• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2013 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #if V8_TARGET_ARCH_X64
6 
7 #include "src/bootstrapper.h"
8 #include "src/code-stubs.h"
9 #include "src/codegen.h"
10 #include "src/ic/handler-compiler.h"
11 #include "src/ic/ic.h"
12 #include "src/ic/stub-cache.h"
13 #include "src/isolate.h"
14 #include "src/regexp/jsregexp.h"
15 #include "src/regexp/regexp-macro-assembler.h"
16 #include "src/runtime/runtime.h"
17 #include "src/x64/code-stubs-x64.h"
18 
19 namespace v8 {
20 namespace internal {
21 
22 
InitializeArrayConstructorDescriptor(Isolate * isolate,CodeStubDescriptor * descriptor,int constant_stack_parameter_count)23 static void InitializeArrayConstructorDescriptor(
24     Isolate* isolate, CodeStubDescriptor* descriptor,
25     int constant_stack_parameter_count) {
26   Address deopt_handler = Runtime::FunctionForId(
27       Runtime::kArrayConstructor)->entry;
28 
29   if (constant_stack_parameter_count == 0) {
30     descriptor->Initialize(deopt_handler, constant_stack_parameter_count,
31                            JS_FUNCTION_STUB_MODE);
32   } else {
33     descriptor->Initialize(rax, deopt_handler, constant_stack_parameter_count,
34                            JS_FUNCTION_STUB_MODE);
35   }
36 }
37 
38 
InitializeInternalArrayConstructorDescriptor(Isolate * isolate,CodeStubDescriptor * descriptor,int constant_stack_parameter_count)39 static void InitializeInternalArrayConstructorDescriptor(
40     Isolate* isolate, CodeStubDescriptor* descriptor,
41     int constant_stack_parameter_count) {
42   Address deopt_handler = Runtime::FunctionForId(
43       Runtime::kInternalArrayConstructor)->entry;
44 
45   if (constant_stack_parameter_count == 0) {
46     descriptor->Initialize(deopt_handler, constant_stack_parameter_count,
47                            JS_FUNCTION_STUB_MODE);
48   } else {
49     descriptor->Initialize(rax, deopt_handler, constant_stack_parameter_count,
50                            JS_FUNCTION_STUB_MODE);
51   }
52 }
53 
54 
InitializeDescriptor(CodeStubDescriptor * descriptor)55 void ArrayNoArgumentConstructorStub::InitializeDescriptor(
56     CodeStubDescriptor* descriptor) {
57   InitializeArrayConstructorDescriptor(isolate(), descriptor, 0);
58 }
59 
60 
InitializeDescriptor(CodeStubDescriptor * descriptor)61 void ArraySingleArgumentConstructorStub::InitializeDescriptor(
62     CodeStubDescriptor* descriptor) {
63   InitializeArrayConstructorDescriptor(isolate(), descriptor, 1);
64 }
65 
66 
InitializeDescriptor(CodeStubDescriptor * descriptor)67 void ArrayNArgumentsConstructorStub::InitializeDescriptor(
68     CodeStubDescriptor* descriptor) {
69   InitializeArrayConstructorDescriptor(isolate(), descriptor, -1);
70 }
71 
72 
InitializeDescriptor(CodeStubDescriptor * descriptor)73 void InternalArrayNoArgumentConstructorStub::InitializeDescriptor(
74     CodeStubDescriptor* descriptor) {
75   InitializeInternalArrayConstructorDescriptor(isolate(), descriptor, 0);
76 }
77 
78 
InitializeDescriptor(CodeStubDescriptor * descriptor)79 void InternalArraySingleArgumentConstructorStub::InitializeDescriptor(
80     CodeStubDescriptor* descriptor) {
81   InitializeInternalArrayConstructorDescriptor(isolate(), descriptor, 1);
82 }
83 
84 
InitializeDescriptor(CodeStubDescriptor * descriptor)85 void InternalArrayNArgumentsConstructorStub::InitializeDescriptor(
86     CodeStubDescriptor* descriptor) {
87   InitializeInternalArrayConstructorDescriptor(isolate(), descriptor, -1);
88 }
89 
90 
91 #define __ ACCESS_MASM(masm)
92 
93 
GenerateLightweightMiss(MacroAssembler * masm,ExternalReference miss)94 void HydrogenCodeStub::GenerateLightweightMiss(MacroAssembler* masm,
95                                                ExternalReference miss) {
96   // Update the static counter each time a new code stub is generated.
97   isolate()->counters()->code_stubs()->Increment();
98 
99   CallInterfaceDescriptor descriptor = GetCallInterfaceDescriptor();
100   int param_count = descriptor.GetRegisterParameterCount();
101   {
102     // Call the runtime system in a fresh internal frame.
103     FrameScope scope(masm, StackFrame::INTERNAL);
104     DCHECK(param_count == 0 ||
105            rax.is(descriptor.GetRegisterParameter(param_count - 1)));
106     // Push arguments
107     for (int i = 0; i < param_count; ++i) {
108       __ Push(descriptor.GetRegisterParameter(i));
109     }
110     __ CallExternalReference(miss, param_count);
111   }
112 
113   __ Ret();
114 }
115 
116 
Generate(MacroAssembler * masm)117 void StoreBufferOverflowStub::Generate(MacroAssembler* masm) {
118   __ PushCallerSaved(save_doubles() ? kSaveFPRegs : kDontSaveFPRegs);
119   const int argument_count = 1;
120   __ PrepareCallCFunction(argument_count);
121   __ LoadAddress(arg_reg_1,
122                  ExternalReference::isolate_address(isolate()));
123 
124   AllowExternalCallThatCantCauseGC scope(masm);
125   __ CallCFunction(
126       ExternalReference::store_buffer_overflow_function(isolate()),
127       argument_count);
128   __ PopCallerSaved(save_doubles() ? kSaveFPRegs : kDontSaveFPRegs);
129   __ ret(0);
130 }
131 
132 
133 class FloatingPointHelper : public AllStatic {
134  public:
135   enum ConvertUndefined {
136     CONVERT_UNDEFINED_TO_ZERO,
137     BAILOUT_ON_UNDEFINED
138   };
139   // Load the operands from rdx and rax into xmm0 and xmm1, as doubles.
140   // If the operands are not both numbers, jump to not_numbers.
141   // Leaves rdx and rax unchanged.  SmiOperands assumes both are smis.
142   // NumberOperands assumes both are smis or heap numbers.
143   static void LoadSSE2UnknownOperands(MacroAssembler* masm,
144                                       Label* not_numbers);
145 };
146 
147 
Generate(MacroAssembler * masm)148 void DoubleToIStub::Generate(MacroAssembler* masm) {
149     Register input_reg = this->source();
150     Register final_result_reg = this->destination();
151     DCHECK(is_truncating());
152 
153     Label check_negative, process_64_bits, done;
154 
155     int double_offset = offset();
156 
157     // Account for return address and saved regs if input is rsp.
158     if (input_reg.is(rsp)) double_offset += 3 * kRegisterSize;
159 
160     MemOperand mantissa_operand(MemOperand(input_reg, double_offset));
161     MemOperand exponent_operand(MemOperand(input_reg,
162                                            double_offset + kDoubleSize / 2));
163 
164     Register scratch1;
165     Register scratch_candidates[3] = { rbx, rdx, rdi };
166     for (int i = 0; i < 3; i++) {
167       scratch1 = scratch_candidates[i];
168       if (!final_result_reg.is(scratch1) && !input_reg.is(scratch1)) break;
169     }
170 
171     // Since we must use rcx for shifts below, use some other register (rax)
172     // to calculate the result if ecx is the requested return register.
173     Register result_reg = final_result_reg.is(rcx) ? rax : final_result_reg;
174     // Save ecx if it isn't the return register and therefore volatile, or if it
175     // is the return register, then save the temp register we use in its stead
176     // for the result.
177     Register save_reg = final_result_reg.is(rcx) ? rax : rcx;
178     __ pushq(scratch1);
179     __ pushq(save_reg);
180 
181     bool stash_exponent_copy = !input_reg.is(rsp);
182     __ movl(scratch1, mantissa_operand);
183     __ Movsd(xmm0, mantissa_operand);
184     __ movl(rcx, exponent_operand);
185     if (stash_exponent_copy) __ pushq(rcx);
186 
187     __ andl(rcx, Immediate(HeapNumber::kExponentMask));
188     __ shrl(rcx, Immediate(HeapNumber::kExponentShift));
189     __ leal(result_reg, MemOperand(rcx, -HeapNumber::kExponentBias));
190     __ cmpl(result_reg, Immediate(HeapNumber::kMantissaBits));
191     __ j(below, &process_64_bits);
192 
193     // Result is entirely in lower 32-bits of mantissa
194     int delta = HeapNumber::kExponentBias + Double::kPhysicalSignificandSize;
195     __ subl(rcx, Immediate(delta));
196     __ xorl(result_reg, result_reg);
197     __ cmpl(rcx, Immediate(31));
198     __ j(above, &done);
199     __ shll_cl(scratch1);
200     __ jmp(&check_negative);
201 
202     __ bind(&process_64_bits);
203     __ Cvttsd2siq(result_reg, xmm0);
204     __ jmp(&done, Label::kNear);
205 
206     // If the double was negative, negate the integer result.
