• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2014 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #include <iomanip>
6 
7 #include "src/types.h"
8 
9 #include "src/ostreams.h"
10 #include "src/types-inl.h"
11 
12 namespace v8 {
13 namespace internal {
14 
15 
16 // NOTE: If code is marked as being a "shortcut", this means that removing
17 // the code won't affect the semantics of the surrounding function definition.
18 
19 
20 // -----------------------------------------------------------------------------
21 // Range-related helper functions.
22 
23 template <class Config>
IsEmpty()24 bool TypeImpl<Config>::Limits::IsEmpty() {
25   return this->min > this->max;
26 }
27 
28 
29 template<class Config>
Intersect(Limits lhs,Limits rhs)30 typename TypeImpl<Config>::Limits TypeImpl<Config>::Limits::Intersect(
31     Limits lhs, Limits rhs) {
32   DisallowHeapAllocation no_allocation;
33   Limits result(lhs);
34   if (lhs.min < rhs.min) result.min = rhs.min;
35   if (lhs.max > rhs.max) result.max = rhs.max;
36   return result;
37 }
38 
39 
40 template <class Config>
Union(Limits lhs,Limits rhs)41 typename TypeImpl<Config>::Limits TypeImpl<Config>::Limits::Union(
42     Limits lhs, Limits rhs) {
43   DisallowHeapAllocation no_allocation;
44   if (lhs.IsEmpty()) return rhs;
45   if (rhs.IsEmpty()) return lhs;
46   Limits result(lhs);
47   if (lhs.min > rhs.min) result.min = rhs.min;
48   if (lhs.max < rhs.max) result.max = rhs.max;
49   return result;
50 }
51 
52 
53 template<class Config>
Overlap(typename TypeImpl<Config>::RangeType * lhs,typename TypeImpl<Config>::RangeType * rhs)54 bool TypeImpl<Config>::Overlap(
55     typename TypeImpl<Config>::RangeType* lhs,
56     typename TypeImpl<Config>::RangeType* rhs) {
57   DisallowHeapAllocation no_allocation;
58   return !Limits::Intersect(Limits(lhs), Limits(rhs)).IsEmpty();
59 }
60 
61 
62 template<class Config>
Contains(typename TypeImpl<Config>::RangeType * lhs,typename TypeImpl<Config>::RangeType * rhs)63 bool TypeImpl<Config>::Contains(
64     typename TypeImpl<Config>::RangeType* lhs,
65     typename TypeImpl<Config>::RangeType* rhs) {
66   DisallowHeapAllocation no_allocation;
67   return lhs->Min() <= rhs->Min() && rhs->Max() <= lhs->Max();
68 }
69 
70 
71 template <class Config>
Contains(typename TypeImpl<Config>::RangeType * lhs,typename TypeImpl<Config>::ConstantType * rhs)72 bool TypeImpl<Config>::Contains(typename TypeImpl<Config>::RangeType* lhs,
73                                 typename TypeImpl<Config>::ConstantType* rhs) {
74   DisallowHeapAllocation no_allocation;
75   return IsInteger(*rhs->Value()) &&
76          lhs->Min() <= rhs->Value()->Number() &&
77          rhs->Value()->Number() <= lhs->Max();
78 }
79 
80 
81 template<class Config>
Contains(typename TypeImpl<Config>::RangeType * range,i::Object * val)82 bool TypeImpl<Config>::Contains(
83     typename TypeImpl<Config>::RangeType* range, i::Object* val) {
84   DisallowHeapAllocation no_allocation;
85   return IsInteger(val) &&
86          range->Min() <= val->Number() && val->Number() <= range->Max();
87 }
88 
89 
90 // -----------------------------------------------------------------------------
91 // Min and Max computation.
92 
93 template<class Config>
Min()94 double TypeImpl<Config>::Min() {
95   DCHECK(this->SemanticIs(Number()));
96   if (this->IsBitset()) return BitsetType::Min(this->AsBitset());
97   if (this->IsUnion()) {
98     double min = +V8_INFINITY;
99     for (int i = 0, n = this->AsUnion()->Length(); i < n; ++i) {
100       min = std::min(min, this->AsUnion()->Get(i)->Min());
101     }
102     return min;
103   }
104   if (this->IsRange()) return this->AsRange()->Min();
105   if (this->IsConstant()) return this->AsConstant()->Value()->Number();
106   UNREACHABLE();
107   return 0;
108 }
109 
110 
111 template<class Config>
Max()112 double TypeImpl<Config>::Max() {
113   DCHECK(this->SemanticIs(Number()));
114   if (this->IsBitset()) return BitsetType::Max(this->AsBitset());
115   if (this->IsUnion()) {
116     double max = -V8_INFINITY;
117     for (int i = 0, n = this->AsUnion()->Length(); i < n; ++i) {
118       max = std::max(max, this->AsUnion()->Get(i)->Max());
119     }
120     return max;
121   }
122   if (this->IsRange()) return this->AsRange()->Max();
123   if (this->IsConstant()) return this->AsConstant()->Value()->Number();
124   UNREACHABLE();
125   return 0;
126 }
127 
128 
129 // -----------------------------------------------------------------------------
130 // Glb and lub computation.
131 
132 
133 // The largest bitset subsumed by this type.
134 template<class Config>
135 typename TypeImpl<Config>::bitset
Glb(TypeImpl * type)136 TypeImpl<Config>::BitsetType::Glb(TypeImpl* type) {
137   DisallowHeapAllocation no_allocation;
138   // Fast case.
139   if (type->IsBitset()) {
140     return type->AsBitset();
141   } else if (type->IsUnion()) {
142     SLOW_DCHECK(type->AsUnion()->Wellformed());
143     return type->AsUnion()->Get(0)->BitsetGlb() |
144            SEMANTIC(type->AsUnion()->Get(1)->BitsetGlb());  // Shortcut.
145   } else if (type->IsRange()) {
146     bitset glb = SEMANTIC(
147         BitsetType::Glb(type->AsRange()->Min(), type->AsRange()->Max()));
148     return glb | REPRESENTATION(type->BitsetLub());
149   } else {
150     return type->Representation();
151   }
152 }
153 
154 
155 // The smallest bitset subsuming this type, possibly not a proper one.
156 template<class Config>
157 typename TypeImpl<Config>::bitset
Lub(TypeImpl * type)158 TypeImpl<Config>::BitsetType::Lub(TypeImpl* type) {
159   DisallowHeapAllocation no_allocation;
160   if (type->IsBitset()) return type->AsBitset();
161   if (type->IsUnion()) {
162     // Take the representation from the first element, which is always
163     // a bitset.
164     int bitset = type->AsUnion()->Get(0)->BitsetLub();
165     for (int i = 0, n = type->AsUnion()->Length(); i < n; ++i) {
166       // Other elements only contribute their semantic part.
