1 // Copyright (c) 1994-2006 Sun Microsystems Inc.
2 // All Rights Reserved.
3 //
4 // Redistribution and use in source and binary forms, with or without
5 // modification, are permitted provided that the following conditions
6 // are met:
7 //
8 // - Redistributions of source code must retain the above copyright notice,
9 // this list of conditions and the following disclaimer.
10 //
11 // - Redistribution in binary form must reproduce the above copyright
12 // notice, this list of conditions and the following disclaimer in the
13 // documentation and/or other materials provided with the
14 // distribution.
15 //
16 // - Neither the name of Sun Microsystems or the names of contributors may
17 // be used to endorse or promote products derived from this software without
18 // specific prior written permission.
19 //
20 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
23 // FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
24 // COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25 // INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
26 // (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
27 // SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 // HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
29 // STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30 // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
31 // OF THE POSSIBILITY OF SUCH DAMAGE.
32
33 // The original source code covered by the above license above has been modified
34 // significantly by Google Inc.
35 // Copyright 2012 the V8 project authors. All rights reserved.
36
37 #include "src/ia32/assembler-ia32.h"
38
39 #include <cstring>
40
41 #if V8_TARGET_ARCH_IA32
42
43 #if V8_LIBC_MSVCRT
44 #include <intrin.h> // _xgetbv()
45 #endif
46 #if V8_OS_MACOSX
47 #include <sys/sysctl.h>
48 #endif
49
50 #include "src/base/bits.h"
51 #include "src/base/cpu.h"
52 #include "src/disassembler.h"
53 #include "src/macro-assembler.h"
54 #include "src/v8.h"
55
56 namespace v8 {
57 namespace internal {
58
59 // -----------------------------------------------------------------------------
60 // Implementation of CpuFeatures
61
62 namespace {
63
64 #if !V8_LIBC_MSVCRT
65
_xgetbv(unsigned int xcr)66 V8_INLINE uint64_t _xgetbv(unsigned int xcr) {
67 unsigned eax, edx;
68 // Check xgetbv; this uses a .byte sequence instead of the instruction
69 // directly because older assemblers do not include support for xgetbv and
70 // there is no easy way to conditionally compile based on the assembler
71 // used.
72 __asm__ volatile(".byte 0x0f, 0x01, 0xd0" : "=a"(eax), "=d"(edx) : "c"(xcr));
73 return static_cast<uint64_t>(eax) | (static_cast<uint64_t>(edx) << 32);
74 }
75
76 #define _XCR_XFEATURE_ENABLED_MASK 0
77
78 #endif // !V8_LIBC_MSVCRT
79
80
OSHasAVXSupport()81 bool OSHasAVXSupport() {
82 #if V8_OS_MACOSX
83 // Mac OS X up to 10.9 has a bug where AVX transitions were indeed being
84 // caused by ISRs, so we detect that here and disable AVX in that case.
85 char buffer[128];
86 size_t buffer_size = arraysize(buffer);
87 int ctl_name[] = {CTL_KERN, KERN_OSRELEASE};
88 if (sysctl(ctl_name, 2, buffer, &buffer_size, nullptr, 0) != 0) {
89 V8_Fatal(__FILE__, __LINE__, "V8 failed to get kernel version");
90 }
91 // The buffer now contains a string of the form XX.YY.ZZ, where
92 // XX is the major kernel version component.
93 char* period_pos = strchr(buffer, '.');
94 DCHECK_NOT_NULL(period_pos);
95 *period_pos = '\0';
96 long kernel_version_major = strtol(buffer, nullptr, 10); // NOLINT
97 if (kernel_version_major <= 13) return false;
98 #endif // V8_OS_MACOSX
99 // Check whether OS claims to support AVX.
100 uint64_t feature_mask = _xgetbv(_XCR_XFEATURE_ENABLED_MASK);
101 return (feature_mask & 0x6) == 0x6;
102 }
103
104 } // namespace
105
106
ProbeImpl(bool cross_compile)107 void CpuFeatures::ProbeImpl(bool cross_compile) {
108 base::CPU cpu;
109 CHECK(cpu.has_sse2()); // SSE2 support is mandatory.
110 CHECK(cpu.has_cmov()); // CMOV support is mandatory.
111
112 // Only use statically determined features for cross compile (snapshot).
113 if (cross_compile) return;
114
115 if (cpu.has_sse41() && FLAG_enable_sse4_1) supported_ |= 1u << SSE4_1;
116 if (cpu.has_sse3() && FLAG_enable_sse3) supported_ |= 1u << SSE3;
117 if (cpu.has_avx() && FLAG_enable_avx && cpu.has_osxsave() &&
118 OSHasAVXSupport()) {
119 supported_ |= 1u << AVX;
120 }
121 if (cpu.has_fma3() && FLAG_enable_fma3 && cpu.has_osxsave() &&
122 OSHasAVXSupport()) {
123 supported_ |= 1u << FMA3;
124 }
125 if (cpu.has_bmi1() && FLAG_enable_bmi1) supported_ |= 1u << BMI1;
126 if (cpu.has_bmi2() && FLAG_enable_bmi2) supported_ |= 1u << BMI2;
127 if (cpu.has_lzcnt() && FLAG_enable_lzcnt) supported_ |= 1u << LZCNT;
128 if (cpu.has_popcnt() && FLAG_enable_popcnt) supported_ |= 1u << POPCNT;
129 if (strcmp(FLAG_mcpu, "auto") == 0) {
130 if (cpu.is_atom()) supported_ |= 1u << ATOM;
131 } else if (strcmp(FLAG_mcpu, "atom") == 0) {
132 supported_ |= 1u << ATOM;
133 }
134 }
135
136
PrintTarget()137 void CpuFeatures::PrintTarget() { }
PrintFeatures()138 void CpuFeatures::PrintFeatures() {
139 printf(
140 "SSE3=%d SSE4_1=%d AVX=%d FMA3=%d BMI1=%d BMI2=%d LZCNT=%d POPCNT=%d "
141 "ATOM=%d\n",
142 CpuFeatures::IsSupported(SSE3), CpuFeatures::IsSupported(SSE4_1),
143 CpuFeatures::IsSupported(AVX), CpuFeatures::IsSupported(FMA3),
144 CpuFeatures::IsSupported(BMI1), CpuFeatures::IsSupported(BMI2),
145 CpuFeatures::IsSupported(LZCNT), CpuFeatures::IsSupported(POPCNT),
146 CpuFeatures::IsSupported(ATOM));
147 }
148
149
150 // -----------------------------------------------------------------------------
151 // Implementation of Displacement
152
init(Label * L,Type type)153 void Displacement::init(Label* L, Type type) {
154 DCHECK(!L->is_bound());
155 int next = 0;
156 if (L->is_linked()) {
157 next = L->pos();
158 DCHECK(next > 0); // Displacements must be at positions > 0
159 }
160 // Ensure that we _never_ overflow the next field.
161 DCHECK(NextField::is_valid(Assembler::kMaximalBufferSize));
162 data_ = NextField::encode(next) | TypeField::encode(type);
163 }
164
165
166 // -----------------------------------------------------------------------------
167 // Implementation of RelocInfo
168
169
170 const int RelocInfo::kApplyMask =
171 RelocInfo::kCodeTargetMask | 1 << RelocInfo::RUNTIME_ENTRY |
172 1 << RelocInfo::INTERNAL_REFERENCE | 1 << RelocInfo::CODE_AGE_SEQUENCE |
173 RelocInfo::kDebugBreakSlotMask;
174
175
IsCodedSpecially()176 bool RelocInfo::IsCodedSpecially() {
177 // The deserializer needs to know whether a pointer is specially coded. Being
178 // specially coded on IA32 means that it is a relative address, as used by
179 // branch instructions. These are also the ones that need changing when a
180 // code object moves.
181 return (1 << rmode_) & kApplyMask;
182 }
183
184
IsInConstantPool()185 bool RelocInfo::IsInConstantPool() {
186 return false;
187 }
188
189
190 // -----------------------------------------------------------------------------
191 // Implementation of Operand
192
Operand(Register base,int32_t disp,RelocInfo::Mode rmode)193 Operand::Operand(Register base, int32_t disp, RelocInfo::Mode rmode) {
194 // [base + disp/r]
195 if (disp == 0 && RelocInfo::IsNone(rmode) && !base.is(ebp)) {
196 // [base]
197 set_modrm(0, base);
198 if (base.is(esp)) set_sib(times_1, esp, base);
199 } else if (is_int8(disp) && RelocInfo::IsNone(rmode)) {
200 // [base + disp8]
201 set_modrm(1, base);
202 if (base.is(esp)) set_sib(times_1, esp, base);
203 set_disp8(disp);
204 } else {
205 // [base + disp/r]
206 set_modrm(2, base);
207 if (base.is(esp)) set_sib(times_1, esp, base);
208 set_dispr(disp, rmode);
209 }
210 }
211
212
Operand(Register base,Register index,ScaleFactor scale,int32_t disp,RelocInfo::Mode rmode)213 Operand::Operand(Register base,
214 Register index,
215 ScaleFactor scale,
216 int32_t disp,
217 RelocInfo::Mode rmode) {
218 DCHECK(!index.is(esp)); // illegal addressing mode
219 // [base + index*scale + disp/r]
220 if (disp == 0 && RelocInfo::IsNone(rmode) && !base.is(ebp)) {
221 // [base + index*scale]
222 set_modrm(0, esp);
223 set_sib(scale, index, base);
224 } else if (is_int8(disp) && RelocInfo::IsNone(rmode)) {
225 // [base + index*scale + disp8]
226 set_modrm(1, esp);
227 set_sib(scale, index, base);
228 set_disp8(disp);
229 } else {
230 // [base + index*scale + disp/r]
231 set_modrm(2, esp);
232 set_sib(scale, index, base);
233 set_dispr(disp, rmode);
234 }
235 }
236
237
Operand(Register index,ScaleFactor scale,int32_t disp,RelocInfo::Mode rmode)238 Operand::Operand(Register index,
239 ScaleFactor scale,
240 int32_t disp,
241 RelocInfo::Mode rmode) {
242 DCHECK(!index.is(esp)); // illegal addressing mode
243 // [index*scale + disp/r]
244 set_modrm(0, esp);
245 set_sib(scale, index, ebp);
246 set_dispr(disp, rmode);
247 }
248
249
is_reg(Register reg) const250 bool Operand::is_reg(Register reg) const {
251 return ((buf_[0] & 0xF8) == 0xC0) // addressing mode is register only.
252 && ((buf_[0] & 0x07) == reg.code()); // register codes match.
253 }
254
255
is_reg_only() const256 bool Operand::is_reg_only() const {
257 return (buf_[0] & 0xF8) == 0xC0; // Addressing mode is register only.
258 }
259
260
reg() const261 Register Operand::reg() const {
262 DCHECK(is_reg_only());
263 return Register::from_code(buf_[0] & 0x07);
264 }
265
266
267 // -----------------------------------------------------------------------------
268 // Implementation of Assembler.
269
270 // Emit a single byte. Must always be inlined.
271 #define EMIT(x) \
272 *pc_++ = (x)
273
274
275 #ifdef GENERATED_CODE_COVERAGE
276 static void InitCoverageLog();
277 #endif
278
Assembler(Isolate * isolate,void * buffer,int buffer_size)279 Assembler::Assembler(Isolate* isolate, void* buffer, int buffer_size)
280 : AssemblerBase(isolate, buffer, buffer_size),
281 positions_recorder_(this) {
282 // Clear the buffer in debug mode unless it was provided by the
283 // caller in which case we can't be sure it's okay to overwrite
284 // existing code in it; see CodePatcher::CodePatcher(...).
285 #ifdef DEBUG
286 if (own_buffer_) {
287 memset(buffer_, 0xCC, buffer_size_); // int3
288 }
289 #endif
290
291 reloc_info_writer.Reposition(buffer_ + buffer_size_, pc_);
292
293 #ifdef GENERATED_CODE_COVERAGE
294 InitCoverageLog();
295 #endif
296 }
297
298
GetCode(CodeDesc * desc)299 void Assembler::GetCode(CodeDesc* desc) {
300 // Finalize code (at this point overflow() may be true, but the gap ensures
301 // that we are still not overlapping instructions and relocation info).
302 reloc_info_writer.Finish();
303 DCHECK(pc_ <= reloc_info_writer.pos()); // No overlap.
304 // Set up code descriptor.