207     __ bind(&check_negative);
208     __ movl(result_reg, scratch1);
209     __ negl(result_reg);
210     if (stash_exponent_copy) {
211         __ cmpl(MemOperand(rsp, 0), Immediate(0));
212     } else {
213         __ cmpl(exponent_operand, Immediate(0));
214     }
215     __ cmovl(greater, result_reg, scratch1);
216 
217     // Restore registers
218     __ bind(&done);
219     if (stash_exponent_copy) {
220         __ addp(rsp, Immediate(kDoubleSize));
221     }
222     if (!final_result_reg.is(result_reg)) {
223         DCHECK(final_result_reg.is(rcx));
224         __ movl(final_result_reg, result_reg);
225     }
226     __ popq(save_reg);
227     __ popq(scratch1);
228     __ ret(0);
229 }
230 
231 
LoadSSE2UnknownOperands(MacroAssembler * masm,Label * not_numbers)232 void FloatingPointHelper::LoadSSE2UnknownOperands(MacroAssembler* masm,
233                                                   Label* not_numbers) {
234   Label load_smi_rdx, load_nonsmi_rax, load_smi_rax, load_float_rax, done;
235   // Load operand in rdx into xmm0, or branch to not_numbers.
236   __ LoadRoot(rcx, Heap::kHeapNumberMapRootIndex);
237   __ JumpIfSmi(rdx, &load_smi_rdx);
238   __ cmpp(FieldOperand(rdx, HeapObject::kMapOffset), rcx);
239   __ j(not_equal, not_numbers);  // Argument in rdx is not a number.
240   __ Movsd(xmm0, FieldOperand(rdx, HeapNumber::kValueOffset));
241   // Load operand in rax into xmm1, or branch to not_numbers.
242   __ JumpIfSmi(rax, &load_smi_rax);
243 
244   __ bind(&load_nonsmi_rax);
245   __ cmpp(FieldOperand(rax, HeapObject::kMapOffset), rcx);
246   __ j(not_equal, not_numbers);
247   __ Movsd(xmm1, FieldOperand(rax, HeapNumber::kValueOffset));
248   __ jmp(&done);
249 
250   __ bind(&load_smi_rdx);
251   __ SmiToInteger32(kScratchRegister, rdx);
252   __ Cvtlsi2sd(xmm0, kScratchRegister);
253   __ JumpIfNotSmi(rax, &load_nonsmi_rax);
254 
255   __ bind(&load_smi_rax);
256   __ SmiToInteger32(kScratchRegister, rax);
257   __ Cvtlsi2sd(xmm1, kScratchRegister);
258   __ bind(&done);
259 }
260 
261 
Generate(MacroAssembler * masm)262 void MathPowStub::Generate(MacroAssembler* masm) {
263   const Register exponent = MathPowTaggedDescriptor::exponent();
264   DCHECK(exponent.is(rdx));
265   const Register base = rax;
266   const Register scratch = rcx;
267   const XMMRegister double_result = xmm3;
268   const XMMRegister double_base = xmm2;
269   const XMMRegister double_exponent = xmm1;
270   const XMMRegister double_scratch = xmm4;
271 
272   Label call_runtime, done, exponent_not_smi, int_exponent;
273 
274   // Save 1 in double_result - we need this several times later on.
275   __ movp(scratch, Immediate(1));
276   __ Cvtlsi2sd(double_result, scratch);
277 
278   if (exponent_type() == ON_STACK) {
279     Label base_is_smi, unpack_exponent;
280     // The exponent and base are supplied as arguments on the stack.
281     // This can only happen if the stub is called from non-optimized code.
282     // Load input parameters from stack.
283     StackArgumentsAccessor args(rsp, 2, ARGUMENTS_DONT_CONTAIN_RECEIVER);
284     __ movp(base, args.GetArgumentOperand(0));
285     __ movp(exponent, args.GetArgumentOperand(1));
286     __ JumpIfSmi(base, &base_is_smi, Label::kNear);
287     __ CompareRoot(FieldOperand(base, HeapObject::kMapOffset),
288                    Heap::kHeapNumberMapRootIndex);
289     __ j(not_equal, &call_runtime);
290 
291     __ Movsd(double_base, FieldOperand(base, HeapNumber::kValueOffset));
292     __ jmp(&unpack_exponent, Label::kNear);
293 
294     __ bind(&base_is_smi);
295     __ SmiToInteger32(base, base);
296     __ Cvtlsi2sd(double_base, base);
297     __ bind(&unpack_exponent);
298 
299     __ JumpIfNotSmi(exponent, &exponent_not_smi, Label::kNear);
300     __ SmiToInteger32(exponent, exponent);
301     __ jmp(&int_exponent);
302 
303     __ bind(&exponent_not_smi);
304     __ CompareRoot(FieldOperand(exponent, HeapObject::kMapOffset),
305                    Heap::kHeapNumberMapRootIndex);
306     __ j(not_equal, &call_runtime);
307     __ Movsd(double_exponent, FieldOperand(exponent, HeapNumber::kValueOffset));
308   } else if (exponent_type() == TAGGED) {
309     __ JumpIfNotSmi(exponent, &exponent_not_smi, Label::kNear);
310     __ SmiToInteger32(exponent, exponent);
311     __ jmp(&int_exponent);
312 
313     __ bind(&exponent_not_smi);
314     __ Movsd(double_exponent, FieldOperand(exponent, HeapNumber::kValueOffset));
315   }
316 
317   if (exponent_type() != INTEGER) {
318     Label fast_power, try_arithmetic_simplification;
319     // Detect integer exponents stored as double.
320     __ DoubleToI(exponent, double_exponent, double_scratch,
321                  TREAT_MINUS_ZERO_AS_ZERO, &try_arithmetic_simplification,
322                  &try_arithmetic_simplification,
323                  &try_arithmetic_simplification);
324     __ jmp(&int_exponent);
325 
326     __ bind(&try_arithmetic_simplification);
327     __ Cvttsd2si(exponent, double_exponent);
328     // Skip to runtime if possibly NaN (indicated by the indefinite integer).
329     __ cmpl(exponent, Immediate(0x1));
330     __ j(overflow, &call_runtime);
331 
332     if (exponent_type() == ON_STACK) {
333       // Detect square root case.  Crankshaft detects constant +/-0.5 at
334       // compile time and uses DoMathPowHalf instead.  We then skip this check
335       // for non-constant cases of +/-0.5 as these hardly occur.
336       Label continue_sqrt, continue_rsqrt, not_plus_half;
337       // Test for 0.5.
338       // Load double_scratch with 0.5.
339       __ movq(scratch, V8_UINT64_C(0x3FE0000000000000));
340       __ Movq(double_scratch, scratch);
341       // Already ruled out NaNs for exponent.
342       __ Ucomisd(double_scratch, double_exponent);
343       __ j(not_equal, &not_plus_half, Label::kNear);
344 
345       // Calculates square root of base.  Check for the special case of
346       // Math.pow(-Infinity, 0.5) == Infinity (ECMA spec, 15.8.2.13).
347       // According to IEEE-754, double-precision -Infinity has the highest
348       // 12 bits set and the lowest 52 bits cleared.
349       __ movq(scratch, V8_UINT64_C(0xFFF0000000000000));
350       __ Movq(double_scratch, scratch);
351       __ Ucomisd(double_scratch, double_base);
352       // Comparing -Infinity with NaN results in "unordered", which sets the
353       // zero flag as if both were equal.  However, it also sets the carry flag.
354       __ j(not_equal, &continue_sqrt, Label::kNear);
355       __ j(carry, &continue_sqrt, Label::kNear);
356 
357       // Set result to Infinity in the special case.
358       __ Xorpd(double_result, double_result);
359       __ Subsd(double_result, double_scratch);
360       __ jmp(&done);
361 
362       __ bind(&continue_sqrt);
363       // sqrtsd returns -0 when input is -0.  ECMA spec requires +0.
364       __ Xorpd(double_scratch, double_scratch);
365       __ Addsd(double_scratch, double_base);  // Convert -0 to 0.
366       __ Sqrtsd(double_result, double_scratch);
367       __ jmp(&done);
368 
369       // Test for -0.5.
370       __ bind(&not_plus_half);
371       // Load double_scratch with -0.5 by substracting 1.
372       __ Subsd(double_scratch, double_result);
373       // Already ruled out NaNs for exponent.
374       __ Ucomisd(double_scratch, double_exponent);
375       __ j(not_equal, &fast_power, Label::kNear);
376 
377       // Calculates reciprocal of square root of base.  Check for the special
378       // case of Math.pow(-Infinity, -0.5) == 0 (ECMA spec, 15.8.2.13).