167       bitset |= SEMANTIC(type->AsUnion()->Get(i)->BitsetLub());
168     }
169     return bitset;
170   }
171   if (type->IsClass()) return type->AsClass()->Lub();
172   if (type->IsConstant()) return type->AsConstant()->Lub();
173   if (type->IsRange()) return type->AsRange()->Lub();
174   if (type->IsContext()) return kInternal & kTaggedPointer;
175   if (type->IsArray()) return kOtherObject;
176   if (type->IsFunction()) return kFunction;
177   UNREACHABLE();
178   return kNone;
179 }
180 
181 
182 template<class Config>
183 typename TypeImpl<Config>::bitset
Lub(i::Map * map)184 TypeImpl<Config>::BitsetType::Lub(i::Map* map) {
185   DisallowHeapAllocation no_allocation;
186   switch (map->instance_type()) {
187     case STRING_TYPE:
188     case ONE_BYTE_STRING_TYPE:
189     case CONS_STRING_TYPE:
190     case CONS_ONE_BYTE_STRING_TYPE:
191     case SLICED_STRING_TYPE:
192     case SLICED_ONE_BYTE_STRING_TYPE:
193     case EXTERNAL_STRING_TYPE:
194     case EXTERNAL_ONE_BYTE_STRING_TYPE:
195     case EXTERNAL_STRING_WITH_ONE_BYTE_DATA_TYPE:
196     case SHORT_EXTERNAL_STRING_TYPE:
197     case SHORT_EXTERNAL_ONE_BYTE_STRING_TYPE:
198     case SHORT_EXTERNAL_STRING_WITH_ONE_BYTE_DATA_TYPE:
199       return kOtherString;
200     case INTERNALIZED_STRING_TYPE:
201     case ONE_BYTE_INTERNALIZED_STRING_TYPE:
202     case EXTERNAL_INTERNALIZED_STRING_TYPE:
203     case EXTERNAL_ONE_BYTE_INTERNALIZED_STRING_TYPE:
204     case EXTERNAL_INTERNALIZED_STRING_WITH_ONE_BYTE_DATA_TYPE:
205     case SHORT_EXTERNAL_INTERNALIZED_STRING_TYPE:
206     case SHORT_EXTERNAL_ONE_BYTE_INTERNALIZED_STRING_TYPE:
207     case SHORT_EXTERNAL_INTERNALIZED_STRING_WITH_ONE_BYTE_DATA_TYPE:
208       return kInternalizedString;
209     case SYMBOL_TYPE:
210       return kSymbol;
211     case ODDBALL_TYPE: {
212       Heap* heap = map->GetHeap();
213       if (map == heap->undefined_map()) return kUndefined;
214       if (map == heap->null_map()) return kNull;
215       if (map == heap->boolean_map()) return kBoolean;
216       DCHECK(map == heap->the_hole_map() ||
217              map == heap->uninitialized_map() ||
218              map == heap->no_interceptor_result_sentinel_map() ||
219              map == heap->termination_exception_map() ||
220              map == heap->arguments_marker_map());
221       return kInternal & kTaggedPointer;
222     }
223     case HEAP_NUMBER_TYPE:
224       return kNumber & kTaggedPointer;
225     case SIMD128_VALUE_TYPE:
226       return kSimd;
227     case JS_VALUE_TYPE:
228     case JS_MESSAGE_OBJECT_TYPE:
229     case JS_DATE_TYPE:
230     case JS_OBJECT_TYPE:
231     case JS_CONTEXT_EXTENSION_OBJECT_TYPE:
232     case JS_GENERATOR_OBJECT_TYPE:
233     case JS_MODULE_TYPE:
234     case JS_GLOBAL_OBJECT_TYPE:
235     case JS_GLOBAL_PROXY_TYPE:
236     case JS_ARRAY_BUFFER_TYPE:
237     case JS_ARRAY_TYPE:
238     case JS_TYPED_ARRAY_TYPE:
239     case JS_DATA_VIEW_TYPE:
240     case JS_SET_TYPE:
241     case JS_MAP_TYPE:
242     case JS_SET_ITERATOR_TYPE:
243     case JS_MAP_ITERATOR_TYPE:
244     case JS_ITERATOR_RESULT_TYPE:
245     case JS_WEAK_MAP_TYPE:
246     case JS_WEAK_SET_TYPE:
247     case JS_PROMISE_TYPE:
248     case JS_BOUND_FUNCTION_TYPE:
249       if (map->is_undetectable()) return kUndetectable;
250       return kOtherObject;
251     case JS_FUNCTION_TYPE:
252       if (map->is_undetectable()) return kUndetectable;
253       return kFunction;
254     case JS_REGEXP_TYPE:
255       return kOtherObject;  // TODO(rossberg): there should be a RegExp type.
256     case JS_PROXY_TYPE:
257       return kProxy;
258     case MAP_TYPE:
259       // When compiling stub templates, the meta map is used as a place holder
260       // for the actual map with which the template is later instantiated.
261       // We treat it as a kind of type variable whose upper bound is Any.
262       // TODO(rossberg): for caching of CompareNilIC stubs to work correctly,
263       // we must exclude Undetectable here. This makes no sense, really,
264       // because it means that the template isn't actually parametric.
265       // Also, it doesn't apply elsewhere. 8-(
266       // We ought to find a cleaner solution for compiling stubs parameterised
267       // over type or class variables, esp ones with bounds...
268       return kDetectable & kTaggedPointer;
269     case ALLOCATION_SITE_TYPE:
270     case DECLARED_ACCESSOR_INFO_TYPE:
271     case EXECUTABLE_ACCESSOR_INFO_TYPE:
272     case SHARED_FUNCTION_INFO_TYPE:
273     case ACCESSOR_PAIR_TYPE:
274     case FIXED_ARRAY_TYPE:
275     case FIXED_DOUBLE_ARRAY_TYPE:
276     case BYTE_ARRAY_TYPE:
277     case BYTECODE_ARRAY_TYPE:
278     case TRANSITION_ARRAY_TYPE:
279     case FOREIGN_TYPE:
280     case SCRIPT_TYPE:
281     case CODE_TYPE:
282     case PROPERTY_CELL_TYPE:
283       return kInternal & kTaggedPointer;
284 
285     // Remaining instance types are unsupported for now. If any of them do
286     // require bit set types, they should get kInternal & kTaggedPointer.
287     case MUTABLE_HEAP_NUMBER_TYPE:
288     case FREE_SPACE_TYPE:
289 #define FIXED_TYPED_ARRAY_CASE(Type, type, TYPE, ctype, size) \
290   case FIXED_##TYPE##_ARRAY_TYPE:
291 
292       TYPED_ARRAYS(FIXED_TYPED_ARRAY_CASE)
293 #undef FIXED_TYPED_ARRAY_CASE
294     case FILLER_TYPE:
295     case DECLARED_ACCESSOR_DESCRIPTOR_TYPE:
296     case ACCESS_CHECK_INFO_TYPE:
297     case INTERCEPTOR_INFO_TYPE:
298     case CALL_HANDLER_INFO_TYPE:
299     case FUNCTION_TEMPLATE_INFO_TYPE:
300     case OBJECT_TEMPLATE_INFO_TYPE:
301     case SIGNATURE_INFO_TYPE:
302     case TYPE_SWITCH_INFO_TYPE:
303     case ALLOCATION_MEMENTO_TYPE:
304     case CODE_CACHE_TYPE:
305     case POLYMORPHIC_CODE_CACHE_TYPE:
306     case TYPE_FEEDBACK_INFO_TYPE:
307     case ALIASED_ARGUMENTS_ENTRY_TYPE:
308     case BOX_TYPE:
309     case DEBUG_INFO_TYPE:
310     case BREAK_POINT_INFO_TYPE:
311     case CELL_TYPE:
312     case WEAK_CELL_TYPE:
313     case PROTOTYPE_INFO_TYPE:
314     case SLOPPY_BLOCK_WITH_EVAL_CONTEXT_EXTENSION_TYPE:
315       UNREACHABLE();
316       return kNone;
317   }
318   UNREACHABLE();
319   return kNone;
320 }
321 
322 
323 template<class Config>
324 typename TypeImpl<Config>::bitset
Lub(i::Object * value)325 TypeImpl<Config>::BitsetType::Lub(i::Object* value) {
326   DisallowHeapAllocation no_allocation;
327   if (value->IsNumber()) {
328     return Lub(value->Number()) &
329         (value->IsSmi() ? kTaggedSigned : kTaggedPointer);
330   }
331   return Lub(i::HeapObject::cast(value)->map());
332 }
333 
334 
335 template<class Config>
336 typename TypeImpl<Config>::bitset
Lub(double value)337 TypeImpl<Config>::BitsetType::Lub(double value) {
338   DisallowHeapAllocation no_allocation;
339   if (i::IsMinusZero(value)) return kMinusZero;
340   if (std::isnan(value)) return kNaN;
341   if (IsUint32Double(value) || IsInt32Double(value)) return Lub(value, value);
342   return kOtherNumber;
343 }
344 
345 
346 // Minimum values of plain numeric bitsets.
