• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 // This module contains the platform-specific code. This make the rest of the
6 // code less dependent on operating system, compilers and runtime libraries.
7 // This module does specifically not deal with differences between different
8 // processor architecture.
9 // The platform classes have the same definition for all platforms. The
10 // implementation for a particular platform is put in platform_<os>.cc.
11 // The build system then uses the implementation for the target platform.
12 //
13 // This design has been chosen because it is simple and fast. Alternatively,
14 // the platform dependent classes could have been implemented using abstract
15 // superclasses with virtual methods and having specializations for each
16 // platform. This design was rejected because it was more complicated and
17 // slower. It would require factory methods for selecting the right
18 // implementation and the overhead of virtual methods for performance
19 // sensitive like mutex locking/unlocking.
20 
21 #ifndef V8_BASE_PLATFORM_PLATFORM_H_
22 #define V8_BASE_PLATFORM_PLATFORM_H_
23 
24 #include <cstdarg>
25 #include <string>
26 #include <vector>
27 
28 #include "src/base/build_config.h"
29 #include "src/base/platform/mutex.h"
30 #include "src/base/platform/semaphore.h"
31 
32 #if V8_OS_QNX
33 #include "src/base/qnx-math.h"
34 #endif
35 
36 namespace v8 {
37 namespace base {
38 
39 // ----------------------------------------------------------------------------
40 // Fast TLS support
41 
42 #ifndef V8_NO_FAST_TLS
43 
44 #if V8_CC_MSVC && V8_HOST_ARCH_IA32
45 
46 #define V8_FAST_TLS_SUPPORTED 1
47 
48 INLINE(intptr_t InternalGetExistingThreadLocal(intptr_t index));
49 
InternalGetExistingThreadLocal(intptr_t index)50 inline intptr_t InternalGetExistingThreadLocal(intptr_t index) {
51   const intptr_t kTibInlineTlsOffset = 0xE10;
52   const intptr_t kTibExtraTlsOffset = 0xF94;
53   const intptr_t kMaxInlineSlots = 64;
54   const intptr_t kMaxSlots = kMaxInlineSlots + 1024;
55   const intptr_t kPointerSize = sizeof(void*);
56   DCHECK(0 <= index && index < kMaxSlots);
57   if (index < kMaxInlineSlots) {
58     return static_cast<intptr_t>(__readfsdword(kTibInlineTlsOffset +
59                                                kPointerSize * index));
60   }
61   intptr_t extra = static_cast<intptr_t>(__readfsdword(kTibExtraTlsOffset));
62   DCHECK(extra != 0);
63   return *reinterpret_cast<intptr_t*>(extra +
64                                       kPointerSize * (index - kMaxInlineSlots));
65 }
66 
67 #elif defined(__APPLE__) && (V8_HOST_ARCH_IA32 || V8_HOST_ARCH_X64)
68 
69 #define V8_FAST_TLS_SUPPORTED 1
70 
71 extern intptr_t kMacTlsBaseOffset;
72 
73 INLINE(intptr_t InternalGetExistingThreadLocal(intptr_t index));
74 
75 inline intptr_t InternalGetExistingThreadLocal(intptr_t index) {
76   intptr_t result;
77 #if V8_HOST_ARCH_IA32
78   asm("movl %%gs:(%1,%2,4), %0;"
79       :"=r"(result)  // Output must be a writable register.
80       :"r"(kMacTlsBaseOffset), "r"(index));
81 #else
82   asm("movq %%gs:(%1,%2,8), %0;"
83       :"=r"(result)
84       :"r"(kMacTlsBaseOffset), "r"(index));
85 #endif
86   return result;
87 }
88 
89 #endif
90 
91 #endif  // V8_NO_FAST_TLS
92 
93 
94 class TimezoneCache;
95 
96 
97 // ----------------------------------------------------------------------------
98 // OS
99 //
100 // This class has static methods for the different platform specific
101 // functions. Add methods here to cope with differences between the
102 // supported platforms.
103 
104 class OS {
105  public:
106   // Initialize the OS class.
107   // - random_seed: Used for the GetRandomMmapAddress() if non-zero.
108   // - hard_abort: If true, OS::Abort() will crash instead of aborting.
109   // - gc_fake_mmap: Name of the file for fake gc mmap used in ll_prof.
110   static void Initialize(int64_t random_seed,
111                          bool hard_abort,
112                          const char* const gc_fake_mmap);
113 
114   // Returns the accumulated user time for thread. This routine
115   // can be used for profiling. The implementation should
116   // strive for high-precision timer resolution, preferable
117   // micro-second resolution.