379       // According to IEEE-754, double-precision -Infinity has the highest
380       // 12 bits set and the lowest 52 bits cleared.
381       __ movq(scratch, V8_UINT64_C(0xFFF0000000000000));
382       __ Movq(double_scratch, scratch);
383       __ Ucomisd(double_scratch, double_base);
384       // Comparing -Infinity with NaN results in "unordered", which sets the
385       // zero flag as if both were equal.  However, it also sets the carry flag.
386       __ j(not_equal, &continue_rsqrt, Label::kNear);
387       __ j(carry, &continue_rsqrt, Label::kNear);
388 
389       // Set result to 0 in the special case.
390       __ Xorpd(double_result, double_result);
391       __ jmp(&done);
392 
393       __ bind(&continue_rsqrt);
394       // sqrtsd returns -0 when input is -0.  ECMA spec requires +0.
395       __ Xorpd(double_exponent, double_exponent);
396       __ Addsd(double_exponent, double_base);  // Convert -0 to +0.
397       __ Sqrtsd(double_exponent, double_exponent);
398       __ Divsd(double_result, double_exponent);
399       __ jmp(&done);
400     }
401 
402     // Using FPU instructions to calculate power.
403     Label fast_power_failed;
404     __ bind(&fast_power);
405     __ fnclex();  // Clear flags to catch exceptions later.
406     // Transfer (B)ase and (E)xponent onto the FPU register stack.
407     __ subp(rsp, Immediate(kDoubleSize));
408     __ Movsd(Operand(rsp, 0), double_exponent);
409     __ fld_d(Operand(rsp, 0));  // E
410     __ Movsd(Operand(rsp, 0), double_base);
411     __ fld_d(Operand(rsp, 0));  // B, E
412 
413     // Exponent is in st(1) and base is in st(0)
414     // B ^ E = (2^(E * log2(B)) - 1) + 1 = (2^X - 1) + 1 for X = E * log2(B)
415     // FYL2X calculates st(1) * log2(st(0))
416     __ fyl2x();    // X
417     __ fld(0);     // X, X
418     __ frndint();  // rnd(X), X
419     __ fsub(1);    // rnd(X), X-rnd(X)
420     __ fxch(1);    // X - rnd(X), rnd(X)
421     // F2XM1 calculates 2^st(0) - 1 for -1 < st(0) < 1
422     __ f2xm1();    // 2^(X-rnd(X)) - 1, rnd(X)
423     __ fld1();     // 1, 2^(X-rnd(X)) - 1, rnd(X)
424     __ faddp(1);   // 2^(X-rnd(X)), rnd(X)
425     // FSCALE calculates st(0) * 2^st(1)
426     __ fscale();   // 2^X, rnd(X)
427     __ fstp(1);
428     // Bail out to runtime in case of exceptions in the status word.
429     __ fnstsw_ax();
430     __ testb(rax, Immediate(0x5F));  // Check for all but precision exception.
431     __ j(not_zero, &fast_power_failed, Label::kNear);
432     __ fstp_d(Operand(rsp, 0));
433     __ Movsd(double_result, Operand(rsp, 0));
434     __ addp(rsp, Immediate(kDoubleSize));
435     __ jmp(&done);
436 
437     __ bind(&fast_power_failed);
438     __ fninit();
439     __ addp(rsp, Immediate(kDoubleSize));
440     __ jmp(&call_runtime);
441   }
442 
443   // Calculate power with integer exponent.
444   __ bind(&int_exponent);
445   const XMMRegister double_scratch2 = double_exponent;
446   // Back up exponent as we need to check if exponent is negative later.
447   __ movp(scratch, exponent);  // Back up exponent.
448   __ Movsd(double_scratch, double_base);     // Back up base.
449   __ Movsd(double_scratch2, double_result);  // Load double_exponent with 1.
450 
451   // Get absolute value of exponent.
452   Label no_neg, while_true, while_false;
453   __ testl(scratch, scratch);
454   __ j(positive, &no_neg, Label::kNear);
455   __ negl(scratch);
456   __ bind(&no_neg);
457 
458   __ j(zero, &while_false, Label::kNear);
459   __ shrl(scratch, Immediate(1));
460   // Above condition means CF==0 && ZF==0.  This means that the
461   // bit that has been shifted out is 0 and the result is not 0.
462   __ j(above, &while_true, Label::kNear);
463   __ Movsd(double_result, double_scratch);
464   __ j(zero, &while_false, Label::kNear);
465 
466   __ bind(&while_true);
467   __ shrl(scratch, Immediate(1));
468   __ Mulsd(double_scratch, double_scratch);
469   __ j(above, &while_true, Label::kNear);
470   __ Mulsd(double_result, double_scratch);
471   __ j(not_zero, &while_true);
472 
473   __ bind(&while_false);
474   // If the exponent is negative, return 1/result.
475   __ testl(exponent, exponent);
476   __ j(greater, &done);
477   __ Divsd(double_scratch2, double_result);
478   __ Movsd(double_result, double_scratch2);
479   // Test whether result is zero.  Bail out to check for subnormal result.
480   // Due to subnormals, x^-y == (1/x)^y does not hold in all cases.
481   __ Xorpd(double_scratch2, double_scratch2);
482   __ Ucomisd(double_scratch2, double_result);
483   // double_exponent aliased as double_scratch2 has already been overwritten
484   // and may not have contained the exponent value in the first place when the
485   // input was a smi.  We reset it with exponent value before bailing out.
486   __ j(not_equal, &done);
487   __ Cvtlsi2sd(double_exponent, exponent);
488 
489   // Returning or bailing out.
490   Counters* counters = isolate()->counters();
491   if (exponent_type() == ON_STACK) {
492     // The arguments are still on the stack.
493     __ bind(&call_runtime);
494     __ TailCallRuntime(Runtime::kMathPowRT);
495 
496     // The stub is called from non-optimized code, which expects the result
497     // as heap number in rax.
498     __ bind(&done);
499     __ AllocateHeapNumber(rax, rcx, &call_runtime);
500     __ Movsd(FieldOperand(rax, HeapNumber::kValueOffset), double_result);
501     __ IncrementCounter(counters->math_pow(), 1);
502     __ ret(2 * kPointerSize);
503   } else {
504     __ bind(&call_runtime);
505     // Move base to the correct argument register.  Exponent is already in xmm1.
506     __ Movsd(xmm0, double_base);
507     DCHECK(double_exponent.is(xmm1));
508     {
509       AllowExternalCallThatCantCauseGC scope(masm);
510       __ PrepareCallCFunction(2);
511       __ CallCFunction(
512           ExternalReference::power_double_double_function(isolate()), 2);
513     }
514     // Return value is in xmm0.
515     __ Movsd(double_result, xmm0);
516 
517     __ bind(&done);
518     __ IncrementCounter(counters->math_pow(), 1);
519     __ ret(0);
520   }
521 }
522 
523 
Generate(MacroAssembler * masm)524 void FunctionPrototypeStub::Generate(MacroAssembler* masm) {
525   Label miss;
526   Register receiver = LoadDescriptor::ReceiverRegister();
527   // Ensure that the vector and slot registers won't be clobbered before
528   // calling the miss handler.
529   DCHECK(!AreAliased(r8, r9, LoadWithVectorDescriptor::VectorRegister(),
530                      LoadDescriptor::SlotRegister()));
531 
532   NamedLoadHandlerCompiler::GenerateLoadFunctionPrototype(masm, receiver, r8,
533                                                           r9, &miss);
534   __ bind(&miss);
535   PropertyAccessCompiler::TailCallBuiltin(
536       masm, PropertyAccessCompiler::MissBuiltin(Code::LOAD_IC));
537 }
538 
539 
GenerateReadElement(MacroAssembler * masm)540 void ArgumentsAccessStub::GenerateReadElement(MacroAssembler* masm) {
541   // The key is in rdx and the parameter count is in rax.
542   DCHECK(rdx.is(ArgumentsAccessReadDescriptor::index()));
543   DCHECK(rax.is(ArgumentsAccessReadDescriptor::parameter_count()));
544 
545   // Check that the key is a smi.
546   Label slow;
547   __ JumpIfNotSmi(rdx, &slow);
548 
549   // Check if the calling frame is an arguments adaptor frame.  We look at the
550   // context offset, and if the frame is not a regular one, then we find a
551   // Smi instead of the context.  We can't use SmiCompare here, because that
552   // only works for comparing two smis.
553   Label adaptor;
554   __ movp(rbx, Operand(rbp, StandardFrameConstants::kCallerFPOffset));
555   __ Cmp(Operand(rbx, StandardFrameConstants::kContextOffset),
556          Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR));
557   __ j(equal, &adaptor);
558 
559   // Check index against formal parameters count limit passed in
560   // through register rax. Use unsigned comparison to get negative
561   // check for free.
562   __ cmpp(rdx, rax);
563   __ j(above_equal, &slow);
564 
565   // Read the argument from the stack and return it.
