -2^31 .. +2^31 - 1. 'result' and 'input' must be
1040   // different registers.
1041   void TruncateNumberToI(Register object,
1042                          Register result,
1043                          Register heap_number_map,
1044                          Register scratch1,
1045                          Label* not_int32);
1046 
1047   // Check whether d16-d31 are available on the CPU. The result is given by the
1048   // Z condition flag: Z==0 if d16-d31 available, Z==1 otherwise.
1049   void CheckFor32DRegs(Register scratch);
1050 
1051   // Does a runtime check for 16/32 FP registers. Either way, pushes 32 double
1052   // values to location, saving [d0..(d15|d31)].
1053   void SaveFPRegs(Register location, Register scratch);
1054 
1055   // Does a runtime check for 16/32 FP registers. Either way, pops 32 double
1056   // values to location, restoring [d0..(d15|d31)].
1057   void RestoreFPRegs(Register location, Register scratch);
1058 
1059   // ---------------------------------------------------------------------------
1060   // Runtime calls
1061 
1062   // Call a code stub.
1063   void CallStub(CodeStub* stub,
1064                 TypeFeedbackId ast_id = TypeFeedbackId::None(),
1065                 Condition cond = al);
1066 
1067   // Call a code stub.
1068   void TailCallStub(CodeStub* stub, Condition cond = al);
1069 
1070   // Call a runtime routine.
1071   void CallRuntime(const Runtime::Function* f,
1072                    int num_arguments,
1073                    SaveFPRegsMode save_doubles = kDontSaveFPRegs);
CallRuntimeSaveDoubles(Runtime::FunctionId fid)1074   void CallRuntimeSaveDoubles(Runtime::FunctionId fid) {
1075     const Runtime::Function* function = Runtime::FunctionForId(fid);
1076     CallRuntime(function, function->nargs, kSaveFPRegs);
1077   }
1078 
1079   // Convenience function: Same as above, but takes the fid instead.
1080   void CallRuntime(Runtime::FunctionId fid,
1081                    SaveFPRegsMode save_doubles = kDontSaveFPRegs) {
1082     const Runtime::Function* function = Runtime::FunctionForId(fid);
1083     CallRuntime(function, function->nargs, save_doubles);
1084   }
1085 
1086   // Convenience function: Same as above, but takes the fid instead.
1087   void CallRuntime(Runtime::FunctionId fid, int num_arguments,
1088                    SaveFPRegsMode save_doubles = kDontSaveFPRegs) {
1089     CallRuntime(Runtime::FunctionForId(fid), num_arguments, save_doubles);
1090   }
1091 
1092   // Convenience function: call an external reference.
1093   void CallExternalReference(const ExternalReference& ext,
1094                              int num_arguments);
1095 
1096   // Convenience function: tail call a runtime routine (jump).
1097   void TailCallRuntime(Runtime::FunctionId fid);
1098 
1099   int CalculateStackPassedWords(int num_reg_arguments,
1100                                 int num_double_arguments);
1101 
1102   // Before calling a C-function from generated code, align arguments on stack.
1103   // After aligning the frame, non-register arguments must be stored in
1104   // sp[0], sp[4], etc., not pushed. The argument count assumes all arguments
1105   // are word sized. If double arguments are used, this function assumes that
1106   // all double arguments are stored before core registers; otherwise the
1107   // correct alignment of the double values is not guaranteed.
1108   // Some compilers/platforms require the stack to be aligned when calling
1109   // C++ code.
1110   // Needs a scratch register to do some arithmetic. This register will be
1111   // trashed.
1112   void PrepareCallCFunction(int num_reg_arguments,
1113                             int num_double_registers,
1114                             Register scratch);
1115   void PrepareCallCFunction(int num_reg_arguments,
1116                             Register scratch);
1117 
1118   // There are two ways of passing double arguments on ARM, depending on
1119   // whether soft or hard floating point ABI is used. These functions
1120   // abstract parameter passing for the three different ways we call
1121   // C functions from generated code.