118   static int GetUserTime(uint32_t* secs,  uint32_t* usecs);
119 
120   // Returns current time as the number of milliseconds since
121   // 00:00:00 UTC, January 1, 1970.
122   static double TimeCurrentMillis();
123 
124   static TimezoneCache* CreateTimezoneCache();
125   static void DisposeTimezoneCache(TimezoneCache* cache);
126   static void ClearTimezoneCache(TimezoneCache* cache);
127 
128   // Returns a string identifying the current time zone. The
129   // timestamp is used for determining if DST is in effect.
130   static const char* LocalTimezone(double time, TimezoneCache* cache);
131 
132   // Returns the local time offset in milliseconds east of UTC without
133   // taking daylight savings time into account.
134   static double LocalTimeOffset(TimezoneCache* cache);
135 
136   // Returns the daylight savings offset for the given time.
137   static double DaylightSavingsOffset(double time, TimezoneCache* cache);
138 
139   // Returns last OS error.
140   static int GetLastError();
141 
142   static FILE* FOpen(const char* path, const char* mode);
143   static bool Remove(const char* path);
144 
145   static bool isDirectorySeparator(const char ch);
146 
147   // Opens a temporary file, the file is auto removed on close.
148   static FILE* OpenTemporaryFile();
149 
150   // Log file open mode is platform-dependent due to line ends issues.
151   static const char* const LogFileOpenMode;
152 
153   // Print output to console. This is mostly used for debugging output.
154   // On platforms that has standard terminal output, the output
155   // should go to stdout.
156   static void Print(const char* format, ...);
157   static void VPrint(const char* format, va_list args);
158 
159   // Print output to a file. This is mostly used for debugging output.
160   static void FPrint(FILE* out, const char* format, ...);
161   static void VFPrint(FILE* out, const char* format, va_list args);
162 
163   // Print error output to console. This is mostly used for error message
164   // output. On platforms that has standard terminal output, the output
165   // should go to stderr.
166   static void PrintError(const char* format, ...);
167   static void VPrintError(const char* format, va_list args);
168 
169   // Allocate/Free memory used by JS heap. Pages are readable/writable, but
170   // they are not guaranteed to be executable unless 'executable' is true.
171   // Returns the address of allocated memory, or NULL if failed.
172   static void* Allocate(const size_t requested,
173                         size_t* allocated,
174                         bool is_executable);
175   static void Free(void* address, const size_t size);
176 
177   // This is the granularity at which the ProtectCode(...) call can set page
178   // permissions.
179   static intptr_t CommitPageSize();
180 
181   // Mark code segments non-writable.
182   static void ProtectCode(void* address, const size_t size);
183 
184   // Assign memory as a guard page so that access will cause an exception.
185   static void Guard(void* address, const size_t size);
186 
187   // Generate a random address to be used for hinting mmap().
188   static void* GetRandomMmapAddr();
189 
190   // Get the Alignment guaranteed by Allocate().
191   static size_t AllocateAlignment();
192 
193   // Sleep for a specified time interval.
194   static void Sleep(TimeDelta interval);
195 
196   // Abort the current process.
197   V8_NORETURN static void Abort();
198 
199   // Debug break.
200   static void DebugBreak();
201 
202   // Walk the stack.
203   static const int kStackWalkError = -1;
204   static const int kStackWalkMaxNameLen = 256;
205   static const int kStackWalkMaxTextLen = 256;
206   struct StackFrame {
207     void* address;
208     char text[kStackWalkMaxTextLen];
209   };
210 
211   class MemoryMappedFile {
212    public:
~MemoryMappedFile()213     virtual ~MemoryMappedFile() {}
214     virtual void* memory() const = 0;
215     virtual size_t size() const = 0;
216 
217     static MemoryMappedFile* open(const char* name);
218     static MemoryMappedFile* create(const char* name, size_t size,
219                                     void* initial);
220   };
221 
222   // Safe formatting print. Ensures that str is always null-terminated.
223   // Returns the number of chars written, or -1 if output was truncated.
224   static int SNPrintF(char* str, int length, const char* format, ...);
225   static int VSNPrintF(char* str,
226                        int length,
227                        const char* format,
228                        va_list args);
229 
230   static char* StrChr(char* str, int c);
231   static void StrNCpy(char* dest, int length, const char* src, size_t n);
232 
233   // Support for the profiler.  Can do nothing, in which case ticks
234   // occuring in shared libraries will not be properly accounted for.