566   __ SmiSub(rax, rax, rdx);
567   __ SmiToInteger32(rax, rax);
568   StackArgumentsAccessor args(rbp, rax, ARGUMENTS_DONT_CONTAIN_RECEIVER);
569   __ movp(rax, args.GetArgumentOperand(0));
570   __ Ret();
571 
572   // Arguments adaptor case: Check index against actual arguments
573   // limit found in the arguments adaptor frame. Use unsigned
574   // comparison to get negative check for free.
575   __ bind(&adaptor);
576   __ movp(rcx, Operand(rbx, ArgumentsAdaptorFrameConstants::kLengthOffset));
577   __ cmpp(rdx, rcx);
578   __ j(above_equal, &slow);
579 
580   // Read the argument from the stack and return it.
581   __ SmiSub(rcx, rcx, rdx);
582   __ SmiToInteger32(rcx, rcx);
583   StackArgumentsAccessor adaptor_args(rbx, rcx,
584                                       ARGUMENTS_DONT_CONTAIN_RECEIVER);
585   __ movp(rax, adaptor_args.GetArgumentOperand(0));
586   __ Ret();
587 
588   // Slow-case: Handle non-smi or out-of-bounds access to arguments
589   // by calling the runtime system.
590   __ bind(&slow);
591   __ PopReturnAddressTo(rbx);
592   __ Push(rdx);
593   __ PushReturnAddressFrom(rbx);
594   __ TailCallRuntime(Runtime::kArguments);
595 }
596 
597 
GenerateNewSloppyFast(MacroAssembler * masm)598 void ArgumentsAccessStub::GenerateNewSloppyFast(MacroAssembler* masm) {
599   // rcx : number of parameters (tagged)
600   // rdx : parameters pointer
601   // rdi : function
602   // rsp[0] : return address
603   // Registers used over the whole function:
604   //  rbx: the mapped parameter count (untagged)
605   //  rax: the allocated object (tagged).
606   Factory* factory = isolate()->factory();
607 
608   DCHECK(rdi.is(ArgumentsAccessNewDescriptor::function()));
609   DCHECK(rcx.is(ArgumentsAccessNewDescriptor::parameter_count()));
610   DCHECK(rdx.is(ArgumentsAccessNewDescriptor::parameter_pointer()));
611 
612   __ SmiToInteger64(rbx, rcx);
613   // rbx = parameter count (untagged)
614 
615   // Check if the calling frame is an arguments adaptor frame.
616   Label adaptor_frame, try_allocate, runtime;
617   __ movp(rax, Operand(rbp, StandardFrameConstants::kCallerFPOffset));
618   __ movp(r8, Operand(rax, StandardFrameConstants::kContextOffset));
619   __ Cmp(r8, Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR));
620   __ j(equal, &adaptor_frame);
621 
622   // No adaptor, parameter count = argument count.
623   __ movp(r11, rbx);
624   __ jmp(&try_allocate, Label::kNear);
625 
626   // We have an adaptor frame. Patch the parameters pointer.
627   __ bind(&adaptor_frame);
628   __ SmiToInteger64(
629       r11, Operand(rax, ArgumentsAdaptorFrameConstants::kLengthOffset));
630   __ leap(rdx, Operand(rax, r11, times_pointer_size,
631                        StandardFrameConstants::kCallerSPOffset));
632 
633   // rbx = parameter count (untagged)
634   // r11 = argument count (untagged)
635   // Compute the mapped parameter count = min(rbx, r11) in rbx.
636   __ cmpp(rbx, r11);
637   __ j(less_equal, &try_allocate, Label::kNear);
638   __ movp(rbx, r11);
639 
640   __ bind(&try_allocate);
641 
642   // Compute the sizes of backing store, parameter map, and arguments object.
643   // 1. Parameter map, has 2 extra words containing context and backing store.
644   const int kParameterMapHeaderSize =
645       FixedArray::kHeaderSize + 2 * kPointerSize;
646   Label no_parameter_map;
647   __ xorp(r8, r8);
648   __ testp(rbx, rbx);
649   __ j(zero, &no_parameter_map, Label::kNear);
650   __ leap(r8, Operand(rbx, times_pointer_size, kParameterMapHeaderSize));
651   __ bind(&no_parameter_map);
652 
653   // 2. Backing store.
654   __ leap(r8, Operand(r8, r11, times_pointer_size, FixedArray::kHeaderSize));
655 
656   // 3. Arguments object.
657   __ addp(r8, Immediate(Heap::kSloppyArgumentsObjectSize));
658 
659   // Do the allocation of all three objects in one go.
660   __ Allocate(r8, rax, r9, no_reg, &runtime, TAG_OBJECT);
661 
662   // rax = address of new object(s) (tagged)
663   // r11 = argument count (untagged)
664   // Get the arguments map from the current native context into r9.
665   Label has_mapped_parameters, instantiate;
666   __ movp(r9, NativeContextOperand());
667   __ testp(rbx, rbx);
668   __ j(not_zero, &has_mapped_parameters, Label::kNear);
669 
670   const int kIndex = Context::SLOPPY_ARGUMENTS_MAP_INDEX;
671   __ movp(r9, Operand(r9, Context::SlotOffset(kIndex)));
672   __ jmp(&instantiate, Label::kNear);
673 
674   const int kAliasedIndex = Context::FAST_ALIASED_ARGUMENTS_MAP_INDEX;
675   __ bind(&has_mapped_parameters);
676   __ movp(r9, Operand(r9, Context::SlotOffset(kAliasedIndex)));
677   __ bind(&instantiate);
678 
679   // rax = address of new object (tagged)
680   // rbx = mapped parameter count (untagged)
681   // r11 = argument count (untagged)
682   // r9 = address of arguments map (tagged)
683   __ movp(FieldOperand(rax, JSObject::kMapOffset), r9);
684   __ LoadRoot(kScratchRegister, Heap::kEmptyFixedArrayRootIndex);
685   __ movp(FieldOperand(rax, JSObject::kPropertiesOffset), kScratchRegister);
686   __ movp(FieldOperand(rax, JSObject::kElementsOffset), kScratchRegister);
687 
688   // Set up the callee in-object property.
689   STATIC_ASSERT(Heap::kArgumentsCalleeIndex == 1);
690   __ AssertNotSmi(rdi);
691   __ movp(FieldOperand(rax, JSObject::kHeaderSize +
692                                 Heap::kArgumentsCalleeIndex * kPointerSize),
693           rdi);
694 
695   // Use the length (smi tagged) and set that as an in-object property too.
696   // Note: r11 is tagged from here on.
697   STATIC_ASSERT(Heap::kArgumentsLengthIndex == 0);
698   __ Integer32ToSmi(r11, r11);
699   __ movp(FieldOperand(rax, JSObject::kHeaderSize +
700                                 Heap::kArgumentsLengthIndex * kPointerSize),
701           r11);
702 
703   // Set up the elements pointer in the allocated arguments object.
704   // If we allocated a parameter map, rdi will point there, otherwise to the
705   // backing store.
706   __ leap(rdi, Operand(rax, Heap::kSloppyArgumentsObjectSize));
707   __ movp(FieldOperand(rax, JSObject::kElementsOffset), rdi);
708 
709   // rax = address of new object (tagged)
710   // rbx = mapped parameter count (untagged)
711   // r11 = argument count (tagged)
712   // rdi = address of parameter map or backing store (tagged)
713 
714   // Initialize parameter map. If there are no mapped arguments, we're done.
715   Label skip_parameter_map;
716   __ testp(rbx, rbx);
717   __ j(zero, &skip_parameter_map);
718 
719   __ LoadRoot(kScratchRegister, Heap::kSloppyArgumentsElementsMapRootIndex);
720   // rbx contains the untagged argument count. Add 2 and tag to write.
721   __ movp(FieldOperand(rdi, FixedArray::kMapOffset), kScratchRegister);
722   __ Integer64PlusConstantToSmi(r9, rbx, 2);
723   __ movp(FieldOperand(rdi, FixedArray::kLengthOffset), r9);
724   __ movp(FieldOperand(rdi, FixedArray::kHeaderSize + 0 * kPointerSize), rsi);
725   __ leap(r9, Operand(rdi, rbx, times_pointer_size, kParameterMapHeaderSize));
726   __ movp(FieldOperand(rdi, FixedArray::kHeaderSize + 1 * kPointerSize), r9);
727 
728   // Copy the parameter slots and the holes in the arguments.
729   // We need to fill in mapped_parameter_count slots. They index the context,
730   // where parameters are stored in reverse order, at
731   //   MIN_CONTEXT_SLOTS .. MIN_CONTEXT_SLOTS+parameter_count-1
732   // The mapped parameter thus need to get indices
733   //   MIN_CONTEXT_SLOTS+parameter_count-1 ..
734   //       MIN_CONTEXT_SLOTS+parameter_count-mapped_parameter_count
735   // We loop from right to left.
736   Label parameters_loop, parameters_test;
737 
738   // Load tagged parameter count into r9.