305 desc->buffer = buffer_;
306 desc->buffer_size = buffer_size_;
307 desc->instr_size = pc_offset();
308 desc->reloc_size = (buffer_ + buffer_size_) - reloc_info_writer.pos();
309 desc->origin = this;
310 desc->constant_pool_size = 0;
311 }
312
313
Align(int m)314 void Assembler::Align(int m) {
315 DCHECK(base::bits::IsPowerOfTwo32(m));
316 int mask = m - 1;
317 int addr = pc_offset();
318 Nop((m - (addr & mask)) & mask);
319 }
320
321
IsNop(Address addr)322 bool Assembler::IsNop(Address addr) {
323 Address a = addr;
324 while (*a == 0x66) a++;
325 if (*a == 0x90) return true;
326 if (a[0] == 0xf && a[1] == 0x1f) return true;
327 return false;
328 }
329
330
Nop(int bytes)331 void Assembler::Nop(int bytes) {
332 EnsureSpace ensure_space(this);
333
334 // Multi byte nops from http://support.amd.com/us/Processor_TechDocs/40546.pdf
335 while (bytes > 0) {
336 switch (bytes) {
337 case 2:
338 EMIT(0x66);
339 case 1:
340 EMIT(0x90);
341 return;
342 case 3:
343 EMIT(0xf);
344 EMIT(0x1f);
345 EMIT(0);
346 return;
347 case 4:
348 EMIT(0xf);
349 EMIT(0x1f);
350 EMIT(0x40);
351 EMIT(0);
352 return;
353 case 6:
354 EMIT(0x66);
355 case 5:
356 EMIT(0xf);
357 EMIT(0x1f);
358 EMIT(0x44);
359 EMIT(0);
360 EMIT(0);
361 return;
362 case 7:
363 EMIT(0xf);
364 EMIT(0x1f);
365 EMIT(0x80);
366 EMIT(0);
367 EMIT(0);
368 EMIT(0);
369 EMIT(0);
370 return;
371 default:
372 case 11:
373 EMIT(0x66);
374 bytes--;
375 case 10:
376 EMIT(0x66);
377 bytes--;
378 case 9:
379 EMIT(0x66);
380 bytes--;
381 case 8:
382 EMIT(0xf);
383 EMIT(0x1f);
384 EMIT(0x84);
385 EMIT(0);
386 EMIT(0);
387 EMIT(0);
388 EMIT(0);
389 EMIT(0);
390 bytes -= 8;
391 }
392 }
393 }
394
395
CodeTargetAlign()396 void Assembler::CodeTargetAlign() {
397 Align(16); // Preferred alignment of jump targets on ia32.
398 }
399
400
cpuid()401 void Assembler::cpuid() {
402 EnsureSpace ensure_space(this);
403 EMIT(0x0F);
404 EMIT(0xA2);
405 }
406
407
pushad()408 void Assembler::pushad() {
409 EnsureSpace ensure_space(this);
410 EMIT(0x60);
411 }
412
413
popad()414 void Assembler::popad() {
415 EnsureSpace ensure_space(this);
416 EMIT(0x61);
417 }
418
419
pushfd()420 void Assembler::pushfd() {
421 EnsureSpace ensure_space(this);
422 EMIT(0x9C);
423 }
424
425
popfd()426 void Assembler::popfd() {
427 EnsureSpace ensure_space(this);
428 EMIT(0x9D);
429 }
430
431
push(const Immediate & x)432 void Assembler::push(const Immediate& x) {
433 EnsureSpace ensure_space(this);
434 if (x.is_int8()) {
435 EMIT(0x6a);
436 EMIT(x.x_);
437 } else {
438 EMIT(0x68);
439 emit(x);
440 }
441 }
442
443
push_imm32(int32_t imm32)444 void Assembler::push_imm32(int32_t imm32) {
445 EnsureSpace ensure_space(this);
446 EMIT(0x68);
447 emit(imm32);
448 }
449
450
push(Register src)451 void Assembler::push(Register src) {
452 EnsureSpace ensure_space(this);
453 EMIT(0x50 | src.code());
454 }
455
456
push(const Operand & src)457 void Assembler::push(const Operand& src) {
458 EnsureSpace ensure_space(this);
459 EMIT(0xFF);
460 emit_operand(esi, src);
461 }
462
463
pop(Register dst)464 void Assembler::pop(Register dst) {
465 DCHECK(reloc_info_writer.last_pc() != NULL);
466 EnsureSpace ensure_space(this);
467 EMIT(0x58 | dst.code());
468 }
469
470
pop(const Operand & dst)471 void Assembler::pop(const Operand& dst) {
472 EnsureSpace ensure_space(this);
473 EMIT(0x8F);
474 emit_operand(eax, dst);
475 }
476
477
enter(const Immediate & size)478 void Assembler::enter(const Immediate& size) {
479 EnsureSpace ensure_space(this);
480 EMIT(0xC8);
481 emit_w(size);
482 EMIT(0);
483 }
484
485
leave()486 void Assembler::leave() {
487 EnsureSpace ensure_space(this);
488 EMIT(0xC9);
489 }
490
491
mov_b(Register dst,const Operand & src)492 void Assembler::mov_b(Register dst, const Operand& src) {
493 CHECK(dst.is_byte_register());
494 EnsureSpace ensure_space(this);
495 EMIT(0x8A);
496 emit_operand(dst, src);
497 }
498
499
mov_b(const Operand & dst,const Immediate & src)500 void Assembler::mov_b(const Operand& dst, const Immediate& src) {
501 EnsureSpace ensure_space(this);
502 EMIT(0xC6);
503 emit_operand(eax, dst);
504 EMIT(static_cast<int8_t>(src.x_));
505 }
506
507
mov_b(const Operand & dst,Register src)508 void Assembler::mov_b(const Operand& dst, Register src) {
509 CHECK(src.is_byte_register());
510 EnsureSpace ensure_space(this);
511 EMIT(0x88);
512 emit_operand(src, dst);
513 }
514
515
mov_w(Register dst,const Operand & src)516 void Assembler::mov_w(Register dst, const Operand& src) {
517 EnsureSpace ensure_space(this);
518 EMIT(0x66);
519 EMIT(0x8B);
520 emit_operand(dst, src);
521 }
522
523
mov_w(const Operand & dst,Register src)524 void Assembler::mov_w(const Operand& dst, Register src) {
525 EnsureSpace ensure_space(this);
526 EMIT(0x66);
527 EMIT(0x89);
528 emit_operand(src, dst);
529 }
530
531
mov_w(const Operand & dst,const Immediate & src)532 void Assembler::mov_w(const Operand& dst, const Immediate& src) {
533 EnsureSpace ensure_space(this);
534 EMIT(0x66);
535 EMIT(0xC7);
536 emit_operand(eax, dst);
537 EMIT(static_cast<int8_t>(src.x_ & 0xff));
538 EMIT(static_cast<int8_t>(src.x_ >> 8));
539 }
540
541
mov(Register dst,int32_t imm32)542 void Assembler::mov(Register dst, int32_t imm32) {
543 EnsureSpace ensure_space(this);
544 EMIT(0xB8 | dst.code());
545 emit(imm32);
546 }
547
548
mov(Register dst,const Immediate & x)549 void Assembler::mov(Register dst, const Immediate& x) {
550 EnsureSpace ensure_space(this);
551 EMIT(0xB8 | dst.code());
552 emit(x);
553 }
554
555
mov(Register dst,Handle<Object> handle)556 void Assembler::mov(Register dst, Handle<Object> handle) {
557 EnsureSpace ensure_space(this);
558 EMIT(0xB8 | dst.code());
559 emit(handle);
560 }
561
562
mov(Register dst,const Operand & src)563 void Assembler::mov(Register dst, const Operand& src) {
564 EnsureSpace ensure_space(this);
565 EMIT(0x8B);
566 emit_operand(dst, src);
567 }
568
569
mov(Register dst,Register src)570 void Assembler::mov(Register dst, Register src) {
571 EnsureSpace ensure_space(this);
572 EMIT(0x89);
573 EMIT(0xC0 | src.code() << 3 | dst.code());
574 }
575
576
mov(const Operand & dst,const Immediate & x)577 void Assembler::mov(const Operand& dst, const Immediate& x) {
578 EnsureSpace ensure_space(this);
579 EMIT(0xC7);
580 emit_operand(eax, dst);
581 emit(x);
582 }
583
584
mov(const Operand & dst,Handle<Object> handle)585 void Assembler::mov(const Operand& dst, Handle<Object> handle) {
586 EnsureSpace ensure_space(this);
587 EMIT(0xC7);
588 emit_operand(eax, dst);
589 emit(handle);
590 }
591
592
mov(const Operand & dst,Register src)593 void Assembler::mov(const Operand& dst, Register src) {
594 EnsureSpace ensure_space(this);
595 EMIT(0x89);
596 emit_operand(src, dst);
597 }
598
599
movsx_b(Register dst,const Operand & src)600 void Assembler::movsx_b(Register dst, const Operand& src) {
601 EnsureSpace ensure_space(this);
602 EMIT(0x0F);
603 EMIT(0xBE);
604 emit_operand(dst, src);
605 }
606
607
movsx_w(Register dst,const Operand & src)608 void Assembler::movsx_w(Register dst, const Operand& src) {
609 EnsureSpace ensure_space(this);
610 EMIT(0x0F);
611 EMIT(0xBF);
612 emit_operand(dst, src);
613 }
614
615
movzx_b(Register dst,const Operand & src)616 void Assembler::movzx_b(Register dst, const Operand& src) {
617 EnsureSpace ensure_space(this);
618 EMIT(0x0F);
619 EMIT(0xB6);
620 emit_operand(dst, src);
621 }
622
623
movzx_w(Register dst,const Operand & src)624 void Assembler::movzx_w(Register dst, const Operand& src) {
625 EnsureSpace ensure_space(this);
626 EMIT(0x0F);
627 EMIT(0xB7);
628 emit_operand(dst, src);
629 }
630
631
cmov(Condition cc,Register dst,const Operand & src)632 void Assembler::cmov(Condition cc, Register dst, const Operand& src) {
633 EnsureSpace ensure_space(this);
634 // Opcode: 0f 40 + cc /r.
635 EMIT(0x0F);
636 EMIT(0x40 + cc);
637 emit_operand(dst, src);
638 }
639
640
cld()641 void Assembler::cld() {
642 EnsureSpace ensure_space(this);
643 EMIT(0xFC);
644 }
645
646
rep_movs()647 void Assembler::rep_movs() {
648 EnsureSpace ensure_space(this);
649 EMIT(0xF3);
650 EMIT(0xA5);
651 }
652
653
rep_stos()654 void Assembler::rep_stos() {
655 EnsureSpace ensure_space(this);
656 EMIT(0xF3);
657 EMIT(0xAB);
658 }
659
660
stos()661 void Assembler::stos() {
662 EnsureSpace ensure_space(this);
663 EMIT(0xAB);
664 }
665
666
xchg(Register dst,Register src)667 void Assembler::xchg(Register dst, Register src) {
668 EnsureSpace ensure_space(this);
669 if (src.is(eax) || dst.is(eax)) { // Single-byte encoding.
670 EMIT(0x90 | (src.is(eax) ? dst.code() : src.code()));
671 } else {
672 EMIT(0x87);
673 EMIT(0xC0 | src.code() << 3 | dst.code());
674 }
675 }
676
677
xchg(Register dst,const Operand & src)678 void Assembler::xchg(Register dst, const Operand& src) {
679 EnsureSpace ensure_space(this);
680 EMIT(0x87);
681 emit_operand(dst, src);
682 }
683
684
adc(Register dst,int32_t imm32)685 void Assembler::adc(Register dst, int32_t imm32) {
686 EnsureSpace ensure_space(this);
687 emit_arith(2, Operand(dst), Immediate(imm32));
688 }
689
690
adc(Register dst,const Operand & src)691 void Assembler::adc(Register dst, const Operand& src) {
692 EnsureSpace ensure_space(this);
693 EMIT(0x13);
694 emit_operand(dst, src);
695 }
696
697
add(Register dst,const Operand & src)698 void Assembler::add(Register dst, const Operand& src) {
699 EnsureSpace ensure_space(this);
700 EMIT(0x03);
701 emit_operand(dst, src);
702 }
703
704
add(const Operand & dst,Register src)705 void Assembler::add(const Operand& dst, Register src) {
706 EnsureSpace ensure_space(this);
707 EMIT(0x01);
708 emit_operand(src, dst);
709 }
710
711
add(const Operand & dst,const Immediate & x)712 void Assembler::add(const Operand& dst, const Immediate& x) {
713 DCHECK(reloc_info_writer.last_pc() != NULL);
714 EnsureSpace ensure_space(this);
715 emit_arith(0, dst, x);
716 }
717
718
and_(Register dst,int32_t imm32)719 void Assembler::and_(Register dst, int32_t imm32) {
720 and_(dst, Immediate(imm32));
721 }
722
723
and_(Register dst,const Immediate & x)724 void Assembler::and_(Register dst, const Immediate& x) {
725 EnsureSpace ensure_space(this);
726 emit_arith(4, Operand(dst), x);
727 }
728
729
and_(Register dst,const Operand & src)730 void Assembler::and_(Register dst, const Operand& src) {
731 EnsureSpace ensure_space(this);
732 EMIT(0x23);
733 emit_operand(dst, src);
734 }
735
736
and_(const Operand & dst,const Immediate & x)737 void Assembler::and_(const Operand& dst, const Immediate& x) {
738 EnsureSpace ensure_space(this);
739 emit_arith(4, dst, x);
740 }
741
742
and_(const Operand & dst,Register src)743 void Assembler::and_(const Operand& dst, Register src) {
744 EnsureSpace ensure_space(this);
745 EMIT(0x21);
746 emit_operand(src, dst);
747 }
748
749
cmpb(const Operand & op,int8_t imm8)750 void Assembler::cmpb(const Operand& op, int8_t imm8) {
751 EnsureSpace ensure_space(this);
752 if (op.is_reg(eax)) {
753 EMIT(0x3C);
754 } else {
755 EMIT(0x80);
756 emit_operand(edi, op); // edi == 7
757 }
758 EMIT(imm8);
759 }
760
761
cmpb(const Operand & op,Register reg)762 void Assembler::cmpb(const Operand& op, Register reg) {
763 CHECK(reg.is_byte_register());
764 EnsureSpace ensure_space(this);
765 EMIT(0x38);
766 emit_operand(reg, op);
767 }
768
769
cmpb(Register reg,const Operand & op)770 void Assembler::cmpb(Register reg, const Operand& op) {
771 CHECK(reg.is_byte_register());
772 EnsureSpace ensure_space(this);
773 EMIT(0x3A);
774 emit_operand(reg, op);
775 }
776
777
cmpw(const Operand & op,Immediate imm16)778 void Assembler::cmpw(const Operand& op, Immediate imm16) {
779 DCHECK(imm16.is_int16());
780 EnsureSpace ensure_space(this);
781 EMIT(0x66);
782 EMIT(0x81);
783 emit_operand(edi, op);
784 emit_w(imm16);
785 }
786
787
cmp(Register reg,int32_t imm32)788 void Assembler::cmp(Register reg, int32_t imm32) {
789 EnsureSpace ensure_space(this);
790 emit_arith(7, Operand(reg), Immediate(imm32));
791 }
792
793
cmp(Register reg,Handle<Object> handle)794 void Assembler::cmp(Register reg, Handle<Object> handle) {
795 EnsureSpace ensure_space(this);
796 emit_arith(7, Operand(reg), Immediate(handle));
797 }
798
799
cmp(Register reg,const Operand & op)800 void Assembler::cmp(Register reg, const Operand& op) {
801 EnsureSpace ensure_space(this);
802 EMIT(0x3B);
803 emit_operand(reg, op);
804 }
805
806
cmp(const Operand & op,const Immediate & imm)807 void Assembler::cmp(const Operand& op, const Immediate& imm) {
808 EnsureSpace ensure_space(this);
809 emit_arith(7, op, imm);
810 }
811
812
cmp(const Operand & op,Handle<Object> handle)813 void Assembler::cmp(const Operand& op, Handle<Object> handle) {
814 EnsureSpace ensure_space(this);
815 emit_arith(7, op, Immediate(handle));
816 }
817
818
cmpb_al(const Operand & op)819 void Assembler::cmpb_al(const Operand& op) {
820 EnsureSpace ensure_space(this);
821 EMIT(0x38); // CMP r/m8, r8
822 emit_operand(eax, op); // eax has same code as register al.
