• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 
2 // Copyright (c) 1994-2006 Sun Microsystems Inc.
3 // All Rights Reserved.
4 //
5 // Redistribution and use in source and binary forms, with or without
6 // modification, are permitted provided that the following conditions are
7 // met:
8 //
9 // - Redistributions of source code must retain the above copyright notice,
10 // this list of conditions and the following disclaimer.
11 //
12 // - Redistribution in binary form must reproduce the above copyright
13 // notice, this list of conditions and the following disclaimer in the
14 // documentation and/or other materials provided with the distribution.
15 //
16 // - Neither the name of Sun Microsystems or the names of contributors may
17 // be used to endorse or promote products derived from this software without
18 // specific prior written permission.
19 //
20 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
21 // IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
22 // THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
24 // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
25 // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
26 // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
27 // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
28 // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
29 // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
30 // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
31 
32 // The original source code covered by the above license above has been
33 // modified significantly by Google Inc.
34 // Copyright 2012 the V8 project authors. All rights reserved.
35 
36 
37 #ifndef V8_MIPS_ASSEMBLER_MIPS_INL_H_
38 #define V8_MIPS_ASSEMBLER_MIPS_INL_H_
39 
40 #include "src/mips64/assembler-mips64.h"
41 
42 #include "src/assembler.h"
43 #include "src/debug/debug.h"
44 
45 
46 namespace v8 {
47 namespace internal {
48 
49 
SupportsCrankshaft()50 bool CpuFeatures::SupportsCrankshaft() { return IsSupported(FPU); }
51 
52 
53 // -----------------------------------------------------------------------------
54 // Operand and MemOperand.
55 
Operand(int64_t immediate,RelocInfo::Mode rmode)56 Operand::Operand(int64_t immediate, RelocInfo::Mode rmode)  {
57   rm_ = no_reg;
58   imm64_ = immediate;
59   rmode_ = rmode;
60 }
61 
62 
Operand(const ExternalReference & f)63 Operand::Operand(const ExternalReference& f)  {
64   rm_ = no_reg;
65   imm64_ = reinterpret_cast<int64_t>(f.address());
66   rmode_ = RelocInfo::EXTERNAL_REFERENCE;
67 }
68 
69 
Operand(Smi * value)70 Operand::Operand(Smi* value) {
71   rm_ = no_reg;
72   imm64_ =  reinterpret_cast<intptr_t>(value);
73   rmode_ = RelocInfo::NONE32;
74 }
75 
76 
Operand(Register rm)77 Operand::Operand(Register rm) {
78   rm_ = rm;
79 }
80 
81 
is_reg()82 bool Operand::is_reg() const {
83   return rm_.is_valid();
84 }
85 
86 
87 // -----------------------------------------------------------------------------
88 // RelocInfo.
89 
apply(intptr_t delta)90 void RelocInfo::apply(intptr_t delta) {
91   if (IsInternalReference(rmode_) || IsInternalReferenceEncoded(rmode_)) {
92     // Absolute code pointer inside code object moves with the code object.
93     byte* p = reinterpret_cast<byte*>(pc_);
94     int count = Assembler::RelocateInternalReference(rmode_, p, delta);
95     Assembler::FlushICache(isolate_, p, count * sizeof(uint32_t));
96   }
97 }
98 
99 
target_address()100 Address RelocInfo::target_address() {
101   DCHECK(IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_));
102   return Assembler::target_address_at(pc_, host_);
103 }
104 
105 
target_address_address()106 Address RelocInfo::target_address_address() {
107   DCHECK(IsCodeTarget(rmode_) ||
108          IsRuntimeEntry(rmode_) ||
109          rmode_ == EMBEDDED_OBJECT ||
110          rmode_ == EXTERNAL_REFERENCE);
111   // Read the address of the word containing the target_address in an
112   // instruction stream.
113   // The only architecture-independent user of this function is the serializer.
114   // The serializer uses it to find out how many raw bytes of instruction to
115   // output before the next target.
116   // For an instruction like LUI/ORI where the target bits are mixed into the
117   // instruction bits, the size of the target will be zero, indicating that the
118   // serializer should not step forward in memory after a target is resolved
119   // and written. In this case the target_address_address function should
120   // return the end of the instructions to be patched, allowing the
121   // deserializer to deserialize the instructions as raw bytes and put them in
122   // place, ready to be patched with the target. After jump optimization,
123   // that is the address of the instruction that follows J/JAL/JR/JALR
124   // instruction.