739   __ Integer32ToSmi(r9, rbx);
740   __ Move(r8, Smi::FromInt(Context::MIN_CONTEXT_SLOTS));
741   __ addp(r8, rcx);
742   __ subp(r8, r9);
743   __ movp(rcx, rdi);
744   __ leap(rdi, Operand(rdi, rbx, times_pointer_size, kParameterMapHeaderSize));
745   __ SmiToInteger64(r9, r9);
746   // r9 = loop variable (untagged)
747   // r8 = mapping index (tagged)
748   // rcx = address of parameter map (tagged)
749   // rdi = address of backing store (tagged)
750   __ jmp(&parameters_test, Label::kNear);
751 
752   __ bind(&parameters_loop);
753   __ subp(r9, Immediate(1));
754   __ LoadRoot(kScratchRegister, Heap::kTheHoleValueRootIndex);
755   __ movp(FieldOperand(rcx, r9, times_pointer_size, kParameterMapHeaderSize),
756           r8);
757   __ movp(FieldOperand(rdi, r9, times_pointer_size, FixedArray::kHeaderSize),
758           kScratchRegister);
759   __ SmiAddConstant(r8, r8, Smi::FromInt(1));
760   __ bind(&parameters_test);
761   __ testp(r9, r9);
762   __ j(not_zero, &parameters_loop, Label::kNear);
763 
764   __ bind(&skip_parameter_map);
765 
766   // r11 = argument count (tagged)
767   // rdi = address of backing store (tagged)
768   // Copy arguments header and remaining slots (if there are any).
769   __ Move(FieldOperand(rdi, FixedArray::kMapOffset),
770           factory->fixed_array_map());
771   __ movp(FieldOperand(rdi, FixedArray::kLengthOffset), r11);
772 
773   Label arguments_loop, arguments_test;
774   __ movp(r8, rbx);
775   // Untag r11 for the loop below.
776   __ SmiToInteger64(r11, r11);
777   __ leap(kScratchRegister, Operand(r8, times_pointer_size, 0));
778   __ subp(rdx, kScratchRegister);
779   __ jmp(&arguments_test, Label::kNear);
780 
781   __ bind(&arguments_loop);
782   __ subp(rdx, Immediate(kPointerSize));
783   __ movp(r9, Operand(rdx, 0));
784   __ movp(FieldOperand(rdi, r8,
785                        times_pointer_size,
786                        FixedArray::kHeaderSize),
787           r9);
788   __ addp(r8, Immediate(1));
789 
790   __ bind(&arguments_test);
791   __ cmpp(r8, r11);
792   __ j(less, &arguments_loop, Label::kNear);
793 
794   // Return.
795   __ ret(0);
796 
797   // Do the runtime call to allocate the arguments object.
798   // r11 = argument count (untagged)
799   __ bind(&runtime);
800   __ Integer32ToSmi(r11, r11);
801   __ PopReturnAddressTo(rax);
802   __ Push(rdi);  // Push function.
803   __ Push(rdx);  // Push parameters pointer.
804   __ Push(r11);  // Push parameter count.
805   __ PushReturnAddressFrom(rax);
806   __ TailCallRuntime(Runtime::kNewSloppyArguments);
807 }
808 
809 
GenerateNewSloppySlow(MacroAssembler * masm)810 void ArgumentsAccessStub::GenerateNewSloppySlow(MacroAssembler* masm) {
811   // rcx : number of parameters (tagged)
812   // rdx : parameters pointer
813   // rdi : function
814   // rsp[0] : return address
815 
816   DCHECK(rdi.is(ArgumentsAccessNewDescriptor::function()));
817   DCHECK(rcx.is(ArgumentsAccessNewDescriptor::parameter_count()));
818   DCHECK(rdx.is(ArgumentsAccessNewDescriptor::parameter_pointer()));
819 
820   // Check if the calling frame is an arguments adaptor frame.
821   Label runtime;
822   __ movp(rbx, Operand(rbp, StandardFrameConstants::kCallerFPOffset));
823   __ movp(rax, Operand(rbx, StandardFrameConstants::kContextOffset));
824   __ Cmp(rax, Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR));
825   __ j(not_equal, &runtime);
826 
827   // Patch the arguments.length and the parameters pointer.
828   StackArgumentsAccessor args(rsp, 3, ARGUMENTS_DONT_CONTAIN_RECEIVER);
829   __ movp(rcx, Operand(rbx, ArgumentsAdaptorFrameConstants::kLengthOffset));
830   __ SmiToInteger64(rax, rcx);
831   __ leap(rdx, Operand(rbx, rax, times_pointer_size,
832                        StandardFrameConstants::kCallerSPOffset));
833 
834   __ bind(&runtime);
835   __ PopReturnAddressTo(rax);
836   __ Push(rdi);  // Push function.
837   __ Push(rdx);  // Push parameters pointer.
838   __ Push(rcx);  // Push parameter count.
839   __ PushReturnAddressFrom(rax);
840   __ TailCallRuntime(Runtime::kNewSloppyArguments);
841 }
842 
843 
GenerateNew(MacroAssembler * masm)844 void RestParamAccessStub::GenerateNew(MacroAssembler* masm) {
845   // rcx : number of parameters (tagged)
846   // rdx : parameters pointer
847   // rbx : rest parameter index (tagged)
848   // rsp[0] : return address
849 
850   // Check if the calling frame is an arguments adaptor frame.
851   Label runtime;
852   __ movp(r8, Operand(rbp, StandardFrameConstants::kCallerFPOffset));
853   __ movp(rax, Operand(r8, StandardFrameConstants::kContextOffset));
854   __ Cmp(rax, Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR));
855   __ j(not_equal, &runtime);
856 
857   // Patch the arguments.length and the parameters pointer.
858   StackArgumentsAccessor args(rsp, 4, ARGUMENTS_DONT_CONTAIN_RECEIVER);
859   __ movp(rcx, Operand(r8, ArgumentsAdaptorFrameConstants::kLengthOffset));
860   __ SmiToInteger64(rax, rcx);
861   __ leap(rdx, Operand(r8, rax, times_pointer_size,
862                        StandardFrameConstants::kCallerSPOffset));
863 
864   __ bind(&runtime);
865   __ PopReturnAddressTo(rax);
866   __ Push(rcx);  // Push number of parameters.
867   __ Push(rdx);  // Push parameters pointer.
868   __ Push(rbx);  // Push rest parameter index.
869   __ PushReturnAddressFrom(rax);
870   __ TailCallRuntime(Runtime::kNewRestParam);
871 }
872 
873 
Generate(MacroAssembler * masm)874 void LoadIndexedInterceptorStub::Generate(MacroAssembler* masm) {
875   // Return address is on the stack.
876   Label slow;
877 
878   Register receiver = LoadDescriptor::ReceiverRegister();
879   Register key = LoadDescriptor::NameRegister();
880   Register scratch = rax;
881   DCHECK(!scratch.is(receiver) && !scratch.is(key));
882 
883   // Check that the key is an array index, that is Uint32.
884   STATIC_ASSERT(kSmiValueSize <= 32);
885   __ JumpUnlessNonNegativeSmi(key, &slow);
886 
887   // Everything is fine, call runtime.
888   __ PopReturnAddressTo(scratch);
889   __ Push(receiver);  // receiver
890   __ Push(key);       // key
891   __ PushReturnAddressFrom(scratch);
892 
893   // Perform tail call to the entry.
894   __ TailCallRuntime(Runtime::kLoadElementWithInterceptor);
895 
896   __ bind(&slow);
897   PropertyAccessCompiler::TailCallBuiltin(
898       masm, PropertyAccessCompiler::MissBuiltin(Code::KEYED_LOAD_IC));
899 }
900 
901 
Generate(MacroAssembler * masm)902 void LoadIndexedStringStub::Generate(MacroAssembler* masm) {
903   // Return address is on the stack.
904   Label miss;
905 
906   Register receiver = LoadDescriptor::ReceiverRegister();
907   Register index = LoadDescriptor::NameRegister();
908   Register scratch = rdi;
909   Register result = rax;
910   DCHECK(!scratch.is(receiver) && !scratch.is(index));
911   DCHECK(!scratch.is(LoadWithVectorDescriptor::VectorRegister()) &&
912          result.is(LoadDescriptor::SlotRegister()));
913 
914   // StringCharAtGenerator doesn't use the result register until it's passed
915   // the different miss possibilities. If it did, we would have a conflict
916   // when FLAG_vector_ics is true.
917   StringCharAtGenerator char_at_generator(receiver, index, scratch, result,
918                                           &miss,  // When not a string.
919                                           &miss,  // When not a number.
920                                           &miss,  // When index out of range.