823 }
824
825
cmpw_ax(const Operand & op)826 void Assembler::cmpw_ax(const Operand& op) {
827 EnsureSpace ensure_space(this);
828 EMIT(0x66);
829 EMIT(0x39); // CMP r/m16, r16
830 emit_operand(eax, op); // eax has same code as register ax.
831 }
832
833
dec_b(Register dst)834 void Assembler::dec_b(Register dst) {
835 CHECK(dst.is_byte_register());
836 EnsureSpace ensure_space(this);
837 EMIT(0xFE);
838 EMIT(0xC8 | dst.code());
839 }
840
841
dec_b(const Operand & dst)842 void Assembler::dec_b(const Operand& dst) {
843 EnsureSpace ensure_space(this);
844 EMIT(0xFE);
845 emit_operand(ecx, dst);
846 }
847
848
dec(Register dst)849 void Assembler::dec(Register dst) {
850 EnsureSpace ensure_space(this);
851 EMIT(0x48 | dst.code());
852 }
853
854
dec(const Operand & dst)855 void Assembler::dec(const Operand& dst) {
856 EnsureSpace ensure_space(this);
857 EMIT(0xFF);
858 emit_operand(ecx, dst);
859 }
860
861
cdq()862 void Assembler::cdq() {
863 EnsureSpace ensure_space(this);
864 EMIT(0x99);
865 }
866
867
idiv(const Operand & src)868 void Assembler::idiv(const Operand& src) {
869 EnsureSpace ensure_space(this);
870 EMIT(0xF7);
871 emit_operand(edi, src);
872 }
873
874
div(const Operand & src)875 void Assembler::div(const Operand& src) {
876 EnsureSpace ensure_space(this);
877 EMIT(0xF7);
878 emit_operand(esi, src);
879 }
880
881
imul(Register reg)882 void Assembler::imul(Register reg) {
883 EnsureSpace ensure_space(this);
884 EMIT(0xF7);
885 EMIT(0xE8 | reg.code());
886 }
887
888
imul(Register dst,const Operand & src)889 void Assembler::imul(Register dst, const Operand& src) {
890 EnsureSpace ensure_space(this);
891 EMIT(0x0F);
892 EMIT(0xAF);
893 emit_operand(dst, src);
894 }
895
896
imul(Register dst,Register src,int32_t imm32)897 void Assembler::imul(Register dst, Register src, int32_t imm32) {
898 imul(dst, Operand(src), imm32);
899 }
900
901
imul(Register dst,const Operand & src,int32_t imm32)902 void Assembler::imul(Register dst, const Operand& src, int32_t imm32) {
903 EnsureSpace ensure_space(this);
904 if (is_int8(imm32)) {
905 EMIT(0x6B);
906 emit_operand(dst, src);
907 EMIT(imm32);
908 } else {
909 EMIT(0x69);
910 emit_operand(dst, src);
911 emit(imm32);
912 }
913 }
914
915
inc(Register dst)916 void Assembler::inc(Register dst) {
917 EnsureSpace ensure_space(this);
918 EMIT(0x40 | dst.code());
919 }
920
921
inc(const Operand & dst)922 void Assembler::inc(const Operand& dst) {
923 EnsureSpace ensure_space(this);
924 EMIT(0xFF);
925 emit_operand(eax, dst);
926 }
927
928
lea(Register dst,const Operand & src)929 void Assembler::lea(Register dst, const Operand& src) {
930 EnsureSpace ensure_space(this);
931 EMIT(0x8D);
932 emit_operand(dst, src);
933 }
934
935
mul(Register src)936 void Assembler::mul(Register src) {
937 EnsureSpace ensure_space(this);
938 EMIT(0xF7);
939 EMIT(0xE0 | src.code());
940 }
941
942
neg(Register dst)943 void Assembler::neg(Register dst) {
944 EnsureSpace ensure_space(this);
945 EMIT(0xF7);
946 EMIT(0xD8 | dst.code());
947 }
948
949
neg(const Operand & dst)950 void Assembler::neg(const Operand& dst) {
951 EnsureSpace ensure_space(this);
952 EMIT(0xF7);
953 emit_operand(ebx, dst);
954 }
955
956
not_(Register dst)957 void Assembler::not_(Register dst) {
958 EnsureSpace ensure_space(this);
959 EMIT(0xF7);
960 EMIT(0xD0 | dst.code());
961 }
962
963
not_(const Operand & dst)964 void Assembler::not_(const Operand& dst) {
965 EnsureSpace ensure_space(this);
966 EMIT(0xF7);
967 emit_operand(edx, dst);
968 }
969
970
or_(Register dst,int32_t imm32)971 void Assembler::or_(Register dst, int32_t imm32) {
972 EnsureSpace ensure_space(this);
973 emit_arith(1, Operand(dst), Immediate(imm32));
974 }
975
976
or_(Register dst,const Operand & src)977 void Assembler::or_(Register dst, const Operand& src) {
978 EnsureSpace ensure_space(this);
979 EMIT(0x0B);
980 emit_operand(dst, src);
981 }
982
983
or_(const Operand & dst,const Immediate & x)984 void Assembler::or_(const Operand& dst, const Immediate& x) {
985 EnsureSpace ensure_space(this);
986 emit_arith(1, dst, x);
987 }
988
989
or_(const Operand & dst,Register src)990 void Assembler::or_(const Operand& dst, Register src) {
991 EnsureSpace ensure_space(this);
992 EMIT(0x09);
993 emit_operand(src, dst);
994 }
995
996
rcl(Register dst,uint8_t imm8)997 void Assembler::rcl(Register dst, uint8_t imm8) {
998 EnsureSpace ensure_space(this);
999 DCHECK(is_uint5(imm8)); // illegal shift count
1000 if (imm8 == 1) {
1001 EMIT(0xD1);
1002 EMIT(0xD0 | dst.code());
1003 } else {
1004 EMIT(0xC1);
1005 EMIT(0xD0 | dst.code());
1006 EMIT(imm8);
1007 }
1008 }
1009
1010
rcr(Register dst,uint8_t imm8)1011 void Assembler::rcr(Register dst, uint8_t imm8) {
1012 EnsureSpace ensure_space(this);
1013 DCHECK(is_uint5(imm8)); // illegal shift count
1014 if (imm8 == 1) {
1015 EMIT(0xD1);
1016 EMIT(0xD8 | dst.code());
1017 } else {
1018 EMIT(0xC1);
1019 EMIT(0xD8 | dst.code());
1020 EMIT(imm8);
1021 }
1022 }
1023
1024
ror(const Operand & dst,uint8_t imm8)1025 void Assembler::ror(const Operand& dst, uint8_t imm8) {
1026 EnsureSpace ensure_space(this);
1027 DCHECK(is_uint5(imm8)); // illegal shift count
1028 if (imm8 == 1) {
1029 EMIT(0xD1);
1030 emit_operand(ecx, dst);
1031 } else {
1032 EMIT(0xC1);
1033 emit_operand(ecx, dst);
1034 EMIT(imm8);
1035 }
1036 }
1037
1038
ror_cl(const Operand & dst)1039 void Assembler::ror_cl(const Operand& dst) {
1040 EnsureSpace ensure_space(this);
1041 EMIT(0xD3);
1042 emit_operand(ecx, dst);
1043 }
1044
1045
sar(const Operand & dst,uint8_t imm8)1046 void Assembler::sar(const Operand& dst, uint8_t imm8) {
1047 EnsureSpace ensure_space(this);
1048 DCHECK(is_uint5(imm8)); // illegal shift count
1049 if (imm8 == 1) {
1050 EMIT(0xD1);
1051 emit_operand(edi, dst);
1052 } else {
1053 EMIT(0xC1);
1054 emit_operand(edi, dst);
1055 EMIT(imm8);
1056 }
1057 }
1058
1059
sar_cl(const Operand & dst)1060 void Assembler::sar_cl(const Operand& dst) {
1061 EnsureSpace ensure_space(this);
1062 EMIT(0xD3);
1063 emit_operand(edi, dst);
1064 }
1065
1066
sbb(Register dst,const Operand & src)1067 void Assembler::sbb(Register dst, const Operand& src) {
1068 EnsureSpace ensure_space(this);
1069 EMIT(0x1B);
1070 emit_operand(dst, src);
1071 }
1072
1073
shld(Register dst,const Operand & src)1074 void Assembler::shld(Register dst, const Operand& src) {
1075 EnsureSpace ensure_space(this);
1076 EMIT(0x0F);
1077 EMIT(0xA5);
1078 emit_operand(dst, src);
1079 }
1080
1081
shl(const Operand & dst,uint8_t imm8)1082 void Assembler::shl(const Operand& dst, uint8_t imm8) {
1083 EnsureSpace ensure_space(this);
1084 DCHECK(is_uint5(imm8)); // illegal shift count
1085 if (imm8 == 1) {
1086 EMIT(0xD1);
1087 emit_operand(esp, dst);
1088 } else {
1089 EMIT(0xC1);
1090 emit_operand(esp, dst);
1091 EMIT(imm8);
1092 }
1093 }
1094
1095
shl_cl(const Operand & dst)1096 void Assembler::shl_cl(const Operand& dst) {
1097 EnsureSpace ensure_space(this);
1098 EMIT(0xD3);
1099 emit_operand(esp, dst);
1100 }
1101
1102
shrd(Register dst,const Operand & src)1103 void Assembler::shrd(Register dst, const Operand& src) {
1104 EnsureSpace ensure_space(this);
1105 EMIT(0x0F);
1106 EMIT(0xAD);
1107 emit_operand(dst, src);
1108 }
1109
1110
shr(const Operand & dst,uint8_t imm8)1111 void Assembler::shr(const Operand& dst, uint8_t imm8) {
1112 EnsureSpace ensure_space(this);
1113 DCHECK(is_uint5(imm8)); // illegal shift count
1114 if (imm8 == 1) {
1115 EMIT(0xD1);
1116 emit_operand(ebp, dst);
1117 } else {
1118 EMIT(0xC1);
1119 emit_operand(ebp, dst);
1120 EMIT(imm8);
1121 }
1122 }
1123
1124
shr_cl(const Operand & dst)1125 void Assembler::shr_cl(const Operand& dst) {
1126 EnsureSpace ensure_space(this);
1127 EMIT(0xD3);
1128 emit_operand(ebp, dst);
1129 }
1130
1131
sub(const Operand & dst,const Immediate & x)1132 void Assembler::sub(const Operand& dst, const Immediate& x) {
1133 EnsureSpace ensure_space(this);
1134 emit_arith(5, dst, x);
1135 }
1136
1137
sub(Register dst,const Operand & src)1138 void Assembler::sub(Register dst, const Operand& src) {
1139 EnsureSpace ensure_space(this);
1140 EMIT(0x2B);
1141 emit_operand(dst, src);
1142 }
1143
1144
sub(const Operand & dst,Register src)1145 void Assembler::sub(const Operand& dst, Register src) {
1146 EnsureSpace ensure_space(this);
1147 EMIT(0x29);
1148 emit_operand(src, dst);
1149 }
1150
1151
test(Register reg,const Immediate & imm)1152 void Assembler::test(Register reg, const Immediate& imm) {
1153 if (RelocInfo::IsNone(imm.rmode_) && is_uint8(imm.x_)) {
1154 test_b(reg, imm.x_);
1155 return;
1156 }
1157
1158 EnsureSpace ensure_space(this);
1159 // This is not using emit_arith because test doesn't support
1160 // sign-extension of 8-bit operands.