1122   void MovToFloatParameter(DwVfpRegister src);
1123   void MovToFloatParameters(DwVfpRegister src1, DwVfpRegister src2);
1124   void MovToFloatResult(DwVfpRegister src);
1125 
1126   // Calls a C function and cleans up the space for arguments allocated
1127   // by PrepareCallCFunction. The called function is not allowed to trigger a
1128   // garbage collection, since that might move the code and invalidate the
1129   // return address (unless this is somehow accounted for by the called
1130   // function).
1131   void CallCFunction(ExternalReference function, int num_arguments);
1132   void CallCFunction(Register function, int num_arguments);
1133   void CallCFunction(ExternalReference function,
1134                      int num_reg_arguments,
1135                      int num_double_arguments);
1136   void CallCFunction(Register function,
1137                      int num_reg_arguments,
1138                      int num_double_arguments);
1139 
1140   void MovFromFloatParameter(DwVfpRegister dst);
1141   void MovFromFloatResult(DwVfpRegister dst);
1142 
1143   // Jump to a runtime routine.
1144   void JumpToExternalReference(const ExternalReference& builtin);
1145 
1146   // Invoke specified builtin JavaScript function.
1147   void InvokeBuiltin(int native_context_index, InvokeFlag flag,
1148                      const CallWrapper& call_wrapper = NullCallWrapper());
1149 
CodeObject()1150   Handle<Object> CodeObject() {
1151     DCHECK(!code_object_.is_null());
1152     return code_object_;
1153   }
1154 
1155 
1156   // Emit code for a truncating division by a constant. The dividend register is
1157   // unchanged and ip gets clobbered. Dividend and result must be different.
1158   void TruncatingDiv(Register result, Register dividend, int32_t divisor);
1159 
1160   // ---------------------------------------------------------------------------
1161   // StatsCounter support
1162 
1163   void SetCounter(StatsCounter* counter, int value,
1164                   Register scratch1, Register scratch2);
1165   void IncrementCounter(StatsCounter* counter, int value,
1166                         Register scratch1, Register scratch2);
1167   void DecrementCounter(StatsCounter* counter, int value,
1168                         Register scratch1, Register scratch2);
1169 
1170 
1171   // ---------------------------------------------------------------------------
1172   // Debugging
1173 
1174   // Calls Abort(msg) if the condition cond is not satisfied.
1175   // Use --debug_code to enable.
1176   void Assert(Condition cond, BailoutReason reason);
1177   void AssertFastElements(Register elements);
1178 
1179   // Like Assert(), but always enabled.
1180   void Check(Condition cond, BailoutReason reason);
1181 
1182   // Print a message to stdout and abort execution.
1183   void Abort(BailoutReason msg);
1184 
1185   // Verify restrictions about code generated in stubs.
set_generating_stub(bool value)1186   void set_generating_stub(bool value) { generating_stub_ = value; }
generating_stub()1187   bool generating_stub() { return generating_stub_; }
set_has_frame(bool value)1188   void set_has_frame(bool value) { has_frame_ = value; }
has_frame()1189   bool has_frame() { return has_frame_; }
1190   inline bool AllowThisStubCall(CodeStub* stub);
1191 
1192   // EABI variant for double arguments in use.
use_eabi_hardfloat()1193   bool use_eabi_hardfloat() {
1194 #ifdef __arm__
1195     return base::OS::ArmUsingHardFloat();
1196 #elif USE_EABI_HARDFLOAT
1197     return true;
1198 #else
1199     return false;
1200 #endif
1201   }
1202 
1203   // ---------------------------------------------------------------------------
1204   // Number utilities
1205 
1206   // Check whether the value of reg is a power of two and not zero. If not
1207   // control continues at the label not_power_of_two. If reg is a power of two
1208   // the register scratch contains the value of (reg - 1) when control falls
1209   // through.