921                                           STRING_INDEX_IS_ARRAY_INDEX,
922                                           RECEIVER_IS_STRING);
923   char_at_generator.GenerateFast(masm);
924   __ ret(0);
925 
926   StubRuntimeCallHelper call_helper;
927   char_at_generator.GenerateSlow(masm, PART_OF_IC_HANDLER, call_helper);
928 
929   __ bind(&miss);
930   PropertyAccessCompiler::TailCallBuiltin(
931       masm, PropertyAccessCompiler::MissBuiltin(Code::KEYED_LOAD_IC));
932 }
933 
934 
GenerateNewStrict(MacroAssembler * masm)935 void ArgumentsAccessStub::GenerateNewStrict(MacroAssembler* masm) {
936   // rcx : number of parameters (tagged)
937   // rdx : parameters pointer
938   // rdi : function
939   // rsp[0] : return address
940 
941   DCHECK(rdi.is(ArgumentsAccessNewDescriptor::function()));
942   DCHECK(rcx.is(ArgumentsAccessNewDescriptor::parameter_count()));
943   DCHECK(rdx.is(ArgumentsAccessNewDescriptor::parameter_pointer()));
944 
945   // Check if the calling frame is an arguments adaptor frame.
946   Label adaptor_frame, try_allocate, runtime;
947   __ movp(rbx, Operand(rbp, StandardFrameConstants::kCallerFPOffset));
948   __ movp(rax, Operand(rbx, StandardFrameConstants::kContextOffset));
949   __ Cmp(rax, Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR));
950   __ j(equal, &adaptor_frame);
951 
952   // Get the length from the frame.
953   __ SmiToInteger64(rax, rcx);
954   __ jmp(&try_allocate);
955 
956   // Patch the arguments.length and the parameters pointer.
957   __ bind(&adaptor_frame);
958   __ movp(rcx, Operand(rbx, ArgumentsAdaptorFrameConstants::kLengthOffset));
959   __ SmiToInteger64(rax, rcx);
960   __ leap(rdx, Operand(rbx, rax, times_pointer_size,
961                        StandardFrameConstants::kCallerSPOffset));
962 
963   // Try the new space allocation. Start out with computing the size of
964   // the arguments object and the elements array.
965   Label add_arguments_object;
966   __ bind(&try_allocate);
967   __ testp(rax, rax);
968   __ j(zero, &add_arguments_object, Label::kNear);
969   __ leap(rax, Operand(rax, times_pointer_size, FixedArray::kHeaderSize));
970   __ bind(&add_arguments_object);
971   __ addp(rax, Immediate(Heap::kStrictArgumentsObjectSize));
972 
973   // Do the allocation of both objects in one go.
974   __ Allocate(rax, rax, rbx, no_reg, &runtime, TAG_OBJECT);
975 
976   // Get the arguments map from the current native context.
977   __ movp(rdi, NativeContextOperand());
978   __ movp(rdi, ContextOperand(rdi, Context::STRICT_ARGUMENTS_MAP_INDEX));
979 
980   __ movp(FieldOperand(rax, JSObject::kMapOffset), rdi);
981   __ LoadRoot(kScratchRegister, Heap::kEmptyFixedArrayRootIndex);
982   __ movp(FieldOperand(rax, JSObject::kPropertiesOffset), kScratchRegister);
983   __ movp(FieldOperand(rax, JSObject::kElementsOffset), kScratchRegister);
984 
985   // Get the length (smi tagged) and set that as an in-object property too.
986   STATIC_ASSERT(Heap::kArgumentsLengthIndex == 0);
987   __ movp(FieldOperand(rax, JSObject::kHeaderSize +
988                        Heap::kArgumentsLengthIndex * kPointerSize),
989           rcx);
990 
991   // If there are no actual arguments, we're done.
992   Label done;
993   __ testp(rcx, rcx);
994   __ j(zero, &done);
995 
996   // Set up the elements pointer in the allocated arguments object and
997   // initialize the header in the elements fixed array.
998   __ leap(rdi, Operand(rax, Heap::kStrictArgumentsObjectSize));
999   __ movp(FieldOperand(rax, JSObject::kElementsOffset), rdi);
1000   __ LoadRoot(kScratchRegister, Heap::kFixedArrayMapRootIndex);
1001   __ movp(FieldOperand(rdi, FixedArray::kMapOffset), kScratchRegister);
1002   __ movp(FieldOperand(rdi, FixedArray::kLengthOffset), rcx);
1003 
1004   // Untag the length for the loop below.
1005   __ SmiToInteger64(rcx, rcx);
1006 
1007   // Copy the fixed array slots.
1008   Label loop;
1009   __ bind(&loop);
1010   __ movp(rbx, Operand(rdx, -1 * kPointerSize));  // Skip receiver.
1011   __ movp(FieldOperand(rdi, FixedArray::kHeaderSize), rbx);
1012   __ addp(rdi, Immediate(kPointerSize));
1013   __ subp(rdx, Immediate(kPointerSize));
1014   __ decp(rcx);
1015   __ j(not_zero, &loop);
1016 
1017   // Return.
1018   __ bind(&done);
1019   __ ret(0);
1020 
1021   // Do the runtime call to allocate the arguments object.
1022   __ bind(&runtime);
1023   __ PopReturnAddressTo(rax);
1024   __ Push(rdi);  // Push function.
1025   __ Push(rdx);  // Push parameters pointer.
1026   __ Push(rcx);  // Push parameter count.
1027   __ PushReturnAddressFrom(rax);
1028   __ TailCallRuntime(Runtime::kNewStrictArguments);
1029 }
1030 
1031 
Generate(MacroAssembler * masm)1032 void RegExpExecStub::Generate(MacroAssembler* masm) {
1033   // Just jump directly to runtime if native RegExp is not selected at compile
1034   // time or if regexp entry in generated code is turned off runtime switch or
1035   // at compilation.
1036 #ifdef V8_INTERPRETED_REGEXP
1037   __ TailCallRuntime(Runtime::kRegExpExec);
1038 #else  // V8_INTERPRETED_REGEXP
1039 
1040   // Stack frame on entry.
1041   //  rsp[0]  : return address
1042   //  rsp[8]  : last_match_info (expected JSArray)
1043   //  rsp[16] : previous index
1044   //  rsp[24] : subject string
1045   //  rsp[32] : JSRegExp object
1046 
1047   enum RegExpExecStubArgumentIndices {
1048     JS_REG_EXP_OBJECT_ARGUMENT_INDEX,
1049     SUBJECT_STRING_ARGUMENT_INDEX,
1050     PREVIOUS_INDEX_ARGUMENT_INDEX,
1051     LAST_MATCH_INFO_ARGUMENT_INDEX,
1052     REG_EXP_EXEC_ARGUMENT_COUNT
1053   };
1054 
1055   StackArgumentsAccessor args(rsp, REG_EXP_EXEC_ARGUMENT_COUNT,
1056                               ARGUMENTS_DONT_CONTAIN_RECEIVER);
1057   Label runtime;
1058   // Ensure that a RegExp stack is allocated.
1059   ExternalReference address_of_regexp_stack_memory_address =
1060       ExternalReference::address_of_regexp_stack_memory_address(isolate());
1061   ExternalReference address_of_regexp_stack_memory_size =
1062       ExternalReference::address_of_regexp_stack_memory_size(isolate());
1063   __ Load(kScratchRegister, address_of_regexp_stack_memory_size);
1064   __ testp(kScratchRegister, kScratchRegister);
1065   __ j(zero, &runtime);
1066 
1067   // Check that the first argument is a JSRegExp object.
1068   __ movp(rax, args.GetArgumentOperand(JS_REG_EXP_OBJECT_ARGUMENT_INDEX));
1069   __ JumpIfSmi(rax, &runtime);
1070   __ CmpObjectType(rax, JS_REGEXP_TYPE, kScratchRegister);
1071   __ j(not_equal, &runtime);
1072 
1073   // Check that the RegExp has been compiled (data contains a fixed array).
1074   __ movp(rax, FieldOperand(rax, JSRegExp::kDataOffset));
1075   if (FLAG_debug_code) {
1076     Condition is_smi = masm->CheckSmi(rax);
1077     __ Check(NegateCondition(is_smi),
1078         kUnexpectedTypeForRegExpDataFixedArrayExpected);
1079     __ CmpObjectType(rax, FIXED_ARRAY_TYPE, kScratchRegister);
1080     __ Check(equal, kUnexpectedTypeForRegExpDataFixedArrayExpected);
1081   }
1082 
1083   // rax: RegExp data (FixedArray)
1084   // Check the type of the RegExp. Only continue if type is JSRegExp::IRREGEXP.
1085   __ SmiToInteger32(rbx, FieldOperand(rax, JSRegExp::kDataTagOffset));
1086   __ cmpl(rbx, Immediate(JSRegExp::IRREGEXP));
1087   __ j(not_equal, &runtime);
1088 
1089   // rax: RegExp data (FixedArray)
1090   // Check that the number of captures fit in the static offsets vector buffer.