1161 if (reg.is(eax)) {
1162 EMIT(0xA9);
1163 } else {
1164 EMIT(0xF7);
1165 EMIT(0xC0 | reg.code());
1166 }
1167 emit(imm);
1168 }
1169
1170
test(Register reg,const Operand & op)1171 void Assembler::test(Register reg, const Operand& op) {
1172 EnsureSpace ensure_space(this);
1173 EMIT(0x85);
1174 emit_operand(reg, op);
1175 }
1176
1177
test_b(Register reg,const Operand & op)1178 void Assembler::test_b(Register reg, const Operand& op) {
1179 CHECK(reg.is_byte_register());
1180 EnsureSpace ensure_space(this);
1181 EMIT(0x84);
1182 emit_operand(reg, op);
1183 }
1184
1185
test(const Operand & op,const Immediate & imm)1186 void Assembler::test(const Operand& op, const Immediate& imm) {
1187 if (op.is_reg_only()) {
1188 test(op.reg(), imm);
1189 return;
1190 }
1191 if (RelocInfo::IsNone(imm.rmode_) && is_uint8(imm.x_)) {
1192 return test_b(op, imm.x_);
1193 }
1194 EnsureSpace ensure_space(this);
1195 EMIT(0xF7);
1196 emit_operand(eax, op);
1197 emit(imm);
1198 }
1199
1200
test_b(Register reg,uint8_t imm8)1201 void Assembler::test_b(Register reg, uint8_t imm8) {
1202 EnsureSpace ensure_space(this);
1203 // Only use test against byte for registers that have a byte
1204 // variant: eax, ebx, ecx, and edx.
1205 if (reg.is(eax)) {
1206 EMIT(0xA8);
1207 EMIT(imm8);
1208 } else if (reg.is_byte_register()) {
1209 emit_arith_b(0xF6, 0xC0, reg, imm8);
1210 } else {
1211 EMIT(0xF7);
1212 EMIT(0xC0 | reg.code());
1213 emit(imm8);
1214 }
1215 }
1216
1217
test_b(const Operand & op,uint8_t imm8)1218 void Assembler::test_b(const Operand& op, uint8_t imm8) {
1219 if (op.is_reg_only()) {
1220 test_b(op.reg(), imm8);
1221 return;
1222 }
1223 EnsureSpace ensure_space(this);
1224 EMIT(0xF6);
1225 emit_operand(eax, op);
1226 EMIT(imm8);
1227 }
1228
1229
xor_(Register dst,int32_t imm32)1230 void Assembler::xor_(Register dst, int32_t imm32) {
1231 EnsureSpace ensure_space(this);
1232 emit_arith(6, Operand(dst), Immediate(imm32));
1233 }
1234
1235
xor_(Register dst,const Operand & src)1236 void Assembler::xor_(Register dst, const Operand& src) {
1237 EnsureSpace ensure_space(this);
1238 EMIT(0x33);
1239 emit_operand(dst, src);
1240 }
1241
1242
xor_(const Operand & dst,Register src)1243 void Assembler::xor_(const Operand& dst, Register src) {
1244 EnsureSpace ensure_space(this);
1245 EMIT(0x31);
1246 emit_operand(src, dst);
1247 }
1248
1249
xor_(const Operand & dst,const Immediate & x)1250 void Assembler::xor_(const Operand& dst, const Immediate& x) {
1251 EnsureSpace ensure_space(this);
1252 emit_arith(6, dst, x);
1253 }
1254
1255
bt(const Operand & dst,Register src)1256 void Assembler::bt(const Operand& dst, Register src) {
1257 EnsureSpace ensure_space(this);
1258 EMIT(0x0F);
1259 EMIT(0xA3);
1260 emit_operand(src, dst);
1261 }
1262
1263
bts(const Operand & dst,Register src)1264 void Assembler::bts(const Operand& dst, Register src) {
1265 EnsureSpace ensure_space(this);
1266 EMIT(0x0F);
1267 EMIT(0xAB);
1268 emit_operand(src, dst);
1269 }
1270
1271
bsr(Register dst,const Operand & src)1272 void Assembler::bsr(Register dst, const Operand& src) {
1273 EnsureSpace ensure_space(this);
1274 EMIT(0x0F);
1275 EMIT(0xBD);
1276 emit_operand(dst, src);
1277 }
1278
1279
bsf(Register dst,const Operand & src)1280 void Assembler::bsf(Register dst, const Operand& src) {
1281 EnsureSpace ensure_space(this);
1282 EMIT(0x0F);
1283 EMIT(0xBC);
1284 emit_operand(dst, src);
1285 }
1286
1287
hlt()1288 void Assembler::hlt() {
1289 EnsureSpace ensure_space(this);
1290 EMIT(0xF4);
1291 }
1292
1293
int3()1294 void Assembler::int3() {
1295 EnsureSpace ensure_space(this);
1296 EMIT(0xCC);
1297 }
1298
1299
nop()1300 void Assembler::nop() {
1301 EnsureSpace ensure_space(this);
1302 EMIT(0x90);
1303 }
1304
1305
ret(int imm16)1306 void Assembler::ret(int imm16) {
1307 EnsureSpace ensure_space(this);
1308 DCHECK(is_uint16(imm16));
1309 if (imm16 == 0) {
1310 EMIT(0xC3);
1311 } else {
1312 EMIT(0xC2);
1313 EMIT(imm16 & 0xFF);
1314 EMIT((imm16 >> 8) & 0xFF);
1315 }
1316 }
1317
1318
ud2()1319 void Assembler::ud2() {
1320 EnsureSpace ensure_space(this);
1321 EMIT(0x0F);
1322 EMIT(0x0B);
1323 }
1324
1325
1326 // Labels refer to positions in the (to be) generated code.
1327 // There are bound, linked, and unused labels.
1328 //
1329 // Bound labels refer to known positions in the already
1330 // generated code. pos() is the position the label refers to.
1331 //
1332 // Linked labels refer to unknown positions in the code
1333 // to be generated; pos() is the position of the 32bit
1334 // Displacement of the last instruction using the label.
1335
1336
print(Label * L)1337 void Assembler::print(Label* L) {
1338 if (L->is_unused()) {
1339 PrintF("unused label\n");
1340 } else if (L->is_bound()) {
1341 PrintF("bound label to %d\n", L->pos());
1342 } else if (L->is_linked()) {
1343 Label l = *L;
1344 PrintF("unbound label");
1345 while (l.is_linked()) {
1346 Displacement disp = disp_at(&l);
1347 PrintF("@ %d ", l.pos());
1348 disp.print();
1349 PrintF("\n");
1350 disp.next(&l);
1351 }
1352 } else {
1353 PrintF("label in inconsistent state (pos = %d)\n", L->pos_);
1354 }
1355 }
1356
1357
bind_to(Label * L,int pos)1358 void Assembler::bind_to(Label* L, int pos) {
1359 EnsureSpace ensure_space(this);
1360 DCHECK(0 <= pos && pos <= pc_offset()); // must have a valid binding position
1361 while (L->is_linked()) {
1362 Displacement disp = disp_at(L);
1363 int fixup_pos = L->pos();
1364 if (disp.type() == Displacement::CODE_ABSOLUTE) {
1365 long_at_put(fixup_pos, reinterpret_cast<int>(buffer_ + pos));
1366 internal_reference_positions_.push_back(fixup_pos);
1367 } else if (disp.type() == Displacement::CODE_RELATIVE) {
1368 // Relative to Code* heap object pointer.
1369 long_at_put(fixup_pos, pos + Code::kHeaderSize - kHeapObjectTag);
1370 } else {
1371 if (disp.type() == Displacement::UNCONDITIONAL_JUMP) {
1372 DCHECK(byte_at(fixup_pos - 1) == 0xE9); // jmp expected
1373 }
1374 // Relative address, relative to point after address.
1375 int imm32 = pos - (fixup_pos + sizeof(int32_t));
1376 long_at_put(fixup_pos, imm32);
1377 }
1378 disp.next(L);
1379 }
1380 while (L->is_near_linked()) {
1381 int fixup_pos = L->near_link_pos();
1382 int offset_to_next =
1383 static_cast<int>(*reinterpret_cast<int8_t*>(addr_at(fixup_pos)));
1384 DCHECK(offset_to_next <= 0);
1385 // Relative address, relative to point after address.
1386 int disp = pos - fixup_pos - sizeof(int8_t);
1387 CHECK(0 <= disp && disp <= 127);
1388 set_byte_at(fixup_pos, disp);
1389 if (offset_to_next < 0) {
1390 L->link_to(fixup_pos + offset_to_next, Label::kNear);
1391 } else {
1392 L->UnuseNear();
1393 }
1394 }
1395 L->bind_to(pos);
1396 }
1397
1398
bind(Label * L)1399 void Assembler::bind(Label* L) {
1400 EnsureSpace ensure_space(this);
1401 DCHECK(!L->is_bound()); // label can only be bound once
1402 bind_to(L, pc_offset());
1403 }
1404
1405
call(Label * L)1406 void Assembler::call(Label* L) {
1407 positions_recorder()->WriteRecordedPositions();
1408 EnsureSpace ensure_space(this);
1409 if (L->is_bound()) {
1410 const int long_size = 5;
1411 int offs = L->pos() - pc_offset();
1412 DCHECK(offs <= 0);
1413 // 1110 1000 #32-bit disp.
1414 EMIT(0xE8);
1415 emit(offs - long_size);
1416 } else {
1417 // 1110 1000 #32-bit disp.
1418 EMIT(0xE8);
1419 emit_disp(L, Displacement::OTHER);
1420 }
1421 }
1422
1423
call(byte * entry,RelocInfo::Mode rmode)1424 void Assembler::call(byte* entry, RelocInfo::Mode rmode) {
1425 positions_recorder()->WriteRecordedPositions();
1426 EnsureSpace ensure_space(this);
1427 DCHECK(!RelocInfo::IsCodeTarget(rmode));
1428 EMIT(0xE8);
1429 if (RelocInfo::IsRuntimeEntry(rmode)) {
1430 emit(reinterpret_cast<uint32_t>(entry), rmode);
1431 } else {
1432 emit(entry - (pc_ + sizeof(int32_t)), rmode);
1433 }
1434 }
1435
1436
CallSize(const Operand & adr)1437 int Assembler::CallSize(const Operand& adr) {
1438 // Call size is 1 (opcode) + adr.len_ (operand).
1439 return 1 + adr.len_;
1440 }
1441
1442
call(const Operand & adr)1443 void Assembler::call(const Operand& adr) {
1444 positions_recorder()->WriteRecordedPositions();
1445 EnsureSpace ensure_space(this);
1446 EMIT(0xFF);
1447 emit_operand(edx, adr);
1448 }
1449
1450
CallSize(Handle<Code> code,RelocInfo::Mode rmode)1451 int Assembler::CallSize(Handle<Code> code, RelocInfo::Mode rmode) {
1452 return 1 /* EMIT */ + sizeof(uint32_t) /* emit */;
1453 }
1454
1455
call(Handle<Code> code,RelocInfo::Mode rmode,TypeFeedbackId ast_id)1456 void Assembler::call(Handle<Code> code,
1457 RelocInfo::Mode rmode,
1458 TypeFeedbackId ast_id) {
1459 positions_recorder()->WriteRecordedPositions();
1460 EnsureSpace ensure_space(this);
1461 DCHECK(RelocInfo::IsCodeTarget(rmode)
1462 || rmode == RelocInfo::CODE_AGE_SEQUENCE);
1463 EMIT(0xE8);
1464 emit(code, rmode, ast_id);
1465 }
1466
1467
jmp(Label * L,Label::Distance distance)1468 void Assembler::jmp(Label* L, Label::Distance distance) {
1469 EnsureSpace ensure_space(this);
1470 if (L->is_bound()) {
1471 const int short_size = 2;
1472 const int long_size = 5;
1473 int offs = L->pos() - pc_offset();
1474 DCHECK(offs <= 0);
1475 if (is_int8(offs - short_size)) {
1476 // 1110 1011 #8-bit disp.
1477 EMIT(0xEB);
1478 EMIT((offs - short_size) & 0xFF);
1479 } else {
1480 // 1110 1001 #32-bit disp.
1481 EMIT(0xE9);
1482 emit(offs - long_size);
1483 }
1484 } else if (distance == Label::kNear) {
1485 EMIT(0xEB);
1486 emit_near_disp(L);
1487 } else {
1488 // 1110 1001 #32-bit disp.
1489 EMIT(0xE9);
1490 emit_disp(L, Displacement::UNCONDITIONAL_JUMP);
1491 }
1492 }
1493
1494
jmp(byte * entry,RelocInfo::Mode rmode)1495 void Assembler::jmp(byte* entry, RelocInfo::Mode rmode) {
1496 EnsureSpace ensure_space(this);
1497 DCHECK(!RelocInfo::IsCodeTarget(rmode));
1498 EMIT(0xE9);
1499 if (RelocInfo::IsRuntimeEntry(rmode)) {
1500 emit(reinterpret_cast<uint32_t>(entry), rmode);
1501 } else {
1502 emit(entry - (pc_ + sizeof(int32_t)), rmode);
1503 }
1504 }
1505
1506
jmp(const Operand & adr)1507 void Assembler::jmp(const Operand& adr) {
1508 EnsureSpace ensure_space(this);
1509 EMIT(0xFF);
1510 emit_operand(esp, adr);
1511 }
1512
1513
jmp(Handle<Code> code,RelocInfo::Mode rmode)1514 void Assembler::jmp(Handle<Code> code, RelocInfo::Mode rmode) {
1515 EnsureSpace ensure_space(this);
1516 DCHECK(RelocInfo::IsCodeTarget(rmode));
1517 EMIT(0xE9);
1518 emit(code, rmode);
1519 }
1520
1521
j(Condition cc,Label * L,Label::Distance distance)1522 void Assembler::j(Condition cc, Label* L, Label::Distance distance) {
1523 EnsureSpace ensure_space(this);
1524 DCHECK(0 <= cc && static_cast<int>(cc) < 16);
1525 if (L->is_bound()) {
1526 const int short_size = 2;
1527 const int long_size = 6;
1528 int offs = L->pos() - pc_offset();
1529 DCHECK(offs <= 0);
1530 if (is_int8(offs - short_size)) {
1531 // 0111 tttn #8-bit disp
1532 EMIT(0x70 | cc);
1533 EMIT((offs - short_size) & 0xFF);
1534 } else {
1535 // 0000 1111 1000 tttn #32-bit disp
1536 EMIT(0x0F);
1537 EMIT(0x80 | cc);
1538 emit(offs - long_size);
1539 }
1540 } else if (distance == Label::kNear) {
1541 EMIT(0x70 | cc);
1542 emit_near_disp(L);
1543 } else {
1544 // 0000 1111 1000 tttn #32-bit disp
1545 // Note: could eliminate cond. jumps to this jump if condition
1546 // is the same however, seems to be rather unlikely case.