235   struct SharedLibraryAddress {
SharedLibraryAddressSharedLibraryAddress236     SharedLibraryAddress(
237         const std::string& library_path, uintptr_t start, uintptr_t end)
238         : library_path(library_path), start(start), end(end) {}
239 
240     std::string library_path;
241     uintptr_t start;
242     uintptr_t end;
243   };
244 
245   static std::vector<SharedLibraryAddress> GetSharedLibraryAddresses();
246 
247   // Support for the profiler.  Notifies the external profiling
248   // process that a code moving garbage collection starts.  Can do
249   // nothing, in which case the code objects must not move (e.g., by
250   // using --never-compact) if accurate profiling is desired.
251   static void SignalCodeMovingGC();
252 
253   // Support runtime detection of whether the hard float option of the
254   // EABI is used.
255   static bool ArmUsingHardFloat();
256 
257   // Returns the activation frame alignment constraint or zero if
258   // the platform doesn't care. Guaranteed to be a power of two.
259   static int ActivationFrameAlignment();
260 
261   static int GetCurrentProcessId();
262 
263   static int GetCurrentThreadId();
264 
265  private:
266   static const int msPerSecond = 1000;
267 
268 #if V8_OS_POSIX
269   static const char* GetGCFakeMMapFile();
270 #endif
271 
272   DISALLOW_IMPLICIT_CONSTRUCTORS(OS);
273 };
274 
275 
276 // Represents and controls an area of reserved memory.
277 // Control of the reserved memory can be assigned to another VirtualMemory
278 // object by assignment or copy-contructing. This removes the reserved memory
279 // from the original object.
280 class VirtualMemory {
281  public:
282   // Empty VirtualMemory object, controlling no reserved memory.
283   VirtualMemory();
284 
285   // Reserves virtual memory with size.
286   explicit VirtualMemory(size_t size);
287 
288   // Reserves virtual memory containing an area of the given size that
289   // is aligned per alignment. This may not be at the position returned
290   // by address().
291   VirtualMemory(size_t size, size_t alignment);
292 
293   // Releases the reserved memory, if any, controlled by this VirtualMemory
294   // object.
295   ~VirtualMemory();
296 
297   // Returns whether the memory has been reserved.
298   bool IsReserved();
299 
300   // Initialize or resets an embedded VirtualMemory object.
301   void Reset();
302 
303   // Returns the start address of the reserved memory.
304   // If the memory was reserved with an alignment, this address is not
305   // necessarily aligned. The user might need to round it up to a multiple of
306   // the alignment to get the start of the aligned block.
address()307   void* address() {
308     DCHECK(IsReserved());
309     return address_;
310   }
311 
312   // Returns the size of the reserved memory. The returned value is only
313   // meaningful when IsReserved() returns true.
314   // If the memory was reserved with an alignment, this size may be larger
315   // than the requested size.
size()316   size_t size() { return size_; }
317 
318   // Commits real memory. Returns whether the operation succeeded.
319   bool Commit(void* address, size_t size, bool is_executable);
320 
321   // Uncommit real memory.  Returns whether the operation succeeded.
322   bool Uncommit(void* address, size_t size);
323 
324   // Creates a single guard page at the given address.
325   bool Guard(void* address);
326 
Release()327   void Release() {
328     DCHECK(IsReserved());
329     // Notice: Order is important here. The VirtualMemory object might live
330     // inside the allocated region.
331     void* address = address_;
332     size_t size = size_;
333     CHECK(InVM(address, size));
334     Reset();
335     bool result = ReleaseRegion(address, size);
336     USE(result);
337     DCHECK(result);
338   }
339 
340   // Assign control of the reserved region to a different VirtualMemory object.
341   // The old object is no longer functional (IsReserved() returns false).
TakeControl(VirtualMemory * from)342   void TakeControl(VirtualMemory* from) {
343     DCHECK(!IsReserved());
344     address_ = from->address_;
345     size_ = from->size_;
346     from->Reset();
347   }
348 
349   static void* ReserveRegion(size_t size);
350 
351   static bool CommitRegion(void* base, size_t size, bool is_executable);
352 
353   static bool UncommitRegion(void* base, size_t size);
354 
355   // Must be called with a base pointer that has been returned by ReserveRegion
356   // and the same size it was reserved with.
357   static bool ReleaseRegion(void* base, size_t size);
358 
359   // Returns true if OS performs lazy commits, i.e. the memory allocation call
360   // defers actual physical memory allocation till the first memory access.
361   // Otherwise returns false.