1091   __ SmiToInteger32(rdx,
1092                     FieldOperand(rax, JSRegExp::kIrregexpCaptureCountOffset));
1093   // Check (number_of_captures + 1) * 2 <= offsets vector size
1094   // Or              number_of_captures <= offsets vector size / 2 - 1
1095   STATIC_ASSERT(Isolate::kJSRegexpStaticOffsetsVectorSize >= 2);
1096   __ cmpl(rdx, Immediate(Isolate::kJSRegexpStaticOffsetsVectorSize / 2 - 1));
1097   __ j(above, &runtime);
1098 
1099   // Reset offset for possibly sliced string.
1100   __ Set(r14, 0);
1101   __ movp(rdi, args.GetArgumentOperand(SUBJECT_STRING_ARGUMENT_INDEX));
1102   __ JumpIfSmi(rdi, &runtime);
1103   __ movp(r15, rdi);  // Make a copy of the original subject string.
1104   __ movp(rbx, FieldOperand(rdi, HeapObject::kMapOffset));
1105   __ movzxbl(rbx, FieldOperand(rbx, Map::kInstanceTypeOffset));
1106   // rax: RegExp data (FixedArray)
1107   // rdi: subject string
1108   // r15: subject string
1109   // Handle subject string according to its encoding and representation:
1110   // (1) Sequential two byte?  If yes, go to (9).
1111   // (2) Sequential one byte?  If yes, go to (6).
1112   // (3) Anything but sequential or cons?  If yes, go to (7).
1113   // (4) Cons string.  If the string is flat, replace subject with first string.
1114   //     Otherwise bailout.
1115   // (5a) Is subject sequential two byte?  If yes, go to (9).
1116   // (5b) Is subject external?  If yes, go to (8).
1117   // (6) One byte sequential.  Load regexp code for one byte.
1118   // (E) Carry on.
1119   /// [...]
1120 
1121   // Deferred code at the end of the stub:
1122   // (7) Not a long external string?  If yes, go to (10).
1123   // (8) External string.  Make it, offset-wise, look like a sequential string.
1124   // (8a) Is the external string one byte?  If yes, go to (6).
1125   // (9) Two byte sequential.  Load regexp code for one byte. Go to (E).
1126   // (10) Short external string or not a string?  If yes, bail out to runtime.
1127   // (11) Sliced string.  Replace subject with parent. Go to (5a).
1128 
1129   Label seq_one_byte_string /* 6 */, seq_two_byte_string /* 9 */,
1130         external_string /* 8 */, check_underlying /* 5a */,
1131         not_seq_nor_cons /* 7 */, check_code /* E */,
1132         not_long_external /* 10 */;
1133 
1134   // (1) Sequential two byte?  If yes, go to (9).
1135   __ andb(rbx, Immediate(kIsNotStringMask |
1136                          kStringRepresentationMask |
1137                          kStringEncodingMask |
1138                          kShortExternalStringMask));
1139   STATIC_ASSERT((kStringTag | kSeqStringTag | kTwoByteStringTag) == 0);
1140   __ j(zero, &seq_two_byte_string);  // Go to (9).
1141 
1142   // (2) Sequential one byte?  If yes, go to (6).
1143   // Any other sequential string must be one byte.
1144   __ andb(rbx, Immediate(kIsNotStringMask |
1145                          kStringRepresentationMask |
1146                          kShortExternalStringMask));
1147   __ j(zero, &seq_one_byte_string, Label::kNear);  // Go to (6).
1148 
1149   // (3) Anything but sequential or cons?  If yes, go to (7).
1150   // We check whether the subject string is a cons, since sequential strings
1151   // have already been covered.
1152   STATIC_ASSERT(kConsStringTag < kExternalStringTag);
1153   STATIC_ASSERT(kSlicedStringTag > kExternalStringTag);
1154   STATIC_ASSERT(kIsNotStringMask > kExternalStringTag);
1155   STATIC_ASSERT(kShortExternalStringTag > kExternalStringTag);
1156   __ cmpp(rbx, Immediate(kExternalStringTag));
1157   __ j(greater_equal, &not_seq_nor_cons);  // Go to (7).
1158 
1159   // (4) Cons string.  Check that it's flat.
1160   // Replace subject with first string and reload instance type.
1161   __ CompareRoot(FieldOperand(rdi, ConsString::kSecondOffset),
1162                  Heap::kempty_stringRootIndex);
1163   __ j(not_equal, &runtime);
1164   __ movp(rdi, FieldOperand(rdi, ConsString::kFirstOffset));
1165   __ bind(&check_underlying);
1166   __ movp(rbx, FieldOperand(rdi, HeapObject::kMapOffset));
1167   __ movp(rbx, FieldOperand(rbx, Map::kInstanceTypeOffset));
1168 
1169   // (5a) Is subject sequential two byte?  If yes, go to (9).
1170   __ testb(rbx, Immediate(kStringRepresentationMask | kStringEncodingMask));
1171   STATIC_ASSERT((kSeqStringTag | kTwoByteStringTag) == 0);
1172   __ j(zero, &seq_two_byte_string);  // Go to (9).
1173   // (5b) Is subject external?  If yes, go to (8).
1174   __ testb(rbx, Immediate(kStringRepresentationMask));
1175   // The underlying external string is never a short external string.
1176   STATIC_ASSERT(ExternalString::kMaxShortLength < ConsString::kMinLength);
1177   STATIC_ASSERT(ExternalString::kMaxShortLength < SlicedString::kMinLength);
1178   __ j(not_zero, &external_string);  // Go to (8)
1179 
1180   // (6) One byte sequential.  Load regexp code for one byte.
1181   __ bind(&seq_one_byte_string);
1182   // rax: RegExp data (FixedArray)
1183   __ movp(r11, FieldOperand(rax, JSRegExp::kDataOneByteCodeOffset));
1184   __ Set(rcx, 1);  // Type is one byte.
1185 
1186   // (E) Carry on.  String handling is done.
1187   __ bind(&check_code);
1188   // r11: irregexp code
1189   // Check that the irregexp code has been generated for the actual string
1190   // encoding. If it has, the field contains a code object otherwise it contains
1191   // smi (code flushing support)
1192   __ JumpIfSmi(r11, &runtime);
1193 
1194   // rdi: sequential subject string (or look-alike, external string)
1195   // r15: original subject string
1196   // rcx: encoding of subject string (1 if one_byte, 0 if two_byte);
1197   // r11: code
1198   // Load used arguments before starting to push arguments for call to native
1199   // RegExp code to avoid handling changing stack height.
1200   // We have to use r15 instead of rdi to load the length because rdi might
1201   // have been only made to look like a sequential string when it actually
1202   // is an external string.
1203   __ movp(rbx, args.GetArgumentOperand(PREVIOUS_INDEX_ARGUMENT_INDEX));
1204   __ JumpIfNotSmi(rbx, &runtime);
1205   __ SmiCompare(rbx, FieldOperand(r15, String::kLengthOffset));
1206   __ j(above_equal, &runtime);
1207   __ SmiToInteger64(rbx, rbx);
1208 
1209   // rdi: subject string
1210   // rbx: previous index
1211   // rcx: encoding of subject string (1 if one_byte 0 if two_byte);
1212   // r11: code
1213   // All checks done. Now push arguments for native regexp code.
1214   Counters* counters = isolate()->counters();
1215   __ IncrementCounter(counters->regexp_entry_native(), 1);
1216 
1217   // Isolates: note we add an additional parameter here (isolate pointer).
1218   static const int kRegExpExecuteArguments = 9;
1219   int argument_slots_on_stack =
1220       masm->ArgumentStackSlotsForCFunctionCall(kRegExpExecuteArguments);
1221   __ EnterApiExitFrame(argument_slots_on_stack);
1222 
1223   // Argument 9: Pass current isolate address.
1224   __ LoadAddress(kScratchRegister,
1225                  ExternalReference::isolate_address(isolate()));
1226   __ movq(Operand(rsp, (argument_slots_on_stack - 1) * kRegisterSize),
1227           kScratchRegister);
1228 
1229   // Argument 8: Indicate that this is a direct call from JavaScript.
1230   __ movq(Operand(rsp, (argument_slots_on_stack - 2) * kRegisterSize),
1231           Immediate(1));
1232 
1233   // Argument 7: Start (high end) of backtracking stack memory area.
1234   __ Move(kScratchRegister, address_of_regexp_stack_memory_address);
1235   __ movp(r9, Operand(kScratchRegister, 0));
1236   __ Move(kScratchRegister, address_of_regexp_stack_memory_size);
1237   __ addp(r9, Operand(kScratchRegister, 0));
1238   __ movq(Operand(rsp, (argument_slots_on_stack - 3) * kRegisterSize), r9);
1239 
1240   // Argument 6: Set the number of capture registers to zero to force global
1241   // regexps to behave as non-global.  This does not affect non-global regexps.
1242   // Argument 6 is passed in r9 on Linux and on the stack on Windows.
1243 #ifdef _WIN64
1244   __ movq(Operand(rsp, (argument_slots_on_stack - 4) * kRegisterSize),
1245           Immediate(0));
1246 #else
1247   __ Set(r9, 0);
1248 #endif
1249 
1250   // Argument 5: static offsets vector buffer.