1547 EMIT(0x0F);
1548 EMIT(0x80 | cc);
1549 emit_disp(L, Displacement::OTHER);
1550 }
1551 }
1552
1553
j(Condition cc,byte * entry,RelocInfo::Mode rmode)1554 void Assembler::j(Condition cc, byte* entry, RelocInfo::Mode rmode) {
1555 EnsureSpace ensure_space(this);
1556 DCHECK((0 <= cc) && (static_cast<int>(cc) < 16));
1557 // 0000 1111 1000 tttn #32-bit disp.
1558 EMIT(0x0F);
1559 EMIT(0x80 | cc);
1560 if (RelocInfo::IsRuntimeEntry(rmode)) {
1561 emit(reinterpret_cast<uint32_t>(entry), rmode);
1562 } else {
1563 emit(entry - (pc_ + sizeof(int32_t)), rmode);
1564 }
1565 }
1566
1567
j(Condition cc,Handle<Code> code,RelocInfo::Mode rmode)1568 void Assembler::j(Condition cc, Handle<Code> code, RelocInfo::Mode rmode) {
1569 EnsureSpace ensure_space(this);
1570 // 0000 1111 1000 tttn #32-bit disp
1571 EMIT(0x0F);
1572 EMIT(0x80 | cc);
1573 emit(code, rmode);
1574 }
1575
1576
1577 // FPU instructions.
1578
fld(int i)1579 void Assembler::fld(int i) {
1580 EnsureSpace ensure_space(this);
1581 emit_farith(0xD9, 0xC0, i);
1582 }
1583
1584
fstp(int i)1585 void Assembler::fstp(int i) {
1586 EnsureSpace ensure_space(this);
1587 emit_farith(0xDD, 0xD8, i);
1588 }
1589
1590
fld1()1591 void Assembler::fld1() {
1592 EnsureSpace ensure_space(this);
1593 EMIT(0xD9);
1594 EMIT(0xE8);
1595 }
1596
1597
fldpi()1598 void Assembler::fldpi() {
1599 EnsureSpace ensure_space(this);
1600 EMIT(0xD9);
1601 EMIT(0xEB);
1602 }
1603
1604
fldz()1605 void Assembler::fldz() {
1606 EnsureSpace ensure_space(this);
1607 EMIT(0xD9);
1608 EMIT(0xEE);
1609 }
1610
1611
fldln2()1612 void Assembler::fldln2() {
1613 EnsureSpace ensure_space(this);
1614 EMIT(0xD9);
1615 EMIT(0xED);
1616 }
1617
1618
fld_s(const Operand & adr)1619 void Assembler::fld_s(const Operand& adr) {
1620 EnsureSpace ensure_space(this);
1621 EMIT(0xD9);
1622 emit_operand(eax, adr);
1623 }
1624
1625
fld_d(const Operand & adr)1626 void Assembler::fld_d(const Operand& adr) {
1627 EnsureSpace ensure_space(this);
1628 EMIT(0xDD);
1629 emit_operand(eax, adr);
1630 }
1631
1632
fstp_s(const Operand & adr)1633 void Assembler::fstp_s(const Operand& adr) {
1634 EnsureSpace ensure_space(this);
1635 EMIT(0xD9);
1636 emit_operand(ebx, adr);
1637 }
1638
1639
fst_s(const Operand & adr)1640 void Assembler::fst_s(const Operand& adr) {
1641 EnsureSpace ensure_space(this);
1642 EMIT(0xD9);
1643 emit_operand(edx, adr);
1644 }
1645
1646
fstp_d(const Operand & adr)1647 void Assembler::fstp_d(const Operand& adr) {
1648 EnsureSpace ensure_space(this);
1649 EMIT(0xDD);
1650 emit_operand(ebx, adr);
1651 }
1652
1653
fst_d(const Operand & adr)1654 void Assembler::fst_d(const Operand& adr) {
1655 EnsureSpace ensure_space(this);
1656 EMIT(0xDD);
1657 emit_operand(edx, adr);
1658 }
1659
1660
fild_s(const Operand & adr)1661 void Assembler::fild_s(const Operand& adr) {
1662 EnsureSpace ensure_space(this);
1663 EMIT(0xDB);
1664 emit_operand(eax, adr);
1665 }
1666
1667
fild_d(const Operand & adr)1668 void Assembler::fild_d(const Operand& adr) {
1669 EnsureSpace ensure_space(this);
1670 EMIT(0xDF);
1671 emit_operand(ebp, adr);
1672 }
1673
1674
fistp_s(const Operand & adr)1675 void Assembler::fistp_s(const Operand& adr) {
1676 EnsureSpace ensure_space(this);
1677 EMIT(0xDB);
1678 emit_operand(ebx, adr);
1679 }
1680
1681
fisttp_s(const Operand & adr)1682 void Assembler::fisttp_s(const Operand& adr) {
1683 DCHECK(IsEnabled(SSE3));
1684 EnsureSpace ensure_space(this);
1685 EMIT(0xDB);
1686 emit_operand(ecx, adr);
1687 }
1688
1689
fisttp_d(const Operand & adr)1690 void Assembler::fisttp_d(const Operand& adr) {
1691 DCHECK(IsEnabled(SSE3));
1692 EnsureSpace ensure_space(this);
1693 EMIT(0xDD);
1694 emit_operand(ecx, adr);
1695 }
1696
1697
fist_s(const Operand & adr)1698 void Assembler::fist_s(const Operand& adr) {
1699 EnsureSpace ensure_space(this);
1700 EMIT(0xDB);
1701 emit_operand(edx, adr);
1702 }
1703
1704
fistp_d(const Operand & adr)1705 void Assembler::fistp_d(const Operand& adr) {
1706 EnsureSpace ensure_space(this);
1707 EMIT(0xDF);
1708 emit_operand(edi, adr);
1709 }
1710
1711
fabs()1712 void Assembler::fabs() {
1713 EnsureSpace ensure_space(this);
1714 EMIT(0xD9);
1715 EMIT(0xE1);
1716 }
1717
1718
fchs()1719 void Assembler::fchs() {
1720 EnsureSpace ensure_space(this);
1721 EMIT(0xD9);
1722 EMIT(0xE0);
1723 }
1724
1725
fcos()1726 void Assembler::fcos() {
1727 EnsureSpace ensure_space(this);
1728 EMIT(0xD9);
1729 EMIT(0xFF);
1730 }
1731
1732
fsin()1733 void Assembler::fsin() {
1734 EnsureSpace ensure_space(this);
1735 EMIT(0xD9);
1736 EMIT(0xFE);
1737 }
1738
1739
fptan()1740 void Assembler::fptan() {
1741 EnsureSpace ensure_space(this);
1742 EMIT(0xD9);
1743 EMIT(0xF2);
1744 }
1745
1746
fyl2x()1747 void Assembler::fyl2x() {
1748 EnsureSpace ensure_space(this);
1749 EMIT(0xD9);
1750 EMIT(0xF1);
1751 }
1752
1753
f2xm1()1754 void Assembler::f2xm1() {
1755 EnsureSpace ensure_space(this);
1756 EMIT(0xD9);
1757 EMIT(0xF0);
1758 }
1759
1760
fscale()1761 void Assembler::fscale() {
1762 EnsureSpace ensure_space(this);
1763 EMIT(0xD9);
1764 EMIT(0xFD);
1765 }
1766
1767
fninit()1768 void Assembler::fninit() {
1769 EnsureSpace ensure_space(this);
1770 EMIT(0xDB);
1771 EMIT(0xE3);
1772 }
1773
1774
fadd(int i)1775 void Assembler::fadd(int i) {
1776 EnsureSpace ensure_space(this);
1777 emit_farith(0xDC, 0xC0, i);
1778 }
1779
1780
fadd_i(int i)1781 void Assembler::fadd_i(int i) {
1782 EnsureSpace ensure_space(this);
1783 emit_farith(0xD8, 0xC0, i);
1784 }
1785
1786
fsub(int i)1787 void Assembler::fsub(int i) {
1788 EnsureSpace ensure_space(this);
1789 emit_farith(0xDC, 0xE8, i);
1790 }
1791
1792
fsub_i(int i)1793 void Assembler::fsub_i(int i) {
1794 EnsureSpace ensure_space(this);
1795 emit_farith(0xD8, 0xE0, i);
1796 }
1797
1798
fisub_s(const Operand & adr)1799 void Assembler::fisub_s(const Operand& adr) {
1800 EnsureSpace ensure_space(this);
1801 EMIT(0xDA);
1802 emit_operand(esp, adr);
1803 }
1804
1805
fmul_i(int i)1806 void Assembler::fmul_i(int i) {
1807 EnsureSpace ensure_space(this);
1808 emit_farith(0xD8, 0xC8, i);
1809 }
1810
1811
fmul(int i)1812 void Assembler::fmul(int i) {
1813 EnsureSpace ensure_space(this);
1814 emit_farith(0xDC, 0xC8, i);
1815 }
1816
1817
fdiv(int i)1818 void Assembler::fdiv(int i) {
1819 EnsureSpace ensure_space(this);
1820 emit_farith(0xDC, 0xF8, i);
1821 }
1822
1823
fdiv_i(int i)1824 void Assembler::fdiv_i(int i) {
1825 EnsureSpace ensure_space(this);
1826 emit_farith(0xD8, 0xF0, i);
1827 }
1828
1829
faddp(int i)1830 void Assembler::faddp(int i) {
1831 EnsureSpace ensure_space(this);
1832 emit_farith(0xDE, 0xC0, i);
1833 }
1834
1835
fsubp(int i)1836 void Assembler::fsubp(int i) {
1837 EnsureSpace ensure_space(this);
1838 emit_farith(0xDE, 0xE8, i);
1839 }
1840
1841
fsubrp(int i)1842 void Assembler::fsubrp(int i) {
1843 EnsureSpace ensure_space(this);
1844 emit_farith(0xDE, 0xE0, i);
1845 }
1846
1847
fmulp(int i)1848 void Assembler::fmulp(int i) {
1849 EnsureSpace ensure_space(this);
1850 emit_farith(0xDE, 0xC8, i);
1851 }
1852
1853
fdivp(int i)1854 void Assembler::fdivp(int i) {
1855 EnsureSpace ensure_space(this);
1856 emit_farith(0xDE, 0xF8, i);
1857 }
1858
1859
fprem()1860 void Assembler::fprem() {
1861 EnsureSpace ensure_space(this);
1862 EMIT(0xD9);
1863 EMIT(0xF8);
1864 }
1865
1866
fprem1()1867 void Assembler::fprem1() {
1868 EnsureSpace ensure_space(this);
1869 EMIT(0xD9);
1870 EMIT(0xF5);
1871 }
1872
1873
fxch(int i)1874 void Assembler::fxch(int i) {
1875 EnsureSpace ensure_space(this);
1876 emit_farith(0xD9, 0xC8, i);
1877 }
1878
1879
fincstp()1880 void Assembler::fincstp() {
1881 EnsureSpace ensure_space(this);
1882 EMIT(0xD9);
1883 EMIT(0xF7);
1884 }
1885
1886
ffree(int i)1887 void Assembler::ffree(int i) {
1888 EnsureSpace ensure_space(this);
1889 emit_farith(0xDD, 0xC0, i);
1890 }
1891
1892
ftst()1893 void Assembler::ftst() {
1894 EnsureSpace ensure_space(this);
1895 EMIT(0xD9);
1896 EMIT(0xE4);
1897 }
1898
1899
fucomp(int i)1900 void Assembler::fucomp(int i) {
1901 EnsureSpace ensure_space(this);
1902 emit_farith(0xDD, 0xE8, i);
1903 }
1904
1905
fucompp()1906 void Assembler::fucompp() {
1907 EnsureSpace ensure_space(this);
1908 EMIT(0xDA);
1909 EMIT(0xE9);
1910 }
1911
1912
fucomi(int i)1913 void Assembler::fucomi(int i) {
1914 EnsureSpace ensure_space(this);
1915 EMIT(0xDB);
1916 EMIT(0xE8 + i);
1917 }
1918
1919
fucomip()1920 void Assembler::fucomip() {
1921 EnsureSpace ensure_space(this);
1922 EMIT(0xDF);
1923 EMIT(0xE9);
1924 }
1925
1926
fcompp()1927 void Assembler::fcompp() {
1928 EnsureSpace ensure_space(this);
1929 EMIT(0xDE);
1930 EMIT(0xD9);
1931 }
1932
1933
fnstsw_ax()1934 void Assembler::fnstsw_ax() {
1935 EnsureSpace ensure_space(this);
1936 EMIT(0xDF);
1937 EMIT(0xE0);
1938 }
1939
1940
fwait()1941 void Assembler::fwait() {
1942 EnsureSpace ensure_space(this);
1943 EMIT(0x9B);
1944 }
1945
1946
frndint()1947 void Assembler::frndint() {
1948 EnsureSpace ensure_space(this);
1949 EMIT(0xD9);
1950 EMIT(0xFC);
1951 }
1952
1953
fnclex()1954 void Assembler::fnclex() {
1955 EnsureSpace ensure_space(this);
1956 EMIT(0xDB);
1957 EMIT(0xE2);
1958 }
1959
1960
sahf()1961 void Assembler::sahf() {
1962 EnsureSpace ensure_space(this);
1963 EMIT(0x9E);
1964 }
1965
1966
setcc(Condition cc,Register reg)1967 void Assembler::setcc(Condition cc, Register reg) {
1968 DCHECK(reg.is_byte_register());
1969 EnsureSpace ensure_space(this);
1970 EMIT(0x0F);
1971 EMIT(0x90 | cc);
1972 EMIT(0xC0 | reg.code());
1973 }
1974
1975
cvttss2si(Register dst,const Operand & src)1976 void Assembler::cvttss2si(Register dst, const Operand& src) {
1977 EnsureSpace ensure_space(this);
1978 EMIT(0xF3);
1979 EMIT(0x0F);
1980 EMIT(0x2C);