1210   void JumpIfNotPowerOfTwoOrZero(Register reg,
1211                                  Register scratch,
1212                                  Label* not_power_of_two_or_zero);
1213   // Check whether the value of reg is a power of two and not zero.
1214   // Control falls through if it is, with scratch containing the mask
1215   // value (reg - 1).
1216   // Otherwise control jumps to the 'zero_and_neg' label if the value of reg is
1217   // zero or negative, or jumps to the 'not_power_of_two' label if the value is
1218   // strictly positive but not a power of two.
1219   void JumpIfNotPowerOfTwoOrZeroAndNeg(Register reg,
1220                                        Register scratch,
1221                                        Label* zero_and_neg,
1222                                        Label* not_power_of_two);
1223 
1224   // ---------------------------------------------------------------------------
1225   // Smi utilities
1226 
1227   void SmiTag(Register reg, SBit s = LeaveCC) {
1228     add(reg, reg, Operand(reg), s);
1229   }
1230   void SmiTag(Register dst, Register src, SBit s = LeaveCC) {
1231     add(dst, src, Operand(src), s);
1232   }
1233 
1234   // Try to convert int32 to smi. If the value is to large, preserve
1235   // the original value and jump to not_a_smi. Destroys scratch and
1236   // sets flags.
TrySmiTag(Register reg,Label * not_a_smi)1237   void TrySmiTag(Register reg, Label* not_a_smi) {
1238     TrySmiTag(reg, reg, not_a_smi);
1239   }
TrySmiTag(Register reg,Register src,Label * not_a_smi)1240   void TrySmiTag(Register reg, Register src, Label* not_a_smi) {
1241     SmiTag(ip, src, SetCC);
1242     b(vs, not_a_smi);
1243     mov(reg, ip);
1244   }
1245 
1246 
1247   void SmiUntag(Register reg, SBit s = LeaveCC) {
1248     mov(reg, Operand::SmiUntag(reg), s);
1249   }
1250   void SmiUntag(Register dst, Register src, SBit s = LeaveCC) {
1251     mov(dst, Operand::SmiUntag(src), s);
1252   }
1253 
1254   // Untag the source value into destination and jump if source is a smi.
1255   // Souce and destination can be the same register.
1256   void UntagAndJumpIfSmi(Register dst, Register src, Label* smi_case);
1257 
1258   // Untag the source value into destination and jump if source is not a smi.
1259   // Souce and destination can be the same register.
1260   void UntagAndJumpIfNotSmi(Register dst, Register src, Label* non_smi_case);
1261 
1262   // Test if the register contains a smi (Z == 0 (eq) if true).
SmiTst(Register value)1263   inline void SmiTst(Register value) {
1264     tst(value, Operand(kSmiTagMask));
1265   }
NonNegativeSmiTst(Register value)1266   inline void NonNegativeSmiTst(Register value) {
1267     tst(value, Operand(kSmiTagMask | kSmiSignMask));
1268   }
1269   // Jump if the register contains a smi.
JumpIfSmi(Register value,Label * smi_label)1270   inline void JumpIfSmi(Register value, Label* smi_label) {
1271     tst(value, Operand(kSmiTagMask));
1272     b(eq, smi_label);
1273   }
1274   // Jump if either of the registers contain a non-smi.
JumpIfNotSmi(Register value,Label * not_smi_label)1275   inline void JumpIfNotSmi(Register value, Label* not_smi_label) {
1276     tst(value, Operand(kSmiTagMask));
1277     b(ne, not_smi_label);
1278   }
1279   // Jump if either of the registers contain a non-smi.
1280   void JumpIfNotBothSmi(Register reg1, Register reg2, Label* on_not_both_smi);
1281   // Jump if either of the registers contain a smi.