347 template <class Config>
348 const typename TypeImpl<Config>::BitsetType::Boundary
349 TypeImpl<Config>::BitsetType::BoundariesArray[] = {
350         {kOtherNumber, kPlainNumber, -V8_INFINITY},
351         {kOtherSigned32, kNegative32, kMinInt},
352         {kNegative31, kNegative31, -0x40000000},
353         {kUnsigned30, kUnsigned30, 0},
354         {kOtherUnsigned31, kUnsigned31, 0x40000000},
355         {kOtherUnsigned32, kUnsigned32, 0x80000000},
356         {kOtherNumber, kPlainNumber, static_cast<double>(kMaxUInt32) + 1}};
357 
358 
359 template <class Config>
360 const typename TypeImpl<Config>::BitsetType::Boundary*
Boundaries()361 TypeImpl<Config>::BitsetType::Boundaries() {
362   return BoundariesArray;
363 }
364 
365 
366 template <class Config>
BoundariesSize()367 size_t TypeImpl<Config>::BitsetType::BoundariesSize() {
368   // Windows doesn't like arraysize here.
369   // return arraysize(BoundariesArray);
370   return 7;
371 }
372 
373 
374 template <class Config>
ExpandInternals(typename TypeImpl<Config>::bitset bits)375 typename TypeImpl<Config>::bitset TypeImpl<Config>::BitsetType::ExpandInternals(
376     typename TypeImpl<Config>::bitset bits) {
377   DisallowHeapAllocation no_allocation;
378   if (!(bits & SEMANTIC(kPlainNumber))) return bits;  // Shortcut.
379   const Boundary* boundaries = Boundaries();
380   for (size_t i = 0; i < BoundariesSize(); ++i) {
381     DCHECK(BitsetType::Is(boundaries[i].internal, boundaries[i].external));
382     if (bits & SEMANTIC(boundaries[i].internal))
383       bits |= SEMANTIC(boundaries[i].external);
384   }
385   return bits;
386 }
387 
388 
389 template<class Config>
390 typename TypeImpl<Config>::bitset
Lub(double min,double max)391 TypeImpl<Config>::BitsetType::Lub(double min, double max) {
392   DisallowHeapAllocation no_allocation;
393   int lub = kNone;
394   const Boundary* mins = Boundaries();
395 
396   for (size_t i = 1; i < BoundariesSize(); ++i) {
397     if (min < mins[i].min) {
398       lub |= mins[i-1].internal;
399       if (max < mins[i].min) return lub;
400     }
401   }
402   return lub | mins[BoundariesSize() - 1].internal;
403 }
404 
405 
406 template <class Config>
NumberBits(bitset bits)407 typename TypeImpl<Config>::bitset TypeImpl<Config>::BitsetType::NumberBits(
408     bitset bits) {
409   return SEMANTIC(bits & kPlainNumber);
410 }
411 
412 
413 template <class Config>
Glb(double min,double max)414 typename TypeImpl<Config>::bitset TypeImpl<Config>::BitsetType::Glb(
415     double min, double max) {
416   DisallowHeapAllocation no_allocation;
417   int glb = kNone;
418   const Boundary* mins = Boundaries();
419 
420   // If the range does not touch 0, the bound is empty.
421   if (max < -1 || min > 0) return glb;
422 
423   for (size_t i = 1; i + 1 < BoundariesSize(); ++i) {
424     if (min <= mins[i].min) {
425       if (max + 1 < mins[i + 1].min) break;
426       glb |= mins[i].external;
427     }
428   }
429   // OtherNumber also contains float numbers, so it can never be
430   // in the greatest lower bound.
431   return glb & ~(SEMANTIC(kOtherNumber));
432 }
433 
434 
435 template <class Config>
Min(bitset bits)436 double TypeImpl<Config>::BitsetType::Min(bitset bits) {
437   DisallowHeapAllocation no_allocation;
438   DCHECK(Is(SEMANTIC(bits), kNumber));
439   const Boundary* mins = Boundaries();
440   bool mz = SEMANTIC(bits & kMinusZero);
441   for (size_t i = 0; i < BoundariesSize(); ++i) {
442     if (Is(SEMANTIC(mins[i].internal), bits)) {
443       return mz ? std::min(0.0, mins[i].min) : mins[i].min;
444     }
445   }
446   if (mz) return 0;
447   return std::numeric_limits<double>::quiet_NaN();
448 }
449 
450 
451 template<class Config>
Max(bitset bits)452 double TypeImpl<Config>::BitsetType::Max(bitset bits) {
453   DisallowHeapAllocation no_allocation;
454   DCHECK(Is(SEMANTIC(bits), kNumber));
455   const Boundary* mins = Boundaries();
456   bool mz = SEMANTIC(bits & kMinusZero);
457   if (BitsetType::Is(SEMANTIC(mins[BoundariesSize() - 1].internal), bits)) {
458     return +V8_INFINITY;
459   }
460   for (size_t i = BoundariesSize() - 1; i-- > 0;) {
461     if (Is(SEMANTIC(mins[i].internal), bits)) {
462       return mz ?
463           std::max(0.0, mins[i+1].min - 1) : mins[i+1].min - 1;
464     }
465   }
466   if (mz) return 0;
467   return std::numeric_limits<double>::quiet_NaN();
468 }
469 
470 
471 // -----------------------------------------------------------------------------
472 // Predicates.
473 
474 
475 template<class Config>
SimplyEquals(TypeImpl * that)476 bool TypeImpl<Config>::SimplyEquals(TypeImpl* that) {
477   DisallowHeapAllocation no_allocation;
478   if (this->IsClass()) {
479     return that->IsClass()
480         && *this->AsClass()->Map() == *that->AsClass()->Map();
481   }
482   if (this->IsConstant()) {
483     return that->IsConstant()
484         && *this->AsConstant()->Value() == *that->AsConstant()->Value();
485   }
486   if (this->IsContext()) {
487     return that->IsContext()
488         && this->AsContext()->Outer()->Equals(that->AsContext()->Outer());
489   }
490   if (this->IsArray()) {
491     return that->IsArray()
492         && this->AsArray()->Element()->Equals(that->AsArray()->Element());
493   }
494   if (this->IsFunction()) {
495     if (!that->IsFunction()) return false;
496     FunctionType* this_fun = this->AsFunction();
497     FunctionType* that_fun = that->AsFunction();
498     if (this_fun->Arity() != that_fun->Arity() ||
499         !this_fun->Result()->Equals(that_fun->Result()) ||
500         !this_fun->Receiver()->Equals(that_fun->Receiver())) {
501       return false;
502     }
503     for (int i = 0, n = this_fun->Arity(); i < n; ++i) {
504       if (!this_fun->Parameter(i)->Equals(that_fun->Parameter(i))) return false;
505     }
506     return true;
507   }
508   UNREACHABLE();
509   return false;
510 }
511 
512 
513 template <class Config>
Representation()514 typename TypeImpl<Config>::bitset TypeImpl<Config>::Representation() {
515   return REPRESENTATION(this->BitsetLub());
516 }
517 
518 
519 // Check if [this] <= [that].