125   // return reinterpret_cast<Address>(
126   //  pc_ + Assembler::kInstructionsFor32BitConstant * Assembler::kInstrSize);
127   return reinterpret_cast<Address>(
128     pc_ + Assembler::kInstructionsFor64BitConstant * Assembler::kInstrSize);
129 }
130 
131 
constant_pool_entry_address()132 Address RelocInfo::constant_pool_entry_address() {
133   UNREACHABLE();
134   return NULL;
135 }
136 
137 
target_address_size()138 int RelocInfo::target_address_size() {
139   return Assembler::kSpecialTargetSize;
140 }
141 
142 
set_target_address(Address target,WriteBarrierMode write_barrier_mode,ICacheFlushMode icache_flush_mode)143 void RelocInfo::set_target_address(Address target,
144                                    WriteBarrierMode write_barrier_mode,
145                                    ICacheFlushMode icache_flush_mode) {
146   DCHECK(IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_));
147   Assembler::set_target_address_at(isolate_, pc_, host_, target,
148                                    icache_flush_mode);
149   if (write_barrier_mode == UPDATE_WRITE_BARRIER &&
150       host() != NULL && IsCodeTarget(rmode_)) {
151     Object* target_code = Code::GetCodeFromTargetAddress(target);
152     host()->GetHeap()->incremental_marking()->RecordWriteIntoCode(
153         host(), this, HeapObject::cast(target_code));
154   }
155 }
156 
157 
target_address_from_return_address(Address pc)158 Address Assembler::target_address_from_return_address(Address pc) {
159   return pc - kCallTargetAddressOffset;
160 }
161 
162 
set_target_internal_reference_encoded_at(Address pc,Address target)163 void Assembler::set_target_internal_reference_encoded_at(Address pc,
164                                                          Address target) {
165   // Encoded internal references are j/jal instructions.
166   Instr instr = Assembler::instr_at(pc + 0 * Assembler::kInstrSize);
167 
168   uint64_t imm28 =
169       (reinterpret_cast<uint64_t>(target) & static_cast<uint64_t>(kImm28Mask));
170 
171   instr &= ~kImm26Mask;
172   uint64_t imm26 = imm28 >> 2;
173   DCHECK(is_uint26(imm26));
174 
175   instr_at_put(pc, instr | (imm26 & kImm26Mask));
176   // Currently used only by deserializer, and all code will be flushed
177   // after complete deserialization, no need to flush on each reference.
178 }
179 
180 
deserialization_set_target_internal_reference_at(Isolate * isolate,Address pc,Address target,RelocInfo::Mode mode)181 void Assembler::deserialization_set_target_internal_reference_at(
182     Isolate* isolate, Address pc, Address target, RelocInfo::Mode mode) {
183   if (mode == RelocInfo::INTERNAL_REFERENCE_ENCODED) {
184     DCHECK(IsJ(instr_at(pc)));
185     set_target_internal_reference_encoded_at(pc, target);
186   } else {
187     DCHECK(mode == RelocInfo::INTERNAL_REFERENCE);
188     Memory::Address_at(pc) = target;
189   }
190 }
191 
192 
target_object()193 Object* RelocInfo::target_object() {
194   DCHECK(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
195   return reinterpret_cast<Object*>(Assembler::target_address_at(pc_, host_));
196 }
197 
198 
target_object_handle(Assembler * origin)199 Handle<Object> RelocInfo::target_object_handle(Assembler* origin) {
200   DCHECK(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
201   return Handle<Object>(reinterpret_cast<Object**>(
202       Assembler::target_address_at(pc_, host_)));
203 }
204 
205 
set_target_object(Object * target,WriteBarrierMode write_barrier_mode,ICacheFlushMode icache_flush_mode)206 void RelocInfo::set_target_object(Object* target,
207                                   WriteBarrierMode write_barrier_mode,
208                                   ICacheFlushMode icache_flush_mode) {
209   DCHECK(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
210   Assembler::set_target_address_at(isolate_, pc_, host_,
211                                    reinterpret_cast<Address>(target),
212                                    icache_flush_mode);
213   if (write_barrier_mode == UPDATE_WRITE_BARRIER &&
214       host() != NULL &&
215       target->IsHeapObject()) {
216     host()->GetHeap()->incremental_marking()->RecordWrite(
217         host(), &Memory::Object_at(pc_), HeapObject::cast(target));
218   }
219 }
220 
221 
target_external_reference()222 Address RelocInfo::target_external_reference() {
223   DCHECK(rmode_ == EXTERNAL_REFERENCE);
224   return Assembler::target_address_at(pc_, host_);
225 }
226 
227 
target_internal_reference()228 Address RelocInfo::target_internal_reference() {
229   if (rmode_ == INTERNAL_REFERENCE) {
230     return Memory::Address_at(pc_);
231   } else {
232     // Encoded internal references are j/jal instructions.