1981 emit_operand(dst, src);
1982 }
1983
1984
cvttsd2si(Register dst,const Operand & src)1985 void Assembler::cvttsd2si(Register dst, const Operand& src) {
1986 EnsureSpace ensure_space(this);
1987 EMIT(0xF2);
1988 EMIT(0x0F);
1989 EMIT(0x2C);
1990 emit_operand(dst, src);
1991 }
1992
1993
cvtsd2si(Register dst,XMMRegister src)1994 void Assembler::cvtsd2si(Register dst, XMMRegister src) {
1995 EnsureSpace ensure_space(this);
1996 EMIT(0xF2);
1997 EMIT(0x0F);
1998 EMIT(0x2D);
1999 emit_sse_operand(dst, src);
2000 }
2001
2002
cvtsi2sd(XMMRegister dst,const Operand & src)2003 void Assembler::cvtsi2sd(XMMRegister dst, const Operand& src) {
2004 EnsureSpace ensure_space(this);
2005 EMIT(0xF2);
2006 EMIT(0x0F);
2007 EMIT(0x2A);
2008 emit_sse_operand(dst, src);
2009 }
2010
2011
cvtss2sd(XMMRegister dst,const Operand & src)2012 void Assembler::cvtss2sd(XMMRegister dst, const Operand& src) {
2013 EnsureSpace ensure_space(this);
2014 EMIT(0xF3);
2015 EMIT(0x0F);
2016 EMIT(0x5A);
2017 emit_sse_operand(dst, src);
2018 }
2019
2020
cvtsd2ss(XMMRegister dst,const Operand & src)2021 void Assembler::cvtsd2ss(XMMRegister dst, const Operand& src) {
2022 EnsureSpace ensure_space(this);
2023 EMIT(0xF2);
2024 EMIT(0x0F);
2025 EMIT(0x5A);
2026 emit_sse_operand(dst, src);
2027 }
2028
2029
addsd(XMMRegister dst,const Operand & src)2030 void Assembler::addsd(XMMRegister dst, const Operand& src) {
2031 EnsureSpace ensure_space(this);
2032 EMIT(0xF2);
2033 EMIT(0x0F);
2034 EMIT(0x58);
2035 emit_sse_operand(dst, src);
2036 }
2037
2038
mulsd(XMMRegister dst,const Operand & src)2039 void Assembler::mulsd(XMMRegister dst, const Operand& src) {
2040 EnsureSpace ensure_space(this);
2041 EMIT(0xF2);
2042 EMIT(0x0F);
2043 EMIT(0x59);
2044 emit_sse_operand(dst, src);
2045 }
2046
2047
subsd(XMMRegister dst,const Operand & src)2048 void Assembler::subsd(XMMRegister dst, const Operand& src) {
2049 EnsureSpace ensure_space(this);
2050 EMIT(0xF2);
2051 EMIT(0x0F);
2052 EMIT(0x5C);
2053 emit_sse_operand(dst, src);
2054 }
2055
2056
divsd(XMMRegister dst,const Operand & src)2057 void Assembler::divsd(XMMRegister dst, const Operand& src) {
2058 EnsureSpace ensure_space(this);
2059 EMIT(0xF2);
2060 EMIT(0x0F);
2061 EMIT(0x5E);
2062 emit_sse_operand(dst, src);
2063 }
2064
2065
xorpd(XMMRegister dst,XMMRegister src)2066 void Assembler::xorpd(XMMRegister dst, XMMRegister src) {
2067 EnsureSpace ensure_space(this);
2068 EMIT(0x66);
2069 EMIT(0x0F);
2070 EMIT(0x57);
2071 emit_sse_operand(dst, src);
2072 }
2073
2074
andps(XMMRegister dst,const Operand & src)2075 void Assembler::andps(XMMRegister dst, const Operand& src) {
2076 EnsureSpace ensure_space(this);
2077 EMIT(0x0F);
2078 EMIT(0x54);
2079 emit_sse_operand(dst, src);
2080 }
2081
2082
orps(XMMRegister dst,const Operand & src)2083 void Assembler::orps(XMMRegister dst, const Operand& src) {
2084 EnsureSpace ensure_space(this);
2085 EMIT(0x0F);
2086 EMIT(0x56);
2087 emit_sse_operand(dst, src);
2088 }
2089
2090
xorps(XMMRegister dst,const Operand & src)2091 void Assembler::xorps(XMMRegister dst, const Operand& src) {
2092 EnsureSpace ensure_space(this);
2093 EMIT(0x0F);
2094 EMIT(0x57);
2095 emit_sse_operand(dst, src);
2096 }
2097
2098
addps(XMMRegister dst,const Operand & src)2099 void Assembler::addps(XMMRegister dst, const Operand& src) {
2100 EnsureSpace ensure_space(this);
2101 EMIT(0x0F);
2102 EMIT(0x58);
2103 emit_sse_operand(dst, src);
2104 }
2105
2106
subps(XMMRegister dst,const Operand & src)2107 void Assembler::subps(XMMRegister dst, const Operand& src) {
2108 EnsureSpace ensure_space(this);
2109 EMIT(0x0F);
2110 EMIT(0x5C);
2111 emit_sse_operand(dst, src);
2112 }
2113
2114
mulps(XMMRegister dst,const Operand & src)2115 void Assembler::mulps(XMMRegister dst, const Operand& src) {
2116 EnsureSpace ensure_space(this);
2117 EMIT(0x0F);
2118 EMIT(0x59);
2119 emit_sse_operand(dst, src);
2120 }
2121
2122
divps(XMMRegister dst,const Operand & src)2123 void Assembler::divps(XMMRegister dst, const Operand& src) {
2124 EnsureSpace ensure_space(this);
2125 EMIT(0x0F);
2126 EMIT(0x5E);
2127 emit_sse_operand(dst, src);
2128 }
2129
2130
sqrtsd(XMMRegister dst,const Operand & src)2131 void Assembler::sqrtsd(XMMRegister dst, const Operand& src) {
2132 EnsureSpace ensure_space(this);
2133 EMIT(0xF2);
2134 EMIT(0x0F);
2135 EMIT(0x51);
2136 emit_sse_operand(dst, src);
2137 }
2138
2139
andpd(XMMRegister dst,XMMRegister src)2140 void Assembler::andpd(XMMRegister dst, XMMRegister src) {
2141 EnsureSpace ensure_space(this);
2142 EMIT(0x66);
2143 EMIT(0x0F);
2144 EMIT(0x54);
2145 emit_sse_operand(dst, src);
2146 }
2147
2148
orpd(XMMRegister dst,XMMRegister src)2149 void Assembler::orpd(XMMRegister dst, XMMRegister src) {
2150 EnsureSpace ensure_space(this);
2151 EMIT(0x66);
2152 EMIT(0x0F);
2153 EMIT(0x56);
2154 emit_sse_operand(dst, src);
2155 }
2156
2157
ucomisd(XMMRegister dst,const Operand & src)2158 void Assembler::ucomisd(XMMRegister dst, const Operand& src) {
2159 EnsureSpace ensure_space(this);
2160 EMIT(0x66);
2161 EMIT(0x0F);
2162 EMIT(0x2E);
2163 emit_sse_operand(dst, src);
2164 }
2165
2166
roundss(XMMRegister dst,XMMRegister src,RoundingMode mode)2167 void Assembler::roundss(XMMRegister dst, XMMRegister src, RoundingMode mode) {
2168 DCHECK(IsEnabled(SSE4_1));
2169 EnsureSpace ensure_space(this);
2170 EMIT(0x66);
2171 EMIT(0x0F);
2172 EMIT(0x3A);
2173 EMIT(0x0A);
2174 emit_sse_operand(dst, src);
2175 // Mask precision exeption.
2176 EMIT(static_cast<byte>(mode) | 0x8);
2177 }
2178
2179
roundsd(XMMRegister dst,XMMRegister src,RoundingMode mode)2180 void Assembler::roundsd(XMMRegister dst, XMMRegister src, RoundingMode mode) {
2181 DCHECK(IsEnabled(SSE4_1));
2182 EnsureSpace ensure_space(this);
2183 EMIT(0x66);
2184 EMIT(0x0F);
2185 EMIT(0x3A);
2186 EMIT(0x0B);
2187 emit_sse_operand(dst, src);
2188 // Mask precision exeption.
2189 EMIT(static_cast<byte>(mode) | 0x8);
2190 }
2191
2192
movmskpd(Register dst,XMMRegister src)2193 void Assembler::movmskpd(Register dst, XMMRegister src) {
2194 EnsureSpace ensure_space(this);
2195 EMIT(0x66);
2196 EMIT(0x0F);
2197 EMIT(0x50);
2198 emit_sse_operand(dst, src);
2199 }
2200
2201
movmskps(Register dst,XMMRegister src)2202 void Assembler::movmskps(Register dst, XMMRegister src) {
2203 EnsureSpace ensure_space(this);
2204 EMIT(0x0F);
2205 EMIT(0x50);
2206 emit_sse_operand(dst, src);
2207 }
2208
2209
pcmpeqd(XMMRegister dst,XMMRegister src)2210 void Assembler::pcmpeqd(XMMRegister dst, XMMRegister src) {
2211 EnsureSpace ensure_space(this);
2212 EMIT(0x66);
2213 EMIT(0x0F);
2214 EMIT(0x76);
2215 emit_sse_operand(dst, src);
2216 }
2217
2218
punpckldq(XMMRegister dst,XMMRegister src)2219 void Assembler::punpckldq(XMMRegister dst, XMMRegister src) {
2220 EnsureSpace ensure_space(this);
2221 EMIT(0x66);
2222 EMIT(0x0F);
2223 EMIT(0x62);
2224 emit_sse_operand(dst, src);
2225 }
2226
2227
punpckhdq(XMMRegister dst,XMMRegister src)2228 void Assembler::punpckhdq(XMMRegister dst, XMMRegister src) {
2229 EnsureSpace ensure_space(this);
2230 EMIT(0x66);
2231 EMIT(0x0F);
2232 EMIT(0x6A);
2233 emit_sse_operand(dst, src);
2234 }
2235
2236
maxsd(XMMRegister dst,const Operand & src)2237 void Assembler::maxsd(XMMRegister dst, const Operand& src) {
2238 EnsureSpace ensure_space(this);
2239 EMIT(0xF2);
2240 EMIT(0x0F);
2241 EMIT(0x5F);
2242 emit_sse_operand(dst, src);
2243 }
2244
2245
minsd(XMMRegister dst,const Operand & src)2246 void Assembler::minsd(XMMRegister dst, const Operand& src) {
2247 EnsureSpace ensure_space(this);
2248 EMIT(0xF2);
2249 EMIT(0x0F);
2250 EMIT(0x5D);
2251 emit_sse_operand(dst, src);
2252 }
2253
2254
cmpltsd(XMMRegister dst,XMMRegister src)2255 void Assembler::cmpltsd(XMMRegister dst, XMMRegister src) {
2256 EnsureSpace ensure_space(this);
2257 EMIT(0xF2);
2258 EMIT(0x0F);
2259 EMIT(0xC2);
2260 emit_sse_operand(dst, src);
2261 EMIT(1); // LT == 1
2262 }
2263
2264
movaps(XMMRegister dst,XMMRegister src)2265 void Assembler::movaps(XMMRegister dst, XMMRegister src) {
2266 EnsureSpace ensure_space(this);
2267 EMIT(0x0F);
2268 EMIT(0x28);
2269 emit_sse_operand(dst, src);
2270 }
2271
2272
shufps(XMMRegister dst,XMMRegister src,byte imm8)2273 void Assembler::shufps(XMMRegister dst, XMMRegister src, byte imm8) {
2274 DCHECK(is_uint8(imm8));
2275 EnsureSpace ensure_space(this);
2276 EMIT(0x0F);
2277 EMIT(0xC6);
2278 emit_sse_operand(dst, src);
2279 EMIT(imm8);
2280 }
2281
2282
movdqa(const Operand & dst,XMMRegister src)2283 void Assembler::movdqa(const Operand& dst, XMMRegister src) {
2284 EnsureSpace ensure_space(this);
2285 EMIT(0x66);
2286 EMIT(0x0F);
2287 EMIT(0x7F);
2288 emit_sse_operand(src, dst);
2289 }
2290
2291
movdqa(XMMRegister dst,const Operand & src)2292 void Assembler::movdqa(XMMRegister dst, const Operand& src) {
2293 EnsureSpace ensure_space(this);
2294 EMIT(0x66);
2295 EMIT(0x0F);
2296 EMIT(0x6F);
2297 emit_sse_operand(dst, src);
2298 }
2299
2300
movdqu(const Operand & dst,XMMRegister src)2301 void Assembler::movdqu(const Operand& dst, XMMRegister src ) {
2302 EnsureSpace ensure_space(this);
2303 EMIT(0xF3);
2304 EMIT(0x0F);
2305 EMIT(0x7F);
2306 emit_sse_operand(src, dst);
2307 }
2308
2309
movdqu(XMMRegister dst,const Operand & src)2310 void Assembler::movdqu(XMMRegister dst, const Operand& src) {
2311 EnsureSpace ensure_space(this);
2312 EMIT(0xF3);
2313 EMIT(0x0F);
2314 EMIT(0x6F);
2315 emit_sse_operand(dst, src);
2316 }
2317
2318
prefetch(const Operand & src,int level)2319 void Assembler::prefetch(const Operand& src, int level) {
2320 DCHECK(is_uint2(level));
2321 EnsureSpace ensure_space(this);
2322 EMIT(0x0F);
2323 EMIT(0x18);
2324 // Emit hint number in Reg position of RegR/M.