520 template<class Config>
SlowIs(TypeImpl * that)521 bool TypeImpl<Config>::SlowIs(TypeImpl* that) {
522   DisallowHeapAllocation no_allocation;
523 
524   // Fast bitset cases
525   if (that->IsBitset()) {
526     return BitsetType::Is(this->BitsetLub(), that->AsBitset());
527   }
528 
529   if (this->IsBitset()) {
530     return BitsetType::Is(this->AsBitset(), that->BitsetGlb());
531   }
532 
533   // Check the representations.
534   if (!BitsetType::Is(Representation(), that->Representation())) {
535     return false;
536   }
537 
538   // Check the semantic part.
539   return SemanticIs(that);
540 }
541 
542 
543 // Check if SEMANTIC([this]) <= SEMANTIC([that]). The result of the method
544 // should be independent of the representation axis of the types.
545 template <class Config>
SemanticIs(TypeImpl * that)546 bool TypeImpl<Config>::SemanticIs(TypeImpl* that) {
547   DisallowHeapAllocation no_allocation;
548 
549   if (this == that) return true;
550 
551   if (that->IsBitset()) {
552     return BitsetType::Is(SEMANTIC(this->BitsetLub()), that->AsBitset());
553   }
554   if (this->IsBitset()) {
555     return BitsetType::Is(SEMANTIC(this->AsBitset()), that->BitsetGlb());
556   }
557 
558   // (T1 \/ ... \/ Tn) <= T  if  (T1 <= T) /\ ... /\ (Tn <= T)
559   if (this->IsUnion()) {
560     for (int i = 0, n = this->AsUnion()->Length(); i < n; ++i) {
561       if (!this->AsUnion()->Get(i)->SemanticIs(that)) return false;
562     }
563     return true;
564   }
565 
566   // T <= (T1 \/ ... \/ Tn)  if  (T <= T1) \/ ... \/ (T <= Tn)
567   if (that->IsUnion()) {
568     for (int i = 0, n = that->AsUnion()->Length(); i < n; ++i) {
569       if (this->SemanticIs(that->AsUnion()->Get(i)->unhandle())) return true;
570       if (i > 1 && this->IsRange()) return false;  // Shortcut.
571     }
572     return false;
573   }
574 
575   if (that->IsRange()) {
576     return (this->IsRange() && Contains(that->AsRange(), this->AsRange())) ||
577            (this->IsConstant() &&
578             Contains(that->AsRange(), this->AsConstant()));
579   }
580   if (this->IsRange()) return false;
581 
582   return this->SimplyEquals(that);
583 }
584 
585 
586 template<class Config>
NowIs(TypeImpl * that)587 bool TypeImpl<Config>::NowIs(TypeImpl* that) {
588   DisallowHeapAllocation no_allocation;
589 
590   // TODO(rossberg): this is incorrect for
591   //   Union(Constant(V), T)->NowIs(Class(M))
592   // but fuzzing does not cover that!
593   if (this->IsConstant()) {
594     i::Object* object = *this->AsConstant()->Value();
595     if (object->IsHeapObject()) {
596       i::Map* map = i::HeapObject::cast(object)->map();
597       for (Iterator<i::Map> it = that->Classes(); !it.Done(); it.Advance()) {
598         if (*it.Current() == map) return true;
599       }
600     }
601   }
602   return this->Is(that);
603 }
604 
605 
606 // Check if [this] contains only (currently) stable classes.
607 template<class Config>
NowStable()608 bool TypeImpl<Config>::NowStable() {
609   DisallowHeapAllocation no_allocation;
610   return !this->IsClass() || this->AsClass()->Map()->is_stable();
611 }
612 
613 
614 // Check if [this] and [that] overlap.
615 template<class Config>
Maybe(TypeImpl * that)616 bool TypeImpl<Config>::Maybe(TypeImpl* that) {
617   DisallowHeapAllocation no_allocation;
618 
619   // Take care of the representation part (and also approximate
620   // the semantic part).
621   if (!BitsetType::IsInhabited(this->BitsetLub() & that->BitsetLub()))
622     return false;
623 
624   return SemanticMaybe(that);
625 }
626 
627 template <class Config>
SemanticMaybe(TypeImpl * that)628 bool TypeImpl<Config>::SemanticMaybe(TypeImpl* that) {
629   DisallowHeapAllocation no_allocation;
630 
631   // (T1 \/ ... \/ Tn) overlaps T  if  (T1 overlaps T) \/ ... \/ (Tn overlaps T)
632   if (this->IsUnion()) {
633     for (int i = 0, n = this->AsUnion()->Length(); i < n; ++i) {
634       if (this->AsUnion()->Get(i)->SemanticMaybe(that)) return true;
635     }
636     return false;
637   }
638 
639   // T overlaps (T1 \/ ... \/ Tn)  if  (T overlaps T1) \/ ... \/ (T overlaps Tn)
640   if (that->IsUnion()) {
641     for (int i = 0, n = that->AsUnion()->Length(); i < n; ++i) {
642       if (this->SemanticMaybe(that->AsUnion()->Get(i)->unhandle())) return true;
643     }
644     return false;
645   }
646 
647   if (!BitsetType::SemanticIsInhabited(this->BitsetLub() & that->BitsetLub()))
648     return false;
649 
650   if (this->IsBitset() && that->IsBitset()) return true;
651 
652   if (this->IsClass() != that->IsClass()) return true;
653 
654   if (this->IsRange()) {
655     if (that->IsConstant()) {
656       return Contains(this->AsRange(), that->AsConstant());
657     }
658     if (that->IsRange()) {
659       return Overlap(this->AsRange(), that->AsRange());
660     }
661     if (that->IsBitset()) {
662       bitset number_bits = BitsetType::NumberBits(that->AsBitset());
663       if (number_bits == BitsetType::kNone) {
664         return false;
665       }
666       double min = std::max(BitsetType::Min(number_bits), this->Min());
667       double max = std::min(BitsetType::Max(number_bits), this->Max());
668       return min <= max;
669     }
670   }
671   if (that->IsRange()) {
672     return that->SemanticMaybe(this);  // This case is handled above.
673   }
674 
675   if (this->IsBitset() || that->IsBitset()) return true;
676 
677   return this->SimplyEquals(that);
678 }
679 
680 
681 // Return the range in [this], or [NULL].
682 template<class Config>
GetRange()683 typename TypeImpl<Config>::RangeType* TypeImpl<Config>::GetRange() {
684   DisallowHeapAllocation no_allocation;
685   if (this->IsRange()) return this->AsRange();
686   if (this->IsUnion() && this->AsUnion()->Get(1)->IsRange()) {
687     return this->AsUnion()->Get(1)->AsRange();
688   }
689   return NULL;
690 }
691 
692 
693 template<class Config>
Contains(i::Object * value)694 bool TypeImpl<Config>::Contains(i::Object* value) {
695   DisallowHeapAllocation no_allocation;
696   for (Iterator<i::Object> it = this->Constants(); !it.Done(); it.Advance()) {
697     if (*it.Current() == value) return true;
698   }
699   if (IsInteger(value)) {
700     RangeType* range = this->GetRange();
701     if (range != NULL && Contains(range, value)) return true;
702   }
703   return BitsetType::New(BitsetType::Lub(value))->Is(this);
704 }
705 
706 
707 template<class Config>
Wellformed()708 bool TypeImpl<Config>::UnionType::Wellformed() {
709   DisallowHeapAllocation no_allocation;
710   // This checks the invariants of the union representation:
711   // 1. There are at least two elements.