233     DCHECK(rmode_ == INTERNAL_REFERENCE_ENCODED);
234     Instr instr = Assembler::instr_at(pc_ + 0 * Assembler::kInstrSize);
235     instr &= kImm26Mask;
236     uint64_t imm28 = instr << 2;
237     uint64_t segment =
238         (reinterpret_cast<uint64_t>(pc_) & ~static_cast<uint64_t>(kImm28Mask));
239     return reinterpret_cast<Address>(segment | imm28);
240   }
241 }
242 
243 
target_internal_reference_address()244 Address RelocInfo::target_internal_reference_address() {
245   DCHECK(rmode_ == INTERNAL_REFERENCE || rmode_ == INTERNAL_REFERENCE_ENCODED);
246   return reinterpret_cast<Address>(pc_);
247 }
248 
249 
target_runtime_entry(Assembler * origin)250 Address RelocInfo::target_runtime_entry(Assembler* origin) {
251   DCHECK(IsRuntimeEntry(rmode_));
252   return target_address();
253 }
254 
255 
set_target_runtime_entry(Address target,WriteBarrierMode write_barrier_mode,ICacheFlushMode icache_flush_mode)256 void RelocInfo::set_target_runtime_entry(Address target,
257                                          WriteBarrierMode write_barrier_mode,
258                                          ICacheFlushMode icache_flush_mode) {
259   DCHECK(IsRuntimeEntry(rmode_));
260   if (target_address() != target)
261     set_target_address(target, write_barrier_mode, icache_flush_mode);
262 }
263 
264 
target_cell_handle()265 Handle<Cell> RelocInfo::target_cell_handle() {
266   DCHECK(rmode_ == RelocInfo::CELL);
267   Address address = Memory::Address_at(pc_);
268   return Handle<Cell>(reinterpret_cast<Cell**>(address));
269 }
270 
271 
target_cell()272 Cell* RelocInfo::target_cell() {
273   DCHECK(rmode_ == RelocInfo::CELL);
274   return Cell::FromValueAddress(Memory::Address_at(pc_));
275 }
276 
277 
set_target_cell(Cell * cell,WriteBarrierMode write_barrier_mode,ICacheFlushMode icache_flush_mode)278 void RelocInfo::set_target_cell(Cell* cell,
279                                 WriteBarrierMode write_barrier_mode,
280                                 ICacheFlushMode icache_flush_mode) {
281   DCHECK(rmode_ == RelocInfo::CELL);
282   Address address = cell->address() + Cell::kValueOffset;
283   Memory::Address_at(pc_) = address;
284   if (write_barrier_mode == UPDATE_WRITE_BARRIER && host() != NULL) {
285     // TODO(1550) We are passing NULL as a slot because cell can never be on
286     // evacuation candidate.
287     host()->GetHeap()->incremental_marking()->RecordWrite(
288         host(), NULL, cell);
289   }
290 }
291 
292 
293 static const int kNoCodeAgeSequenceLength = 9 * Assembler::kInstrSize;
294 
295 
code_age_stub_handle(Assembler * origin)296 Handle<Object> RelocInfo::code_age_stub_handle(Assembler* origin) {
297   UNREACHABLE();  // This should never be reached on Arm.
298   return Handle<Object>();
299 }
300 
301 
code_age_stub()302 Code* RelocInfo::code_age_stub() {
303   DCHECK(rmode_ == RelocInfo::CODE_AGE_SEQUENCE);
304   return Code::GetCodeFromTargetAddress(
305       Assembler::target_address_at(pc_ + Assembler::kInstrSize, host_));
306 }
307 
308 
set_code_age_stub(Code * stub,ICacheFlushMode icache_flush_mode)309 void RelocInfo::set_code_age_stub(Code* stub,
310                                   ICacheFlushMode icache_flush_mode) {
311   DCHECK(rmode_ == RelocInfo::CODE_AGE_SEQUENCE);
312   Assembler::set_target_address_at(isolate_, pc_ + Assembler::kInstrSize, host_,
313                                    stub->instruction_start());
314 }
315 
316 
debug_call_address()317 Address RelocInfo::debug_call_address() {
318   // The pc_ offset of 0 assumes patched debug break slot or return
319   // sequence.