362   static bool HasLazyCommits();
363 
364  private:
InVM(void * address,size_t size)365   bool InVM(void* address, size_t size) {
366     return (reinterpret_cast<uintptr_t>(address_) <=
367             reinterpret_cast<uintptr_t>(address)) &&
368            ((reinterpret_cast<uintptr_t>(address_) + size_) >=
369             (reinterpret_cast<uintptr_t>(address) + size));
370   }
371 
372   void* address_;  // Start address of the virtual memory.
373   size_t size_;  // Size of the virtual memory.
374 };
375 
376 
377 // ----------------------------------------------------------------------------
378 // Thread
379 //
380 // Thread objects are used for creating and running threads. When the start()
381 // method is called the new thread starts running the run() method in the new
382 // thread. The Thread object should not be deallocated before the thread has
383 // terminated.
384 
385 class Thread {
386  public:
387   // Opaque data type for thread-local storage keys.
388   typedef int32_t LocalStorageKey;
389 
390   class Options {
391    public:
Options()392     Options() : name_("v8:<unknown>"), stack_size_(0) {}
393     explicit Options(const char* name, int stack_size = 0)
name_(name)394         : name_(name), stack_size_(stack_size) {}
395 
name()396     const char* name() const { return name_; }
stack_size()397     int stack_size() const { return stack_size_; }
398 
399    private:
400     const char* name_;
401     int stack_size_;
402   };
403 
404   // Create new thread.
405   explicit Thread(const Options& options);
406   virtual ~Thread();
407 
408   // Start new thread by calling the Run() method on the new thread.
409   void Start();
410 
411   // Start new thread and wait until Run() method is called on the new thread.
StartSynchronously()412   void StartSynchronously() {
413     start_semaphore_ = new Semaphore(0);
414     Start();
415     start_semaphore_->Wait();
416     delete start_semaphore_;
417     start_semaphore_ = NULL;
418   }
419 
420   // Wait until thread terminates.
421   void Join();
422 
name()423   inline const char* name() const {
424     return name_;
425   }
426 
427   // Abstract method for run handler.
428   virtual void Run() = 0;
429 
430   // Thread-local storage.
431   static LocalStorageKey CreateThreadLocalKey();
432   static void DeleteThreadLocalKey(LocalStorageKey key);
433   static void* GetThreadLocal(LocalStorageKey key);
GetThreadLocalInt(LocalStorageKey key)434   static int GetThreadLocalInt(LocalStorageKey key) {
435     return static_cast<int>(reinterpret_cast<intptr_t>(GetThreadLocal(key)));
436   }
437   static void SetThreadLocal(LocalStorageKey key, void* value);
SetThreadLocalInt(LocalStorageKey key,int value)438   static void SetThreadLocalInt(LocalStorageKey key, int value) {
439     SetThreadLocal(key, reinterpret_cast<void*>(static_cast<intptr_t>(value)));
440   }
HasThreadLocal(LocalStorageKey key)441   static bool HasThreadLocal(LocalStorageKey key) {
442     return GetThreadLocal(key) != NULL;
443   }
444 
445 #ifdef V8_FAST_TLS_SUPPORTED
GetExistingThreadLocal(LocalStorageKey key)446   static inline void* GetExistingThreadLocal(LocalStorageKey key) {
447     void* result = reinterpret_cast<void*>(
448         InternalGetExistingThreadLocal(static_cast<intptr_t>(key)));
449     DCHECK(result == GetThreadLocal(key));
450     return result;
451   }
452 #else
GetExistingThreadLocal(LocalStorageKey key)453   static inline void* GetExistingThreadLocal(LocalStorageKey key) {
454     return GetThreadLocal(key);
455   }
456 #endif
457 
458   // The thread name length is limited to 16 based on Linux's implementation of
459   // prctl().
460   static const int kMaxThreadNameLength = 16;
461 
462   class PlatformData;
data()463   PlatformData* data() { return data_; }
464 
NotifyStartedAndRun()465   void NotifyStartedAndRun() {
466     if (start_semaphore_) start_semaphore_->Signal();
467     Run();
468   }
469 
470  private:
471   void set_name(const char* name);
472 
473   PlatformData* data_;
474 
475   char name_[kMaxThreadNameLength];
476   int stack_size_;
477   Semaphore* start_semaphore_;
478 
479   DISALLOW_COPY_AND_ASSIGN(Thread);
480 };
481 
482 }  // namespace base
483 }  // namespace v8
484 
485 #endif  // V8_BASE_PLATFORM_PLATFORM_H_
486