712   // 2. The first element is a bitset, no other element is a bitset.
713   // 3. At most one element is a range, and it must be the second one.
714   // 4. No element is itself a union.
715   // 5. No element (except the bitset) is a subtype of any other.
716   // 6. If there is a range, then the bitset type does not contain
717   //    plain number bits.
718   DCHECK(this->Length() >= 2);  // (1)
719   DCHECK(this->Get(0)->IsBitset());  // (2a)
720 
721   for (int i = 0; i < this->Length(); ++i) {
722     if (i != 0) DCHECK(!this->Get(i)->IsBitset());  // (2b)
723     if (i != 1) DCHECK(!this->Get(i)->IsRange());   // (3)
724     DCHECK(!this->Get(i)->IsUnion());               // (4)
725     for (int j = 0; j < this->Length(); ++j) {
726       if (i != j && i != 0)
727         DCHECK(!this->Get(i)->SemanticIs(this->Get(j)->unhandle()));  // (5)
728     }
729   }
730   DCHECK(!this->Get(1)->IsRange() ||
731          (BitsetType::NumberBits(this->Get(0)->AsBitset()) ==
732           BitsetType::kNone));  // (6)
733   return true;
734 }
735 
736 
737 // -----------------------------------------------------------------------------
738 // Union and intersection
739 
740 
AddIsSafe(int x,int y)741 static bool AddIsSafe(int x, int y) {
742   return x >= 0 ?
743       y <= std::numeric_limits<int>::max() - x :
744       y >= std::numeric_limits<int>::min() - x;
745 }
746 
747 
748 template<class Config>
Intersect(TypeHandle type1,TypeHandle type2,Region * region)749 typename TypeImpl<Config>::TypeHandle TypeImpl<Config>::Intersect(
750     TypeHandle type1, TypeHandle type2, Region* region) {
751 
752   // Fast case: bit sets.
753   if (type1->IsBitset() && type2->IsBitset()) {
754     return BitsetType::New(type1->AsBitset() & type2->AsBitset(), region);
755   }
756 
757   // Fast case: top or bottom types.
758   if (type1->IsNone() || type2->IsAny()) return type1;  // Shortcut.
759   if (type2->IsNone() || type1->IsAny()) return type2;  // Shortcut.
760 
761   // Semi-fast case.
762   if (type1->Is(type2)) return type1;
763   if (type2->Is(type1)) return type2;
764 
765   // Slow case: create union.
766 
767   // Figure out the representation of the result first.
768   // The rest of the method should not change this representation and
769   // it should not make any decisions based on representations (i.e.,
770   // it should only use the semantic part of types).
771   const bitset representation =
772       type1->Representation() & type2->Representation();
773 
774   // Semantic subtyping check - this is needed for consistency with the
775   // semi-fast case above - we should behave the same way regardless of
776   // representations. Intersection with a universal bitset should only update
777   // the representations.
778   if (type1->SemanticIs(type2->unhandle())) {
779     type2 = Any(region);
780   } else if (type2->SemanticIs(type1->unhandle())) {
781     type1 = Any(region);
782   }
783 
784   bitset bits =
785       SEMANTIC(type1->BitsetGlb() & type2->BitsetGlb()) | representation;
786   int size1 = type1->IsUnion() ? type1->AsUnion()->Length() : 1;
787   int size2 = type2->IsUnion() ? type2->AsUnion()->Length() : 1;
788   if (!AddIsSafe(size1, size2)) return Any(region);
789   int size = size1 + size2;
790   if (!AddIsSafe(size, 2)) return Any(region);
791   size += 2;
792   UnionHandle result = UnionType::New(size, region);
793   size = 0;
794 
795   // Deal with bitsets.
796   result->Set(size++, BitsetType::New(bits, region));
797 
798   Limits lims = Limits::Empty();
799   size = IntersectAux(type1, type2, result, size, &lims, region);
800 
801   // If the range is not empty, then insert it into the union and
802   // remove the number bits from the bitset.
803   if (!lims.IsEmpty()) {
804     size = UpdateRange(RangeType::New(lims, representation, region), result,
805                        size, region);
806 
807     // Remove the number bits.
808     bitset number_bits = BitsetType::NumberBits(bits);
809     bits &= ~number_bits;
810     result->Set(0, BitsetType::New(bits, region));
811   }
812   return NormalizeUnion(result, size, region);
813 }
814 
815 
816 template<class Config>
UpdateRange(RangeHandle range,UnionHandle result,int size,Region * region)817 int TypeImpl<Config>::UpdateRange(
818     RangeHandle range, UnionHandle result, int size, Region* region) {
819   if (size == 1) {
820     result->Set(size++, range);
821   } else {
822     // Make space for the range.
823     result->Set(size++, result->Get(1));
824     result->Set(1, range);
825   }
826 
827   // Remove any components that just got subsumed.
828   for (int i = 2; i < size; ) {
829     if (result->Get(i)->SemanticIs(range->unhandle())) {
830       result->Set(i, result->Get(--size));
831     } else {
832       ++i;
833     }
834   }
835   return size;
836 }
837 
838 
839 template <class Config>
ToLimits(bitset bits,Region * region)840 typename TypeImpl<Config>::Limits TypeImpl<Config>::ToLimits(bitset bits,
841                                                              Region* region) {
842   bitset number_bits = BitsetType::NumberBits(bits);
843 
844   if (number_bits == BitsetType::kNone) {
845     return Limits::Empty();
846   }
847 
848   return Limits(BitsetType::Min(number_bits), BitsetType::Max(number_bits));
849 }
850 
851 
852 template <class Config>
IntersectRangeAndBitset(TypeHandle range,TypeHandle bitset,Region * region)853 typename TypeImpl<Config>::Limits TypeImpl<Config>::IntersectRangeAndBitset(
854     TypeHandle range, TypeHandle bitset, Region* region) {
855   Limits range_lims(range->AsRange());
856   Limits bitset_lims = ToLimits(bitset->AsBitset(), region);
857   return Limits::Intersect(range_lims, bitset_lims);
858 }
859 
860 
861 template <class Config>
IntersectAux(TypeHandle lhs,TypeHandle rhs,UnionHandle result,int size,Limits * lims,Region * region)862 int TypeImpl<Config>::IntersectAux(TypeHandle lhs, TypeHandle rhs,
863                                    UnionHandle result, int size, Limits* lims,
864                                    Region* region) {
865   if (lhs->IsUnion()) {
866     for (int i = 0, n = lhs->AsUnion()->Length(); i < n; ++i) {
867       size =
868           IntersectAux(lhs->AsUnion()->Get(i), rhs, result, size, lims, region);
869     }
870     return size;
871   }
872   if (rhs->IsUnion()) {
873     for (int i = 0, n = rhs->AsUnion()->Length(); i < n; ++i) {
874       size =
875           IntersectAux(lhs, rhs->AsUnion()->Get(i), result, size, lims, region);
876     }
877     return size;
878   }
879 
880   if (!BitsetType::SemanticIsInhabited(lhs->BitsetLub() & rhs->BitsetLub())) {
881     return size;
882   }
883 
884   if (lhs->IsRange()) {
885     if (rhs->IsBitset()) {
886       Limits lim = IntersectRangeAndBitset(lhs, rhs, region);
887 
888       if (!lim.IsEmpty()) {
889         *lims = Limits::Union(lim, *lims);
890       }
891       return size;
892     }
893     if (rhs->IsClass()) {
894       *lims = Limits::Union(Limits(lhs->AsRange()), *lims);
895     }
896     if (rhs->IsConstant() && Contains(lhs->AsRange(), rhs->AsConstant())) {
897       return AddToUnion(rhs, result, size, region);
898     }
899     if (rhs->IsRange()) {
900       Limits lim = Limits::Intersect(
901           Limits(lhs->AsRange()), Limits(rhs->AsRange()));
902       if (!lim.IsEmpty()) {
903         *lims = Limits::Union(lim, *lims);
904       }
905     }
906     return size;
907   }
908   if (rhs->IsRange()) {
909     // This case is handled symmetrically above.