320   DCHECK(IsDebugBreakSlot(rmode()) && IsPatchedDebugBreakSlotSequence());
321   return Assembler::target_address_at(pc_, host_);
322 }
323 
324 
set_debug_call_address(Address target)325 void RelocInfo::set_debug_call_address(Address target) {
326   DCHECK(IsDebugBreakSlot(rmode()) && IsPatchedDebugBreakSlotSequence());
327   // The pc_ offset of 0 assumes patched debug break slot or return
328   // sequence.
329   Assembler::set_target_address_at(isolate_, pc_, host_, target);
330   if (host() != NULL) {
331     Object* target_code = Code::GetCodeFromTargetAddress(target);
332     host()->GetHeap()->incremental_marking()->RecordWriteIntoCode(
333         host(), this, HeapObject::cast(target_code));
334   }
335 }
336 
337 
WipeOut()338 void RelocInfo::WipeOut() {
339   DCHECK(IsEmbeddedObject(rmode_) || IsCodeTarget(rmode_) ||
340          IsRuntimeEntry(rmode_) || IsExternalReference(rmode_) ||
341          IsInternalReference(rmode_) || IsInternalReferenceEncoded(rmode_));
342   if (IsInternalReference(rmode_)) {
343     Memory::Address_at(pc_) = NULL;
344   } else if (IsInternalReferenceEncoded(rmode_)) {
345     Assembler::set_target_internal_reference_encoded_at(pc_, nullptr);
346   } else {
347     Assembler::set_target_address_at(isolate_, pc_, host_, NULL);
348   }
349 }
350 
351 
IsPatchedReturnSequence()352 bool RelocInfo::IsPatchedReturnSequence() {
353   Instr instr0 = Assembler::instr_at(pc_);  // lui.
354   Instr instr1 = Assembler::instr_at(pc_ + 1 * Assembler::kInstrSize);  // ori.
355   Instr instr2 = Assembler::instr_at(pc_ + 2 * Assembler::kInstrSize);  // dsll.
356   Instr instr3 = Assembler::instr_at(pc_ + 3 * Assembler::kInstrSize);  // ori.
357   Instr instr4 = Assembler::instr_at(pc_ + 4 * Assembler::kInstrSize);  // jalr.
358 
359   bool patched_return = ((instr0 & kOpcodeMask) == LUI &&
360                          (instr1 & kOpcodeMask) == ORI &&
361                          (instr2 & kFunctionFieldMask) == DSLL &&
362                          (instr3 & kOpcodeMask) == ORI &&
363                          (instr4 & kFunctionFieldMask) == JALR);
364   return patched_return;
365 }
366 
367 
IsPatchedDebugBreakSlotSequence()368 bool RelocInfo::IsPatchedDebugBreakSlotSequence() {
369   Instr current_instr = Assembler::instr_at(pc_);
370   return !Assembler::IsNop(current_instr, Assembler::DEBUG_BREAK_NOP);
371 }
372 
373 
Visit(Isolate * isolate,ObjectVisitor * visitor)374 void RelocInfo::Visit(Isolate* isolate, ObjectVisitor* visitor) {
375   RelocInfo::Mode mode = rmode();
376   if (mode == RelocInfo::EMBEDDED_OBJECT) {
377     visitor->VisitEmbeddedPointer(this);
378   } else if (RelocInfo::IsCodeTarget(mode)) {
379     visitor->VisitCodeTarget(this);
380   } else if (mode == RelocInfo::CELL) {
381     visitor->VisitCell(this);
382   } else if (mode == RelocInfo::EXTERNAL_REFERENCE) {
383     visitor->VisitExternalReference(this);
384   } else if (mode == RelocInfo::INTERNAL_REFERENCE ||
385              mode == RelocInfo::INTERNAL_REFERENCE_ENCODED) {
386     visitor->VisitInternalReference(this);
387   } else if (RelocInfo::IsCodeAgeSequence(mode)) {
388     visitor->VisitCodeAgeSequence(this);
389   } else if (RelocInfo::IsDebugBreakSlot(mode) &&
390              IsPatchedDebugBreakSlotSequence()) {
391     visitor->VisitDebugTarget(this);
392   } else if (RelocInfo::IsRuntimeEntry(mode)) {
393     visitor->VisitRuntimeEntry(this);
394   }
395 }