2325 XMMRegister code = XMMRegister::from_code(level);
2326 emit_sse_operand(code, src);
2327 }
2328
2329
movsd(const Operand & dst,XMMRegister src)2330 void Assembler::movsd(const Operand& dst, XMMRegister src ) {
2331 EnsureSpace ensure_space(this);
2332 EMIT(0xF2); // double
2333 EMIT(0x0F);
2334 EMIT(0x11); // store
2335 emit_sse_operand(src, dst);
2336 }
2337
2338
movsd(XMMRegister dst,const Operand & src)2339 void Assembler::movsd(XMMRegister dst, const Operand& src) {
2340 EnsureSpace ensure_space(this);
2341 EMIT(0xF2); // double
2342 EMIT(0x0F);
2343 EMIT(0x10); // load
2344 emit_sse_operand(dst, src);
2345 }
2346
2347
movss(const Operand & dst,XMMRegister src)2348 void Assembler::movss(const Operand& dst, XMMRegister src ) {
2349 EnsureSpace ensure_space(this);
2350 EMIT(0xF3); // float
2351 EMIT(0x0F);
2352 EMIT(0x11); // store
2353 emit_sse_operand(src, dst);
2354 }
2355
2356
movss(XMMRegister dst,const Operand & src)2357 void Assembler::movss(XMMRegister dst, const Operand& src) {
2358 EnsureSpace ensure_space(this);
2359 EMIT(0xF3); // float
2360 EMIT(0x0F);
2361 EMIT(0x10); // load
2362 emit_sse_operand(dst, src);
2363 }
2364
2365
movd(XMMRegister dst,const Operand & src)2366 void Assembler::movd(XMMRegister dst, const Operand& src) {
2367 EnsureSpace ensure_space(this);
2368 EMIT(0x66);
2369 EMIT(0x0F);
2370 EMIT(0x6E);
2371 emit_sse_operand(dst, src);
2372 }
2373
2374
movd(const Operand & dst,XMMRegister src)2375 void Assembler::movd(const Operand& dst, XMMRegister src) {
2376 EnsureSpace ensure_space(this);
2377 EMIT(0x66);
2378 EMIT(0x0F);
2379 EMIT(0x7E);
2380 emit_sse_operand(src, dst);
2381 }
2382
2383
extractps(Register dst,XMMRegister src,byte imm8)2384 void Assembler::extractps(Register dst, XMMRegister src, byte imm8) {
2385 DCHECK(IsEnabled(SSE4_1));
2386 DCHECK(is_uint8(imm8));
2387 EnsureSpace ensure_space(this);
2388 EMIT(0x66);
2389 EMIT(0x0F);
2390 EMIT(0x3A);
2391 EMIT(0x17);
2392 emit_sse_operand(src, dst);
2393 EMIT(imm8);
2394 }
2395
2396
pand(XMMRegister dst,XMMRegister src)2397 void Assembler::pand(XMMRegister dst, XMMRegister src) {
2398 EnsureSpace ensure_space(this);
2399 EMIT(0x66);
2400 EMIT(0x0F);
2401 EMIT(0xDB);
2402 emit_sse_operand(dst, src);
2403 }
2404
2405
pxor(XMMRegister dst,XMMRegister src)2406 void Assembler::pxor(XMMRegister dst, XMMRegister src) {
2407 EnsureSpace ensure_space(this);
2408 EMIT(0x66);
2409 EMIT(0x0F);
2410 EMIT(0xEF);
2411 emit_sse_operand(dst, src);
2412 }
2413
2414
por(XMMRegister dst,XMMRegister src)2415 void Assembler::por(XMMRegister dst, XMMRegister src) {
2416 EnsureSpace ensure_space(this);
2417 EMIT(0x66);
2418 EMIT(0x0F);
2419 EMIT(0xEB);
2420 emit_sse_operand(dst, src);
2421 }
2422
2423
ptest(XMMRegister dst,XMMRegister src)2424 void Assembler::ptest(XMMRegister dst, XMMRegister src) {
2425 DCHECK(IsEnabled(SSE4_1));
2426 EnsureSpace ensure_space(this);
2427 EMIT(0x66);
2428 EMIT(0x0F);
2429 EMIT(0x38);
2430 EMIT(0x17);
2431 emit_sse_operand(dst, src);
2432 }
2433
2434
pslld(XMMRegister reg,int8_t shift)2435 void Assembler::pslld(XMMRegister reg, int8_t shift) {
2436 EnsureSpace ensure_space(this);
2437 EMIT(0x66);
2438 EMIT(0x0F);
2439 EMIT(0x72);
2440 emit_sse_operand(esi, reg); // esi == 6
2441 EMIT(shift);
2442 }
2443
2444
psrld(XMMRegister reg,int8_t shift)2445 void Assembler::psrld(XMMRegister reg, int8_t shift) {
2446 EnsureSpace ensure_space(this);
2447 EMIT(0x66);
2448 EMIT(0x0F);
2449 EMIT(0x72);
2450 emit_sse_operand(edx, reg); // edx == 2
2451 EMIT(shift);
2452 }
2453
2454
psllq(XMMRegister reg,int8_t shift)2455 void Assembler::psllq(XMMRegister reg, int8_t shift) {
2456 EnsureSpace ensure_space(this);
2457 EMIT(0x66);
2458 EMIT(0x0F);
2459 EMIT(0x73);
2460 emit_sse_operand(esi, reg); // esi == 6
2461 EMIT(shift);
2462 }
2463
2464
psllq(XMMRegister dst,XMMRegister src)2465 void Assembler::psllq(XMMRegister dst, XMMRegister src) {
2466 EnsureSpace ensure_space(this);
2467 EMIT(0x66);
2468 EMIT(0x0F);
2469 EMIT(0xF3);
2470 emit_sse_operand(dst, src);
2471 }
2472
2473
psrlq(XMMRegister reg,int8_t shift)2474 void Assembler::psrlq(XMMRegister reg, int8_t shift) {
2475 EnsureSpace ensure_space(this);
2476 EMIT(0x66);
2477 EMIT(0x0F);
2478 EMIT(0x73);
2479 emit_sse_operand(edx, reg); // edx == 2
2480 EMIT(shift);
2481 }
2482
2483
psrlq(XMMRegister dst,XMMRegister src)2484 void Assembler::psrlq(XMMRegister dst, XMMRegister src) {
2485 EnsureSpace ensure_space(this);
2486 EMIT(0x66);
2487 EMIT(0x0F);
2488 EMIT(0xD3);
2489 emit_sse_operand(dst, src);
2490 }
2491
2492
pshufd(XMMRegister dst,XMMRegister src,uint8_t shuffle)2493 void Assembler::pshufd(XMMRegister dst, XMMRegister src, uint8_t shuffle) {
2494 EnsureSpace ensure_space(this);
2495 EMIT(0x66);
2496 EMIT(0x0F);
2497 EMIT(0x70);
2498 emit_sse_operand(dst, src);
2499 EMIT(shuffle);
2500 }
2501
2502
pextrd(const Operand & dst,XMMRegister src,int8_t offset)2503 void Assembler::pextrd(const Operand& dst, XMMRegister src, int8_t offset) {
2504 DCHECK(IsEnabled(SSE4_1));
2505 EnsureSpace ensure_space(this);
2506 EMIT(0x66);
2507 EMIT(0x0F);
2508 EMIT(0x3A);
2509 EMIT(0x16);
2510 emit_sse_operand(src, dst);
2511 EMIT(offset);
2512 }
2513
2514
pinsrd(XMMRegister dst,const Operand & src,int8_t offset)2515 void Assembler::pinsrd(XMMRegister dst, const Operand& src, int8_t offset) {
2516 DCHECK(IsEnabled(SSE4_1));
2517 EnsureSpace ensure_space(this);
2518 EMIT(0x66);
2519 EMIT(0x0F);
2520 EMIT(0x3A);
2521 EMIT(0x22);
2522 emit_sse_operand(dst, src);
2523 EMIT(offset);
2524 }
2525
2526
addss(XMMRegister dst,const Operand & src)2527 void Assembler::addss(XMMRegister dst, const Operand& src) {
2528 EnsureSpace ensure_space(this);
2529 EMIT(0xF3);
2530 EMIT(0x0F);
2531 EMIT(0x58);
2532 emit_sse_operand(dst, src);
2533 }
2534
2535
subss(XMMRegister dst,const Operand & src)2536 void Assembler::subss(XMMRegister dst, const Operand& src) {
2537 EnsureSpace ensure_space(this);
2538 EMIT(0xF3);
2539 EMIT(0x0F);
2540 EMIT(0x5C);
2541 emit_sse_operand(dst, src);
2542 }
2543
2544
mulss(XMMRegister dst,const Operand & src)2545 void Assembler::mulss(XMMRegister dst, const Operand& src) {
2546 EnsureSpace ensure_space(this);
2547 EMIT(0xF3);
2548 EMIT(0x0F);
2549 EMIT(0x59);
2550 emit_sse_operand(dst, src);
2551 }
2552
2553
divss(XMMRegister dst,const Operand & src)2554 void Assembler::divss(XMMRegister dst, const Operand& src) {
2555 EnsureSpace ensure_space(this);
2556 EMIT(0xF3);
2557 EMIT(0x0F);
2558 EMIT(0x5E);
2559 emit_sse_operand(dst, src);
2560 }
2561
2562
sqrtss(XMMRegister dst,const Operand & src)2563 void Assembler::sqrtss(XMMRegister dst, const Operand& src) {
2564 EnsureSpace ensure_space(this);
2565 EMIT(0xF3);
2566 EMIT(0x0F);
2567 EMIT(0x51);
2568 emit_sse_operand(dst, src);
2569 }
2570
2571
ucomiss(XMMRegister dst,const Operand & src)2572 void Assembler::ucomiss(XMMRegister dst, const Operand& src) {
2573 EnsureSpace ensure_space(this);
2574 EMIT(0x0f);
2575 EMIT(0x2e);
2576 emit_sse_operand(dst, src);
2577 }
2578
2579
maxss(XMMRegister dst,const Operand & src)2580 void Assembler::maxss(XMMRegister dst, const Operand& src) {
2581 EnsureSpace ensure_space(this);
2582 EMIT(0xF3);
2583 EMIT(0x0F);
2584 EMIT(0x5F);
2585 emit_sse_operand(dst, src);
2586 }
2587
2588
minss(XMMRegister dst,const Operand & src)2589 void Assembler::minss(XMMRegister dst, const Operand& src) {
2590 EnsureSpace ensure_space(this);
2591 EMIT(0xF3);
2592 EMIT(0x0F);
2593 EMIT(0x5D);
2594 emit_sse_operand(dst, src);
2595 }
2596
2597
2598 // AVX instructions
vfmasd(byte op,XMMRegister dst,XMMRegister src1,const Operand & src2)2599 void Assembler::vfmasd(byte op, XMMRegister dst, XMMRegister src1,
2600 const Operand& src2) {
2601 DCHECK(IsEnabled(FMA3));
2602 EnsureSpace ensure_space(this);
2603 emit_vex_prefix(src1, kLIG, k66, k0F38, kW1);
2604 EMIT(op);
2605 emit_sse_operand(dst, src2);
2606 }
2607
2608
vfmass(byte op,XMMRegister dst,XMMRegister src1,const Operand & src2)2609 void Assembler::vfmass(byte op, XMMRegister dst, XMMRegister src1,
2610 const Operand& src2) {
2611 DCHECK(IsEnabled(FMA3));
2612 EnsureSpace ensure_space(this);
2613 emit_vex_prefix(src1, kLIG, k66, k0F38, kW0);
2614 EMIT(op);
2615 emit_sse_operand(dst, src2);
2616 }
2617
2618
vsd(byte op,XMMRegister dst,XMMRegister src1,const Operand & src2)2619 void Assembler::vsd(byte op, XMMRegister dst, XMMRegister src1,
2620 const Operand& src2) {
2621 DCHECK(IsEnabled(AVX));
2622 EnsureSpace ensure_space(this);
2623 emit_vex_prefix(src1, kLIG, kF2, k0F, kWIG);
2624 EMIT(op);
2625 emit_sse_operand(dst, src2);
2626 }
2627
2628
vss(byte op,XMMRegister dst,XMMRegister src1,const Operand & src2)2629 void Assembler::vss(byte op, XMMRegister dst, XMMRegister src1,
2630 const Operand& src2) {
2631 DCHECK(IsEnabled(AVX));
2632 EnsureSpace ensure_space(this);
2633 emit_vex_prefix(src1, kLIG, kF3, k0F, kWIG);
2634 EMIT(op);
2635 emit_sse_operand(dst, src2);
2636 }
2637
2638
vps(byte op,XMMRegister dst,XMMRegister src1,const Operand & src2)2639 void Assembler::vps(byte op, XMMRegister dst, XMMRegister src1,
2640 const Operand& src2) {
2641 DCHECK(IsEnabled(AVX));
2642 EnsureSpace ensure_space(this);
2643 emit_vex_prefix(src1, kL128, kNone, k0F, kWIG);
2644 EMIT(op);
2645 emit_sse_operand(dst, src2);
2646 }
2647
2648
vpd(byte op,XMMRegister dst,XMMRegister src1,const Operand & src2)2649 void Assembler::vpd(byte op, XMMRegister dst, XMMRegister src1,
2650 const Operand& src2) {
2651 DCHECK(IsEnabled(AVX));
2652 EnsureSpace ensure_space(this);
2653 emit_vex_prefix(src1, kL128, k66, k0F, kWIG);
2654 EMIT(op);
2655 emit_sse_operand(dst, src2);
2656 }
2657