910     return IntersectAux(rhs, lhs, result, size, lims, region);
911   }
912   if (lhs->IsBitset() || rhs->IsBitset()) {
913     return AddToUnion(lhs->IsBitset() ? rhs : lhs, result, size, region);
914   }
915   if (lhs->IsClass() != rhs->IsClass()) {
916     return AddToUnion(lhs->IsClass() ? rhs : lhs, result, size, region);
917   }
918   if (lhs->SimplyEquals(rhs->unhandle())) {
919     return AddToUnion(lhs, result, size, region);
920   }
921   return size;
922 }
923 
924 
925 // Make sure that we produce a well-formed range and bitset:
926 // If the range is non-empty, the number bits in the bitset should be
927 // clear. Moreover, if we have a canonical range (such as Signed32),
928 // we want to produce a bitset rather than a range.
929 template <class Config>
NormalizeRangeAndBitset(RangeHandle range,bitset * bits,Region * region)930 typename TypeImpl<Config>::TypeHandle TypeImpl<Config>::NormalizeRangeAndBitset(
931     RangeHandle range, bitset* bits, Region* region) {
932   // Fast path: If the bitset does not mention numbers, we can just keep the
933   // range.
934   bitset number_bits = BitsetType::NumberBits(*bits);
935   if (number_bits == 0) {
936     return range;
937   }
938 
939   // If the range is semantically contained within the bitset, return None and
940   // leave the bitset untouched.
941   bitset range_lub = SEMANTIC(range->BitsetLub());
942   if (BitsetType::Is(range_lub, *bits)) {
943     return None(region);
944   }
945 
946   // Slow path: reconcile the bitset range and the range.
947   double bitset_min = BitsetType::Min(number_bits);
948   double bitset_max = BitsetType::Max(number_bits);
949 
950   double range_min = range->Min();
951   double range_max = range->Max();
952 
953   // Remove the number bits from the bitset, they would just confuse us now.
954   // NOTE: bits contains OtherNumber iff bits contains PlainNumber, in which
955   // case we already returned after the subtype check above.
956   *bits &= ~number_bits;
957 
958   if (range_min <= bitset_min && range_max >= bitset_max) {
959     // Bitset is contained within the range, just return the range.
960     return range;
961   }
962 
963   if (bitset_min < range_min) {
964     range_min = bitset_min;
965   }
966   if (bitset_max > range_max) {
967     range_max = bitset_max;
968   }
969   return RangeType::New(range_min, range_max,
970                         BitsetType::New(BitsetType::kNone, region), region);
971 }
972 
973 
974 template<class Config>
Union(TypeHandle type1,TypeHandle type2,Region * region)975 typename TypeImpl<Config>::TypeHandle TypeImpl<Config>::Union(
976     TypeHandle type1, TypeHandle type2, Region* region) {
977   // Fast case: bit sets.
978   if (type1->IsBitset() && type2->IsBitset()) {
979     return BitsetType::New(type1->AsBitset() | type2->AsBitset(), region);
980   }
981 
982   // Fast case: top or bottom types.
983   if (type1->IsAny() || type2->IsNone()) return type1;
984   if (type2->IsAny() || type1->IsNone()) return type2;
985 
986   // Semi-fast case.
987   if (type1->Is(type2)) return type2;
988   if (type2->Is(type1)) return type1;
989 
990   // Figure out the representation of the result.
991   // The rest of the method should not change this representation and
992   // it should not make any decisions based on representations (i.e.,
993   // it should only use the semantic part of types).
994   const bitset representation =
995       type1->Representation() | type2->Representation();
996 
997   // Slow case: create union.
998   int size1 = type1->IsUnion() ? type1->AsUnion()->Length() : 1;
999   int size2 = type2->IsUnion() ? type2->AsUnion()->Length() : 1;
1000   if (!AddIsSafe(size1, size2)) return Any(region);
1001   int size = size1 + size2;
1002   if (!AddIsSafe(size, 2)) return Any(region);
1003   size += 2;
1004   UnionHandle result = UnionType::New(size, region);
1005   size = 0;
1006 
1007   // Compute the new bitset.
1008   bitset new_bitset = SEMANTIC(type1->BitsetGlb() | type2->BitsetGlb());
1009 
1010   // Deal with ranges.
1011   TypeHandle range = None(region);
1012   RangeType* range1 = type1->GetRange();
1013   RangeType* range2 = type2->GetRange();
1014   if (range1 != NULL && range2 != NULL) {
1015     Limits lims = Limits::Union(Limits(range1), Limits(range2));
1016     RangeHandle union_range = RangeType::New(lims, representation, region);
1017     range = NormalizeRangeAndBitset(union_range, &new_bitset, region);
1018   } else if (range1 != NULL) {
1019     range = NormalizeRangeAndBitset(handle(range1), &new_bitset, region);
1020   } else if (range2 != NULL) {
1021     range = NormalizeRangeAndBitset(handle(range2), &new_bitset, region);
1022   }
1023   new_bitset = SEMANTIC(new_bitset) | representation;
1024   TypeHandle bits = BitsetType::New(new_bitset, region);
1025   result->Set(size++, bits);
1026   if (!range->IsNone()) result->Set(size++, range);
1027 
1028   size = AddToUnion(type1, result, size, region);
1029   size = AddToUnion(type2, result, size, region);
1030   return NormalizeUnion(result, size, region);
1031 }
1032 
1033 
1034 // Add [type] to [result] unless [type] is bitset, range, or already subsumed.
1035 // Return new size of [result].
1036 template<class Config>
AddToUnion(TypeHandle type,UnionHandle result,int size,Region * region)1037 int TypeImpl<Config>::AddToUnion(
1038     TypeHandle type, UnionHandle result, int size, Region* region) {
1039   if (type->IsBitset() || type->IsRange()) return size;
1040   if (type->IsUnion()) {
1041     for (int i = 0, n = type->AsUnion()->Length(); i < n; ++i) {
1042       size = AddToUnion(type->AsUnion()->Get(i), result, size, region);
1043     }
1044     return size;
1045   }
1046   for (int i = 0; i < size; ++i) {
1047     if (type->SemanticIs(result->Get(i)->unhandle())) return size;
1048   }
1049   result->Set(size++, type);
1050   return size;
1051 }
1052 
1053 
1054 template <class Config>
NormalizeUnion(UnionHandle unioned,int size,Region * region)1055 typename TypeImpl<Config>::TypeHandle TypeImpl<Config>::NormalizeUnion(
1056     UnionHandle unioned, int size, Region* region) {
1057   DCHECK(size >= 1);
1058   DCHECK(unioned->Get(0)->IsBitset());
1059   // If the union has just one element, return it.