1282   void JumpIfEitherSmi(Register reg1, Register reg2, Label* on_either_smi);
1283 
1284   // Abort execution if argument is a smi, enabled via --debug-code.
1285   void AssertNotSmi(Register object);
1286   void AssertSmi(Register object);
1287 
1288   // Abort execution if argument is not a string, enabled via --debug-code.
1289   void AssertString(Register object);
1290 
1291   // Abort execution if argument is not a name, enabled via --debug-code.
1292   void AssertName(Register object);
1293 
1294   // Abort execution if argument is not a JSFunction, enabled via --debug-code.
1295   void AssertFunction(Register object);
1296 
1297   // Abort execution if argument is not a JSBoundFunction,
1298   // enabled via --debug-code.
1299   void AssertBoundFunction(Register object);
1300 
1301   // Abort execution if argument is not undefined or an AllocationSite, enabled
1302   // via --debug-code.
1303   void AssertUndefinedOrAllocationSite(Register object, Register scratch);
1304 
1305   // Abort execution if reg is not the root value with the given index,
1306   // enabled via --debug-code.
1307   void AssertIsRoot(Register reg, Heap::RootListIndex index);
1308 
1309   // ---------------------------------------------------------------------------
1310   // HeapNumber utilities
1311 
1312   void JumpIfNotHeapNumber(Register object,
1313                            Register heap_number_map,
1314                            Register scratch,
1315                            Label* on_not_heap_number);
1316 
1317   // ---------------------------------------------------------------------------
1318   // String utilities
1319 
1320   // Checks if both objects are sequential one-byte strings and jumps to label
1321   // if either is not. Assumes that neither object is a smi.
1322   void JumpIfNonSmisNotBothSequentialOneByteStrings(Register object1,
1323                                                     Register object2,
1324                                                     Register scratch1,
1325                                                     Register scratch2,
1326                                                     Label* failure);
1327 
1328   // Checks if both objects are sequential one-byte strings and jumps to label
1329   // if either is not.
1330   void JumpIfNotBothSequentialOneByteStrings(Register first, Register second,
1331                                              Register scratch1,
1332                                              Register scratch2,
1333                                              Label* not_flat_one_byte_strings);
1334 
1335   // Checks if both instance types are sequential one-byte strings and jumps to
1336   // label if either is not.
1337   void JumpIfBothInstanceTypesAreNotSequentialOneByte(
1338       Register first_object_instance_type, Register second_object_instance_type,
1339       Register scratch1, Register scratch2, Label* failure);
1340 
1341   // Check if instance type is sequential one-byte string and jump to label if
1342   // it is not.
1343   void JumpIfInstanceTypeIsNotSequentialOneByte(Register type, Register scratch,
1344                                                 Label* failure);
1345 
1346   void JumpIfNotUniqueNameInstanceType(Register reg, Label* not_unique_name);
1347 
1348   void EmitSeqStringSetCharCheck(Register string,
1349                                  Register index,
1350                                  Register value,
1351                                  uint32_t encoding_mask);
1352 
1353 
1354   void ClampUint8(Register output_reg, Register input_reg);
1355 
1356   void ClampDoubleToUint8(Register result_reg,
1357                           DwVfpRegister input_reg,
1358                           LowDwVfpRegister double_scratch);
1359 
1360 
1361   void LoadInstanceDescriptors(Register map, Register descriptors);
1362   void EnumLength(Register dst, Register map);
1363   void NumberOfOwnDescriptors(Register dst, Register map);
1364   void LoadAccessor(Register dst, Register holder, int accessor_index,
1365                     AccessorComponent accessor);
1366 
1367   template<typename Field>
DecodeField(Register dst,Register src)1368   void DecodeField(Register dst, Register src) {