396 
397 
398 template<typename StaticVisitor>
Visit(Heap * heap)399 void RelocInfo::Visit(Heap* heap) {
400   RelocInfo::Mode mode = rmode();
401   if (mode == RelocInfo::EMBEDDED_OBJECT) {
402     StaticVisitor::VisitEmbeddedPointer(heap, this);
403   } else if (RelocInfo::IsCodeTarget(mode)) {
404     StaticVisitor::VisitCodeTarget(heap, this);
405   } else if (mode == RelocInfo::CELL) {
406     StaticVisitor::VisitCell(heap, this);
407   } else if (mode == RelocInfo::EXTERNAL_REFERENCE) {
408     StaticVisitor::VisitExternalReference(this);
409   } else if (mode == RelocInfo::INTERNAL_REFERENCE ||
410              mode == RelocInfo::INTERNAL_REFERENCE_ENCODED) {
411     StaticVisitor::VisitInternalReference(this);
412   } else if (RelocInfo::IsCodeAgeSequence(mode)) {
413     StaticVisitor::VisitCodeAgeSequence(heap, this);
414   } else if (RelocInfo::IsDebugBreakSlot(mode) &&
415              IsPatchedDebugBreakSlotSequence()) {
416     StaticVisitor::VisitDebugTarget(heap, this);
417   } else if (RelocInfo::IsRuntimeEntry(mode)) {
418     StaticVisitor::VisitRuntimeEntry(this);
419   }
420 }
421 
422 
423 // -----------------------------------------------------------------------------
424 // Assembler.
425 
426 
CheckBuffer()427 void Assembler::CheckBuffer() {
428   if (buffer_space() <= kGap) {
429     GrowBuffer();
430   }
431 }
432 
433 
CheckTrampolinePoolQuick(int extra_instructions)434 void Assembler::CheckTrampolinePoolQuick(int extra_instructions) {
435   if (pc_offset() >= next_buffer_check_ - extra_instructions * kInstrSize) {
436     CheckTrampolinePool();
437   }
438 }
439 
440 
CheckForEmitInForbiddenSlot()441 void Assembler::CheckForEmitInForbiddenSlot() {
442   if (!is_buffer_growth_blocked()) {
443     CheckBuffer();
444   }
445   if (IsPrevInstrCompactBranch()) {
446     // Nop instruction to preceed a CTI in forbidden slot:
447     Instr nop = SPECIAL | SLL;
448     *reinterpret_cast<Instr*>(pc_) = nop;
449     pc_ += kInstrSize;
450 
451     ClearCompactBranchState();
452   }
453 }
454 
455 
EmitHelper(Instr x,CompactBranchType is_compact_branch)456 void Assembler::EmitHelper(Instr x, CompactBranchType is_compact_branch) {
457   if (IsPrevInstrCompactBranch()) {
458     if (Instruction::IsForbiddenAfterBranchInstr(x)) {
459       // Nop instruction to preceed a CTI in forbidden slot:
460       Instr nop = SPECIAL | SLL;
461       *reinterpret_cast<Instr*>(pc_) = nop;
462       pc_ += kInstrSize;
463     }
464     ClearCompactBranchState();
465   }
466   *reinterpret_cast<Instr*>(pc_) = x;
467   pc_ += kInstrSize;
468   if (is_compact_branch == CompactBranchType::COMPACT_BRANCH) {
469     EmittedCompactBranchInstruction();
470   }
471   CheckTrampolinePoolQuick();
472 }
473 
474 
475 template <typename T>
EmitHelper(T x)476 void Assembler::EmitHelper(T x) {
477   *reinterpret_cast<T*>(pc_) = x;
478   pc_ += sizeof(x);
479   CheckTrampolinePoolQuick();
480 }
481 
482 
emit(Instr x,CompactBranchType is_compact_branch)483 void Assembler::emit(Instr x, CompactBranchType is_compact_branch) {
484   if (!is_buffer_growth_blocked()) {
485     CheckBuffer();
486   }
487   EmitHelper(x, is_compact_branch);
488 }
489 
490 
emit(uint64_t data)491 void Assembler::emit(uint64_t data) {
492   CheckForEmitInForbiddenSlot();
493   EmitHelper(data);
494 }
495 
496 
497 }  // namespace internal
498 }  // namespace v8
499 
500 #endif  // V8_MIPS_ASSEMBLER_MIPS_INL_H_
501