1060   if (size == 1) {
1061     return unioned->Get(0);
1062   }
1063   bitset bits = unioned->Get(0)->AsBitset();
1064   // If the union only consists of a range, we can get rid of the union.
1065   if (size == 2 && SEMANTIC(bits) == BitsetType::kNone) {
1066     bitset representation = REPRESENTATION(bits);
1067     if (representation == unioned->Get(1)->Representation()) {
1068       return unioned->Get(1);
1069     }
1070     if (unioned->Get(1)->IsRange()) {
1071       return RangeType::New(unioned->Get(1)->AsRange()->Min(),
1072                             unioned->Get(1)->AsRange()->Max(), unioned->Get(0),
1073                             region);
1074     }
1075   }
1076   unioned->Shrink(size);
1077   SLOW_DCHECK(unioned->Wellformed());
1078   return unioned;
1079 }
1080 
1081 
1082 // -----------------------------------------------------------------------------
1083 // Component extraction
1084 
1085 // static
1086 template <class Config>
Representation(TypeHandle t,Region * region)1087 typename TypeImpl<Config>::TypeHandle TypeImpl<Config>::Representation(
1088     TypeHandle t, Region* region) {
1089   return BitsetType::New(t->Representation(), region);
1090 }
1091 
1092 
1093 // static
1094 template <class Config>
Semantic(TypeHandle t,Region * region)1095 typename TypeImpl<Config>::TypeHandle TypeImpl<Config>::Semantic(
1096     TypeHandle t, Region* region) {
1097   return Intersect(t, BitsetType::New(BitsetType::kSemantic, region), region);
1098 }
1099 
1100 
1101 // -----------------------------------------------------------------------------
1102 // Iteration.
1103 
1104 template<class Config>
NumClasses()1105 int TypeImpl<Config>::NumClasses() {
1106   DisallowHeapAllocation no_allocation;
1107   if (this->IsClass()) {
1108     return 1;
1109   } else if (this->IsUnion()) {
1110     int result = 0;
1111     for (int i = 0, n = this->AsUnion()->Length(); i < n; ++i) {
1112       if (this->AsUnion()->Get(i)->IsClass()) ++result;
1113     }
1114     return result;
1115   } else {
1116     return 0;
1117   }
1118 }
1119 
1120 
1121 template<class Config>
NumConstants()1122 int TypeImpl<Config>::NumConstants() {
1123   DisallowHeapAllocation no_allocation;
1124   if (this->IsConstant()) {
1125     return 1;
1126   } else if (this->IsUnion()) {
1127     int result = 0;
1128     for (int i = 0, n = this->AsUnion()->Length(); i < n; ++i) {
1129       if (this->AsUnion()->Get(i)->IsConstant()) ++result;
1130     }
1131     return result;
1132   } else {
1133     return 0;
1134   }
1135 }
1136 
1137 
1138 template<class Config> template<class T>
1139 typename TypeImpl<Config>::TypeHandle
get_type()1140 TypeImpl<Config>::Iterator<T>::get_type() {
1141   DCHECK(!Done());
1142   return type_->IsUnion() ? type_->AsUnion()->Get(index_) : type_;
1143 }
1144 
1145 
1146 // C++ cannot specialise nested templates, so we have to go through this
1147 // contortion with an auxiliary template to simulate it.
1148 template<class Config, class T>
1149 struct TypeImplIteratorAux {
1150   static bool matches(typename TypeImpl<Config>::TypeHandle type);
1151   static i::Handle<T> current(typename TypeImpl<Config>::TypeHandle type);
1152 };
1153 
1154 template<class Config>
1155 struct TypeImplIteratorAux<Config, i::Map> {
matchesv8::internal::TypeImplIteratorAux1156   static bool matches(typename TypeImpl<Config>::TypeHandle type) {
1157     return type->IsClass();
1158   }
currentv8::internal::TypeImplIteratorAux1159   static i::Handle<i::Map> current(typename TypeImpl<Config>::TypeHandle type) {
1160     return type->AsClass()->Map();
1161   }
1162 };
1163 
1164 template<class Config>
1165 struct TypeImplIteratorAux<Config, i::Object> {
matchesv8::internal::TypeImplIteratorAux1166   static bool matches(typename TypeImpl<Config>::TypeHandle type) {
1167     return type->IsConstant();
1168   }
currentv8::internal::TypeImplIteratorAux1169   static i::Handle<i::Object> current(
1170       typename TypeImpl<Config>::TypeHandle type) {
1171     return type->AsConstant()->Value();
1172   }
1173 };
1174 
1175 template<class Config> template<class T>
matches(TypeHandle type)1176 bool TypeImpl<Config>::Iterator<T>::matches(TypeHandle type) {
1177   return TypeImplIteratorAux<Config, T>::matches(type);
1178 }
1179 
1180 template<class Config> template<class T>
Current()1181 i::Handle<T> TypeImpl<Config>::Iterator<T>::Current() {
1182   return TypeImplIteratorAux<Config, T>::current(get_type());
1183 }
1184 
1185 
1186 template<class Config> template<class T>
Advance()1187 void TypeImpl<Config>::Iterator<T>::Advance() {
1188   DisallowHeapAllocation no_allocation;
1189   ++index_;
1190   if (type_->IsUnion()) {
1191     for (int n = type_->AsUnion()->Length(); index_ < n; ++index_) {
1192       if (matches(type_->AsUnion()->Get(index_))) return;
1193     }
1194   } else if (index_ == 0 && matches(type_)) {
1195     return;
1196   }
1197   index_ = -1;
1198 }
1199 
1200 
1201 // -----------------------------------------------------------------------------
1202 // Conversion between low-level representations.
1203 
1204 template<class Config>
1205 template<class OtherType>
Convert(typename OtherType::TypeHandle type,Region * region)1206 typename TypeImpl<Config>::TypeHandle TypeImpl<Config>::Convert(
1207     typename OtherType::TypeHandle type, Region* region) {
1208   if (type->IsBitset()) {
1209     return BitsetType::New(type->AsBitset(), region);
1210   } else if (type->IsClass()) {
1211     return ClassType::New(type->AsClass()->Map(), region);
1212   } else if (type->IsConstant()) {
1213     return ConstantType::New(type->AsConstant()->Value(), region);
1214   } else if (type->IsRange()) {
1215     return RangeType::New(
1216         type->AsRange()->Min(), type->AsRange()->Max(),
1217         BitsetType::New(REPRESENTATION(type->BitsetLub()), region), region);
1218   } else if (type->IsContext()) {
1219     TypeHandle outer = Convert<OtherType>(type->AsContext()->Outer(), region);
1220     return ContextType::New(outer, region);
1221   } else if (type->IsUnion()) {
1222     int length = type->AsUnion()->Length();
1223     UnionHandle unioned = UnionType::New(length, region);
1224     for (int i = 0; i < length; ++i) {
1225       TypeHandle t = Convert<OtherType>(type->AsUnion()->Get(i), region);
1226       unioned->Set(i, t);
1227     }
1228     return unioned;
1229   } else if (type->IsArray()) {
1230     TypeHandle element = Convert<OtherType>(type->AsArray()->Element(), region);
1231     return ArrayType::New(element, region);
1232   } else if (type->IsFunction()) {
1233     TypeHandle res = Convert<OtherType>(type->AsFunction()->Result(), region);
1234     TypeHandle rcv = Convert<OtherType>(type->AsFunction()->Receiver(), region);
1235     FunctionHandle function = FunctionType::New(
1236         res, rcv, type->AsFunction()->Arity(), region);
1237     for (int i = 0; i < function->Arity(); ++i) {
1238       TypeHandle param = Convert<OtherType>(
1239           type->AsFunction()->Parameter(i), region);
1240       function->InitParameter(i, param);
1241     }
1242     return function;
1243   } else {
1244     UNREACHABLE();
1245     return None(region);
1246   }
1247 }
1248 
1249 
1250 // -----------------------------------------------------------------------------
1251 // Printing.