2658
bmi1(byte op,Register reg,Register vreg,const Operand & rm)2659 void Assembler::bmi1(byte op, Register reg, Register vreg, const Operand& rm) {
2660 DCHECK(IsEnabled(BMI1));
2661 EnsureSpace ensure_space(this);
2662 emit_vex_prefix(vreg, kLZ, kNone, k0F38, kW0);
2663 EMIT(op);
2664 emit_operand(reg, rm);
2665 }
2666
2667
tzcnt(Register dst,const Operand & src)2668 void Assembler::tzcnt(Register dst, const Operand& src) {
2669 DCHECK(IsEnabled(BMI1));
2670 EnsureSpace ensure_space(this);
2671 EMIT(0xF3);
2672 EMIT(0x0F);
2673 EMIT(0xBC);
2674 emit_operand(dst, src);
2675 }
2676
2677
lzcnt(Register dst,const Operand & src)2678 void Assembler::lzcnt(Register dst, const Operand& src) {
2679 DCHECK(IsEnabled(LZCNT));
2680 EnsureSpace ensure_space(this);
2681 EMIT(0xF3);
2682 EMIT(0x0F);
2683 EMIT(0xBD);
2684 emit_operand(dst, src);
2685 }
2686
2687
popcnt(Register dst,const Operand & src)2688 void Assembler::popcnt(Register dst, const Operand& src) {
2689 DCHECK(IsEnabled(POPCNT));
2690 EnsureSpace ensure_space(this);
2691 EMIT(0xF3);
2692 EMIT(0x0F);
2693 EMIT(0xB8);
2694 emit_operand(dst, src);
2695 }
2696
2697
bmi2(SIMDPrefix pp,byte op,Register reg,Register vreg,const Operand & rm)2698 void Assembler::bmi2(SIMDPrefix pp, byte op, Register reg, Register vreg,
2699 const Operand& rm) {
2700 DCHECK(IsEnabled(BMI2));
2701 EnsureSpace ensure_space(this);
2702 emit_vex_prefix(vreg, kLZ, pp, k0F38, kW0);
2703 EMIT(op);
2704 emit_operand(reg, rm);
2705 }
2706
2707
rorx(Register dst,const Operand & src,byte imm8)2708 void Assembler::rorx(Register dst, const Operand& src, byte imm8) {
2709 DCHECK(IsEnabled(BMI2));
2710 DCHECK(is_uint8(imm8));
2711 Register vreg = {0}; // VEX.vvvv unused
2712 EnsureSpace ensure_space(this);
2713 emit_vex_prefix(vreg, kLZ, kF2, k0F3A, kW0);
2714 EMIT(0xF0);
2715 emit_operand(dst, src);
2716 EMIT(imm8);
2717 }
2718
2719
emit_sse_operand(XMMRegister reg,const Operand & adr)2720 void Assembler::emit_sse_operand(XMMRegister reg, const Operand& adr) {
2721 Register ireg = { reg.code() };
2722 emit_operand(ireg, adr);
2723 }
2724
2725
emit_sse_operand(XMMRegister dst,XMMRegister src)2726 void Assembler::emit_sse_operand(XMMRegister dst, XMMRegister src) {
2727 EMIT(0xC0 | dst.code() << 3 | src.code());
2728 }
2729
2730
emit_sse_operand(Register dst,XMMRegister src)2731 void Assembler::emit_sse_operand(Register dst, XMMRegister src) {
2732 EMIT(0xC0 | dst.code() << 3 | src.code());
2733 }
2734
2735
emit_sse_operand(XMMRegister dst,Register src)2736 void Assembler::emit_sse_operand(XMMRegister dst, Register src) {
2737 EMIT(0xC0 | (dst.code() << 3) | src.code());
2738 }
2739
2740
emit_vex_prefix(XMMRegister vreg,VectorLength l,SIMDPrefix pp,LeadingOpcode mm,VexW w)2741 void Assembler::emit_vex_prefix(XMMRegister vreg, VectorLength l, SIMDPrefix pp,
2742 LeadingOpcode mm, VexW w) {
2743 if (mm != k0F || w != kW0) {
2744 EMIT(0xc4);
2745 // Change RXB from "110" to "111" to align with gdb disassembler.
2746 EMIT(0xe0 | mm);
2747 EMIT(w | ((~vreg.code() & 0xf) << 3) | l | pp);
2748 } else {
2749 EMIT(0xc5);
2750 EMIT(((~vreg.code()) << 3) | l | pp);
2751 }
2752 }
2753
2754
emit_vex_prefix(Register vreg,VectorLength l,SIMDPrefix pp,LeadingOpcode mm,VexW w)2755 void Assembler::emit_vex_prefix(Register vreg, VectorLength l, SIMDPrefix pp,
2756 LeadingOpcode mm, VexW w) {
2757 XMMRegister ivreg = {vreg.code()};
2758 emit_vex_prefix(ivreg, l, pp, mm, w);
2759 }
2760
2761
GrowBuffer()2762 void Assembler::GrowBuffer() {
2763 DCHECK(buffer_overflow());
2764 if (!own_buffer_) FATAL("external code buffer is too small");
2765
2766 // Compute new buffer size.
2767 CodeDesc desc; // the new buffer
2768 desc.buffer_size = 2 * buffer_size_;
2769
2770 // Some internal data structures overflow for very large buffers,
2771 // they must ensure that kMaximalBufferSize is not too large.
2772 if ((desc.buffer_size > kMaximalBufferSize) ||
2773 (desc.buffer_size > isolate()->heap()->MaxOldGenerationSize())) {
2774 V8::FatalProcessOutOfMemory("Assembler::GrowBuffer");
2775 }
2776
2777 // Set up new buffer.
2778 desc.buffer = NewArray<byte>(desc.buffer_size);
2779 desc.origin = this;
2780 desc.instr_size = pc_offset();
2781 desc.reloc_size = (buffer_ + buffer_size_) - (reloc_info_writer.pos());
2782
2783 // Clear the buffer in debug mode. Use 'int3' instructions to make
2784 // sure to get into problems if we ever run uninitialized code.
2785 #ifdef DEBUG
2786 memset(desc.buffer, 0xCC, desc.buffer_size);
2787 #endif
2788
2789 // Copy the data.
2790 int pc_delta = desc.buffer - buffer_;
2791 int rc_delta = (desc.buffer + desc.buffer_size) - (buffer_ + buffer_size_);
2792 MemMove(desc.buffer, buffer_, desc.instr_size);
2793 MemMove(rc_delta + reloc_info_writer.pos(), reloc_info_writer.pos(),
2794 desc.reloc_size);
2795
2796 // Switch buffers.
2797 DeleteArray(buffer_);
2798 buffer_ = desc.buffer;
2799 buffer_size_ = desc.buffer_size;
2800 pc_ += pc_delta;
2801 reloc_info_writer.Reposition(reloc_info_writer.pos() + rc_delta,
2802 reloc_info_writer.last_pc() + pc_delta);
2803
2804 // Relocate internal references.
2805 for (auto pos : internal_reference_positions_) {
2806 int32_t* p = reinterpret_cast<int32_t*>(buffer_ + pos);
2807 *p += pc_delta;
2808 }
2809
2810 DCHECK(!buffer_overflow());
2811 }
2812
2813
emit_arith_b(int op1,int op2,Register dst,int imm8)2814 void Assembler::emit_arith_b(int op1, int op2, Register dst, int imm8) {
2815 DCHECK(is_uint8(op1) && is_uint8(op2)); // wrong opcode
2816 DCHECK(is_uint8(imm8));
2817 DCHECK((op1 & 0x01) == 0); // should be 8bit operation
2818 EMIT(op1);
2819 EMIT(op2 | dst.code());
2820 EMIT(imm8);
2821 }
2822
2823
emit_arith(int sel,Operand dst,const Immediate & x)2824 void Assembler::emit_arith(int sel, Operand dst, const Immediate& x) {
2825 DCHECK((0 <= sel) && (sel <= 7));
2826 Register ireg = { sel };
2827 if (x.is_int8()) {
2828 EMIT(0x83); // using a sign-extended 8-bit immediate.
2829 emit_operand(ireg, dst);
2830 EMIT(x.x_ & 0xFF);
2831 } else if (dst.is_reg(eax)) {
2832 EMIT((sel << 3) | 0x05); // short form if the destination is eax.
2833 emit(x);
2834 } else {
2835 EMIT(0x81); // using a literal 32-bit immediate.
2836 emit_operand(ireg, dst);
2837 emit(x);
2838 }
2839 }
2840
2841
emit_operand(Register reg,const Operand & adr)2842 void Assembler::emit_operand(Register reg, const Operand& adr) {
2843 const unsigned length = adr.len_;
2844 DCHECK(length > 0);
2845
2846 // Emit updated ModRM byte containing the given register.
2847 pc_[0] = (adr.buf_[0] & ~0x38) | (reg.code() << 3);
2848
2849 // Emit the rest of the encoded operand.
2850 for (unsigned i = 1; i < length; i++) pc_[i] = adr.buf_[i];
2851 pc_ += length;
2852
2853 // Emit relocation information if necessary.
2854 if (length >= sizeof(int32_t) && !RelocInfo::IsNone(adr.rmode_)) {
2855 pc_ -= sizeof(int32_t); // pc_ must be *at* disp32
2856 RecordRelocInfo(adr.rmode_);
2857 if (adr.rmode_ == RelocInfo::INTERNAL_REFERENCE) { // Fixup for labels
2858 emit_label(*reinterpret_cast<Label**>(pc_));
2859 } else {
2860 pc_ += sizeof(int32_t);
2861 }
2862 }
2863 }
2864
2865
emit_label(Label * label)2866 void Assembler::emit_label(Label* label) {
2867 if (label->is_bound()) {
2868 internal_reference_positions_.push_back(pc_offset());
2869 emit(reinterpret_cast<uint32_t>(buffer_ + label->pos()));
2870 } else {
2871 emit_disp(label, Displacement::CODE_ABSOLUTE);
2872 }
2873 }
2874
2875
emit_farith(int b1,int b2,int i)2876 void Assembler::emit_farith(int b1, int b2, int i) {
2877 DCHECK(is_uint8(b1) && is_uint8(b2)); // wrong opcode
2878 DCHECK(0 <= i && i < 8); // illegal stack offset
2879 EMIT(b1);
2880 EMIT(b2 + i);
2881 }
2882
2883
db(uint8_t data)2884 void Assembler::db(uint8_t data) {
2885 EnsureSpace ensure_space(this);
2886 EMIT(data);
2887 }
2888
2889
dd(uint32_t data)2890 void Assembler::dd(uint32_t data) {
2891 EnsureSpace ensure_space(this);
2892 emit(data);
2893 }
2894
2895
dq(uint64_t data)2896 void Assembler::dq(uint64_t data) {
2897 EnsureSpace ensure_space(this);
2898 emit_q(data);
2899 }
2900
2901
dd(Label * label)2902 void Assembler::dd(Label* label) {
2903 EnsureSpace ensure_space(this);
2904 RecordRelocInfo(RelocInfo::INTERNAL_REFERENCE);
2905 emit_label(label);
2906 }
2907
2908
RecordRelocInfo(RelocInfo::Mode rmode,intptr_t data)2909 void Assembler::RecordRelocInfo(RelocInfo::Mode rmode, intptr_t data) {
2910 DCHECK(!RelocInfo::IsNone(rmode));
2911 // Don't record external references unless the heap will be serialized.
2912 if (rmode == RelocInfo::EXTERNAL_REFERENCE &&
2913 !serializer_enabled() && !emit_debug_code()) {
2914 return;
2915 }
2916 RelocInfo rinfo(isolate(), pc_, rmode, data, NULL);
2917 reloc_info_writer.Write(&rinfo);
2918 }
2919
2920
2921 #ifdef GENERATED_CODE_COVERAGE
2922 static FILE* coverage_log = NULL;
2923
2924
InitCoverageLog()2925 static void InitCoverageLog() {
2926 char* file_name = getenv("V8_GENERATED_CODE_COVERAGE_LOG");
2927 if (file_name != NULL) {
2928 coverage_log = fopen(file_name, "aw+");
2929 }
2930 }
2931
2932
LogGeneratedCodeCoverage(const char * file_line)2933 void LogGeneratedCodeCoverage(const char* file_line) {
2934 const char* return_address = (&file_line)[-1];
2935 char* push_insn = const_cast<char*>(return_address - 12);
2936 push_insn[0] = 0xeb; // Relative branch insn.
2937 push_insn[1] = 13; // Skip over coverage insns.
2938 if (coverage_log != NULL) {
2939 fprintf(coverage_log, "%s\n", file_line);
2940 fflush(coverage_log);
2941 }
2942 }
2943
2944 #endif
2945
2946 } // namespace internal
2947 } // namespace v8
2948
2949 #endif // V8_TARGET_ARCH_IA32
2950