1369     Ubfx(dst, src, Field::kShift, Field::kSize);
1370   }
1371 
1372   template<typename Field>
DecodeField(Register reg)1373   void DecodeField(Register reg) {
1374     DecodeField<Field>(reg, reg);
1375   }
1376 
1377   template<typename Field>
DecodeFieldToSmi(Register dst,Register src)1378   void DecodeFieldToSmi(Register dst, Register src) {
1379     static const int shift = Field::kShift;
1380     static const int mask = Field::kMask >> shift << kSmiTagSize;
1381     STATIC_ASSERT((mask & (0x80000000u >> (kSmiTagSize - 1))) == 0);
1382     STATIC_ASSERT(kSmiTag == 0);
1383     if (shift < kSmiTagSize) {
1384       mov(dst, Operand(src, LSL, kSmiTagSize - shift));
1385       and_(dst, dst, Operand(mask));
1386     } else if (shift > kSmiTagSize) {
1387       mov(dst, Operand(src, LSR, shift - kSmiTagSize));
1388       and_(dst, dst, Operand(mask));
1389     } else {
1390       and_(dst, src, Operand(mask));
1391     }
1392   }
1393 
1394   template<typename Field>
DecodeFieldToSmi(Register reg)1395   void DecodeFieldToSmi(Register reg) {
1396     DecodeField<Field>(reg, reg);
1397   }
1398 
1399   // Load the type feedback vector from a JavaScript frame.
1400   void EmitLoadTypeFeedbackVector(Register vector);
1401 
1402   // Activation support.
1403   void EnterFrame(StackFrame::Type type,
1404                   bool load_constant_pool_pointer_reg = false);
1405   // Returns the pc offset at which the frame ends.
1406   int LeaveFrame(StackFrame::Type type);
1407 
1408   // Expects object in r0 and returns map with validated enum cache
1409   // in r0.  Assumes that any other register can be used as a scratch.
1410   void CheckEnumCache(Register null_value, Label* call_runtime);
1411 
1412   // AllocationMemento support. Arrays may have an associated
1413   // AllocationMemento object that can be checked for in order to pretransition
1414   // to another type.
1415   // On entry, receiver_reg should point to the array object.
1416   // scratch_reg gets clobbered.
1417   // If allocation info is present, condition flags are set to eq.
1418   void TestJSArrayForAllocationMemento(Register receiver_reg,
1419                                        Register scratch_reg,
1420                                        Label* no_memento_found);
1421 
JumpIfJSArrayHasAllocationMemento(Register receiver_reg,Register scratch_reg,Label * memento_found)1422   void JumpIfJSArrayHasAllocationMemento(Register receiver_reg,
1423                                          Register scratch_reg,
1424                                          Label* memento_found) {
1425     Label no_memento_found;
1426     TestJSArrayForAllocationMemento(receiver_reg, scratch_reg,
1427                                     &no_memento_found);
1428     b(eq, memento_found);
1429     bind(&no_memento_found);
1430   }
1431 
1432   // Jumps to found label if a prototype map has dictionary elements.
1433   void JumpIfDictionaryInPrototypeChain(Register object, Register scratch0,
1434                                         Register scratch1, Label* found);
1435 
1436   // Loads the constant pool pointer (pp) register.
1437   void LoadConstantPoolPointerRegisterFromCodeTargetAddress(
1438       Register code_target_address);
1439   void LoadConstantPoolPointerRegister();
1440 
1441  private:
1442   void CallCFunctionHelper(Register function,
1443                            int num_reg_arguments,
1444                            int num_double_arguments);
1445 
1446   void Jump(intptr_t target, RelocInfo::Mode rmode, Condition cond = al);
1447 
1448   // Helper functions for generating invokes.
1449   void InvokePrologue(const ParameterCount& expected,
1450                       const ParameterCount& actual,
1451                       Label* done,
1452                       bool* definitely_mismatches,
1453                       InvokeFlag flag,
1454                       const CallWrapper& call_wrapper);
1455 
1456   void InitializeNewString(Register string,
1457                            Register length,
1458                            Heap::RootListIndex map_index,
1459                            Register scratch1,
1460                            Register scratch2);
1461 
1462   // Helper for implementing JumpIfNotInNewSpace and JumpIfInNewSpace.