1252 
1253 template<class Config>
Name(bitset bits)1254 const char* TypeImpl<Config>::BitsetType::Name(bitset bits) {
1255   switch (bits) {
1256     case REPRESENTATION(kAny): return "Any";
1257     #define RETURN_NAMED_REPRESENTATION_TYPE(type, value) \
1258     case REPRESENTATION(k##type): return #type;
1259     REPRESENTATION_BITSET_TYPE_LIST(RETURN_NAMED_REPRESENTATION_TYPE)
1260     #undef RETURN_NAMED_REPRESENTATION_TYPE
1261 
1262     #define RETURN_NAMED_SEMANTIC_TYPE(type, value) \
1263     case SEMANTIC(k##type): return #type;
1264     SEMANTIC_BITSET_TYPE_LIST(RETURN_NAMED_SEMANTIC_TYPE)
1265     INTERNAL_BITSET_TYPE_LIST(RETURN_NAMED_SEMANTIC_TYPE)
1266     #undef RETURN_NAMED_SEMANTIC_TYPE
1267 
1268     default:
1269       return NULL;
1270   }
1271 }
1272 
1273 
1274 template <class Config>
Print(std::ostream & os,bitset bits)1275 void TypeImpl<Config>::BitsetType::Print(std::ostream& os,  // NOLINT
1276                                          bitset bits) {
1277   DisallowHeapAllocation no_allocation;
1278   const char* name = Name(bits);
1279   if (name != NULL) {
1280     os << name;
1281     return;
1282   }
1283 
1284   // clang-format off
1285   static const bitset named_bitsets[] = {
1286 #define BITSET_CONSTANT(type, value) REPRESENTATION(k##type),
1287     REPRESENTATION_BITSET_TYPE_LIST(BITSET_CONSTANT)
1288 #undef BITSET_CONSTANT
1289 
1290 #define BITSET_CONSTANT(type, value) SEMANTIC(k##type),
1291     INTERNAL_BITSET_TYPE_LIST(BITSET_CONSTANT)
1292     SEMANTIC_BITSET_TYPE_LIST(BITSET_CONSTANT)
1293 #undef BITSET_CONSTANT
1294   };
1295   // clang-format on
1296 
1297   bool is_first = true;
1298   os << "(";
1299   for (int i(arraysize(named_bitsets) - 1); bits != 0 && i >= 0; --i) {
1300     bitset subset = named_bitsets[i];
1301     if ((bits & subset) == subset) {
1302       if (!is_first) os << " | ";
1303       is_first = false;
1304       os << Name(subset);
1305       bits -= subset;
1306     }
1307   }
1308   DCHECK(bits == 0);
1309   os << ")";
1310 }
1311 
1312 
1313 template <class Config>
PrintTo(std::ostream & os,PrintDimension dim)1314 void TypeImpl<Config>::PrintTo(std::ostream& os, PrintDimension dim) {
1315   DisallowHeapAllocation no_allocation;
1316   if (dim != REPRESENTATION_DIM) {
1317     if (this->IsBitset()) {
1318       BitsetType::Print(os, SEMANTIC(this->AsBitset()));
1319     } else if (this->IsClass()) {
1320       os << "Class(" << static_cast<void*>(*this->AsClass()->Map()) << " < ";
1321       BitsetType::New(BitsetType::Lub(this))->PrintTo(os, dim);
1322       os << ")";
1323     } else if (this->IsConstant()) {
1324       os << "Constant(" << Brief(*this->AsConstant()->Value()) << ")";
1325     } else if (this->IsRange()) {
1326       std::ostream::fmtflags saved_flags = os.setf(std::ios::fixed);
1327       std::streamsize saved_precision = os.precision(0);
1328       os << "Range(" << this->AsRange()->Min() << ", " << this->AsRange()->Max()
1329          << ")";
1330       os.flags(saved_flags);
1331       os.precision(saved_precision);
1332     } else if (this->IsContext()) {
1333       os << "Context(";
1334       this->AsContext()->Outer()->PrintTo(os, dim);
1335       os << ")";
1336     } else if (this->IsUnion()) {
1337       os << "(";
1338       for (int i = 0, n = this->AsUnion()->Length(); i < n; ++i) {
1339         TypeHandle type_i = this->AsUnion()->Get(i);
1340         if (i > 0) os << " | ";
1341         type_i->PrintTo(os, dim);
1342       }
1343       os << ")";
1344     } else if (this->IsArray()) {
1345       os << "Array(";
1346       AsArray()->Element()->PrintTo(os, dim);
1347       os << ")";
1348     } else if (this->IsFunction()) {
1349       if (!this->AsFunction()->Receiver()->IsAny()) {
1350         this->AsFunction()->Receiver()->PrintTo(os, dim);
1351         os << ".";
1352       }
1353       os << "(";
1354       for (int i = 0; i < this->AsFunction()->Arity(); ++i) {
1355         if (i > 0) os << ", ";
1356         this->AsFunction()->Parameter(i)->PrintTo(os, dim);
1357       }
1358       os << ")->";
1359       this->AsFunction()->Result()->PrintTo(os, dim);
1360     } else {
1361       UNREACHABLE();
1362     }
1363   }
1364   if (dim == BOTH_DIMS) os << "/";
1365   if (dim != SEMANTIC_DIM) {
1366     BitsetType::Print(os, REPRESENTATION(this->BitsetLub()));
1367   }
1368 }
1369 
1370 
1371 #ifdef DEBUG
1372 template <class Config>
Print()1373 void TypeImpl<Config>::Print() {
1374   OFStream os(stdout);
1375   PrintTo(os);
1376   os << std::endl;
1377 }
1378 template <class Config>
Print(bitset bits)1379 void TypeImpl<Config>::BitsetType::Print(bitset bits) {
1380   OFStream os(stdout);
1381   Print(os, bits);
1382   os << std::endl;
1383 }
1384 #endif
1385 
1386 
1387 // -----------------------------------------------------------------------------
1388 // Instantiations.
1389 
1390 template class TypeImpl<ZoneTypeConfig>;
1391 template class TypeImpl<ZoneTypeConfig>::Iterator<i::Map>;
1392 template class TypeImpl<ZoneTypeConfig>::Iterator<i::Object>;
1393 
1394 template class TypeImpl<HeapTypeConfig>;
1395 template class TypeImpl<HeapTypeConfig>::Iterator<i::Map>;
1396 template class TypeImpl<HeapTypeConfig>::Iterator<i::Object>;
1397 
1398 template TypeImpl<ZoneTypeConfig>::TypeHandle
1399   TypeImpl<ZoneTypeConfig>::Convert<HeapType>(
1400     TypeImpl<HeapTypeConfig>::TypeHandle, TypeImpl<ZoneTypeConfig>::Region*);
1401 template TypeImpl<HeapTypeConfig>::TypeHandle
1402   TypeImpl<HeapTypeConfig>::Convert<Type>(
1403     TypeImpl<ZoneTypeConfig>::TypeHandle, TypeImpl<HeapTypeConfig>::Region*);
1404 
1405 }  // namespace internal
1406 }  // namespace v8
1407