1463   void InNewSpace(Register object,
1464                   Register scratch,
1465                   Condition cond,  // eq for new space, ne otherwise.
1466                   Label* branch);
1467 
1468   // Helper for finding the mark bits for an address.  Afterwards, the
1469   // bitmap register points at the word with the mark bits and the mask
1470   // the position of the first bit.  Leaves addr_reg unchanged.
1471   inline void GetMarkBits(Register addr_reg,
1472                           Register bitmap_reg,
1473                           Register mask_reg);
1474 
1475   // Compute memory operands for safepoint stack slots.
1476   static int SafepointRegisterStackIndex(int reg_code);
1477   MemOperand SafepointRegisterSlot(Register reg);
1478   MemOperand SafepointRegistersAndDoublesSlot(Register reg);
1479 
1480   bool generating_stub_;
1481   bool has_frame_;
1482   // This handle will be patched with the code object on installation.
1483   Handle<Object> code_object_;
1484 
1485   // Needs access to SafepointRegisterStackIndex for compiled frame
1486   // traversal.
1487   friend class StandardFrame;
1488 };
1489 
1490 
1491 // The code patcher is used to patch (typically) small parts of code e.g. for
1492 // debugging and other types of instrumentation. When using the code patcher
1493 // the exact number of bytes specified must be emitted. It is not legal to emit
1494 // relocation information. If any of these constraints are violated it causes
1495 // an assertion to fail.
1496 class CodePatcher {
1497  public:
1498   enum FlushICache {
1499     FLUSH,
1500     DONT_FLUSH
1501   };
1502 
1503   CodePatcher(Isolate* isolate, byte* address, int instructions,
1504               FlushICache flush_cache = FLUSH);
1505   ~CodePatcher();
1506 
1507   // Macro assembler to emit code.
masm()1508   MacroAssembler* masm() { return &masm_; }
1509 
1510   // Emit an instruction directly.
1511   void Emit(Instr instr);
1512 
1513   // Emit an address directly.
1514   void Emit(Address addr);
1515 
1516   // Emit the condition part of an instruction leaving the rest of the current
1517   // instruction unchanged.
1518   void EmitCondition(Condition cond);
1519 
1520  private:
1521   byte* address_;  // The address of the code being patched.
1522   int size_;  // Number of bytes of the expected patch size.
1523   MacroAssembler masm_;  // Macro assembler used to generate the code.
1524   FlushICache flush_cache_;  // Whether to flush the I cache after patching.
1525 };
1526 
1527 
1528 // -----------------------------------------------------------------------------
1529 // Static helper functions.
1530 
1531 inline MemOperand ContextMemOperand(Register context, int index = 0) {
1532   return MemOperand(context, Context::SlotOffset(index));
1533 }
1534 
1535 
NativeContextMemOperand()1536 inline MemOperand NativeContextMemOperand() {
1537   return ContextMemOperand(cp, Context::NATIVE_CONTEXT_INDEX);
1538 }
1539 
1540 
1541 #ifdef GENERATED_CODE_COVERAGE
1542 #define CODE_COVERAGE_STRINGIFY(x) #x
1543 #define CODE_COVERAGE_TOSTRING(x) CODE_COVERAGE_STRINGIFY(x)
1544 #define __FILE_LINE__ __FILE__ ":" CODE_COVERAGE_TOSTRING(__LINE__)
1545 #define ACCESS_MASM(masm) masm->stop(__FILE_LINE__); masm->
1546 #else
1547 #define ACCESS_MASM(masm) masm->
1548 #endif
1549 
1550 
1551 }  // namespace internal
1552 }  // namespace v8
1553 
1554 #endif  // V8_ARM_MACRO_ASSEMBLER_ARM_H_
1555