1251   __ LoadAddress(
1252       r8, ExternalReference::address_of_static_offsets_vector(isolate()));
1253   // Argument 5 passed in r8 on Linux and on the stack on Windows.
1254 #ifdef _WIN64
1255   __ movq(Operand(rsp, (argument_slots_on_stack - 5) * kRegisterSize), r8);
1256 #endif
1257 
1258   // rdi: subject string
1259   // rbx: previous index
1260   // rcx: encoding of subject string (1 if one_byte 0 if two_byte);
1261   // r11: code
1262   // r14: slice offset
1263   // r15: original subject string
1264 
1265   // Argument 2: Previous index.
1266   __ movp(arg_reg_2, rbx);
1267 
1268   // Argument 4: End of string data
1269   // Argument 3: Start of string data
1270   Label setup_two_byte, setup_rest, got_length, length_not_from_slice;
1271   // Prepare start and end index of the input.
1272   // Load the length from the original sliced string if that is the case.
1273   __ addp(rbx, r14);
1274   __ SmiToInteger32(arg_reg_3, FieldOperand(r15, String::kLengthOffset));
1275   __ addp(r14, arg_reg_3);  // Using arg3 as scratch.
1276 
1277   // rbx: start index of the input
1278   // r14: end index of the input
1279   // r15: original subject string
1280   __ testb(rcx, rcx);  // Last use of rcx as encoding of subject string.
1281   __ j(zero, &setup_two_byte, Label::kNear);
1282   __ leap(arg_reg_4,
1283          FieldOperand(rdi, r14, times_1, SeqOneByteString::kHeaderSize));
1284   __ leap(arg_reg_3,
1285          FieldOperand(rdi, rbx, times_1, SeqOneByteString::kHeaderSize));
1286   __ jmp(&setup_rest, Label::kNear);
1287   __ bind(&setup_two_byte);
1288   __ leap(arg_reg_4,
1289          FieldOperand(rdi, r14, times_2, SeqTwoByteString::kHeaderSize));
1290   __ leap(arg_reg_3,
1291          FieldOperand(rdi, rbx, times_2, SeqTwoByteString::kHeaderSize));
1292   __ bind(&setup_rest);
1293 
1294   // Argument 1: Original subject string.
1295   // The original subject is in the previous stack frame. Therefore we have to
1296   // use rbp, which points exactly to one pointer size below the previous rsp.
1297   // (Because creating a new stack frame pushes the previous rbp onto the stack
1298   // and thereby moves up rsp by one kPointerSize.)
1299   __ movp(arg_reg_1, r15);
1300 
1301   // Locate the code entry and call it.
1302   __ addp(r11, Immediate(Code::kHeaderSize - kHeapObjectTag));
1303   __ call(r11);
1304 
1305   __ LeaveApiExitFrame(true);
1306 
1307   // Check the result.
1308   Label success;
1309   Label exception;
1310   __ cmpl(rax, Immediate(1));
1311   // We expect exactly one result since we force the called regexp to behave
1312   // as non-global.
1313   __ j(equal, &success, Label::kNear);
1314   __ cmpl(rax, Immediate(NativeRegExpMacroAssembler::EXCEPTION));
1315   __ j(equal, &exception);
1316   __ cmpl(rax, Immediate(NativeRegExpMacroAssembler::FAILURE));
1317   // If none of the above, it can only be retry.
1318   // Handle that in the runtime system.
1319   __ j(not_equal, &runtime);
1320 
1321   // For failure return null.
1322   __ LoadRoot(rax, Heap::kNullValueRootIndex);
1323   __ ret(REG_EXP_EXEC_ARGUMENT_COUNT * kPointerSize);
1324 
1325   // Load RegExp data.
1326   __ bind(&success);
1327   __ movp(rax, args.GetArgumentOperand(JS_REG_EXP_OBJECT_ARGUMENT_INDEX));
1328   __ movp(rcx, FieldOperand(rax, JSRegExp::kDataOffset));
1329   __ SmiToInteger32(rax,
1330                     FieldOperand(rcx, JSRegExp::kIrregexpCaptureCountOffset));
1331   // Calculate number of capture registers (number_of_captures + 1) * 2.
1332   __ leal(rdx, Operand(rax, rax, times_1, 2));
1333 
1334   // rdx: Number of capture registers
1335   // Check that the fourth object is a JSArray object.
1336   __ movp(r15, args.GetArgumentOperand(LAST_MATCH_INFO_ARGUMENT_INDEX));
1337   __ JumpIfSmi(r15, &runtime);
1338   __ CmpObjectType(r15, JS_ARRAY_TYPE, kScratchRegister);
1339   __ j(not_equal, &runtime);
1340   // Check that the JSArray is in fast case.
1341   __ movp(rbx, FieldOperand(r15, JSArray::kElementsOffset));
1342   __ movp(rax, FieldOperand(rbx, HeapObject::kMapOffset));
1343   __ CompareRoot(rax, Heap::kFixedArrayMapRootIndex);
1344   __ j(not_equal, &runtime);
1345   // Check that the last match info has space for the capture registers and the
1346   // additional information. Ensure no overflow in add.
1347   STATIC_ASSERT(FixedArray::kMaxLength < kMaxInt - FixedArray::kLengthOffset);
1348   __ SmiToInteger32(rax, FieldOperand(rbx, FixedArray::kLengthOffset));
1349   __ subl(rax, Immediate(RegExpImpl::kLastMatchOverhead));
1350   __ cmpl(rdx, rax);
1351   __ j(greater, &runtime);
1352 
1353   // rbx: last_match_info backing store (FixedArray)
1354   // rdx: number of capture registers
1355   // Store the capture count.
1356   __ Integer32ToSmi(kScratchRegister, rdx);
1357   __ movp(FieldOperand(rbx, RegExpImpl::kLastCaptureCountOffset),
1358           kScratchRegister);
1359   // Store last subject and last input.
1360   __ movp(rax, args.GetArgumentOperand(SUBJECT_STRING_ARGUMENT_INDEX));
1361   __ movp(FieldOperand(rbx, RegExpImpl::kLastSubjectOffset), rax);
1362   __ movp(rcx, rax);
1363   __ RecordWriteField(rbx,
1364                       RegExpImpl::kLastSubjectOffset,
1365                       rax,
1366                       rdi,
1367                       kDontSaveFPRegs);
1368   __ movp(rax, rcx);
1369   __ movp(FieldOperand(rbx, RegExpImpl::kLastInputOffset), rax);
1370   __ RecordWriteField(rbx,
1371                       RegExpImpl::kLastInputOffset,
1372                       rax,
1373                       rdi,
1374                       kDontSaveFPRegs);
1375 
1376   // Get the static offsets vector filled by the native regexp code.
1377   __ LoadAddress(
1378       rcx, ExternalReference::address_of_static_offsets_vector(isolate()));
1379 
1380   // rbx: last_match_info backing store (FixedArray)
1381   // rcx: offsets vector
1382   // rdx: number of capture registers
1383   Label next_capture, done;
1384   // Capture register counter starts from number of capture registers and
1385   // counts down until wraping after zero.
1386   __ bind(&next_capture);
1387   __ subp(rdx, Immediate(1));
1388   __ j(negative, &done, Label::kNear);
1389   // Read the value from the static offsets vector buffer and make it a smi.
1390   __ movl(rdi, Operand(rcx, rdx, times_int_size, 0));
1391   __ Integer32ToSmi(rdi, rdi);
1392   // Store the smi value in the last match info.
1393   __ movp(FieldOperand(rbx,
1394                        rdx,
1395                        times_pointer_size,
1396                        RegExpImpl::kFirstCaptureOffset),
1397           rdi);
1398   __ jmp(&next_capture);
1399   __ bind(&done);
1400 
1401   // Return last match info.
1402   __ movp(rax, r15);
1403   __ ret(REG_EXP_EXEC_ARGUMENT_COUNT * kPointerSize);
1404 
1405   __ bind(&exception);
1406   // Result must now be exception. If there is no pending exception already a
1407   // stack overflow (on the backtrack stack) was detected in RegExp code but
1408   // haven't created the exception yet. Handle that in the runtime system.
1409   // TODO(592): Rerunning the RegExp to get the stack overflow exception.
1410   ExternalReference pending_exception_address(
1411       Isolate::kPendingExceptionAddress, isolate());
1412   Operand pending_exception_operand =
1413       masm->ExternalOperand(pending_exception_address, rbx);
1414   __ movp(rax, pending_exception_operand);
1415   __ LoadRoot(rdx, Heap::kTheHoleValueRootIndex);
1416   __ cmpp(rax, rdx);
1417   __ j(equal, &runtime);
1418 
1419   // For exception, throw the exception again.
1420   __ TailCallRuntime(Runtime::kRegExpExecReThrow);
1421 
1422   // Do the runtime call to execute the regexp.
1423   __ bind(&runtime);
1424   __ TailCallRuntime(Runtime::kRegExpExec);
1425 
1426   // Deferred code for string handling.
1427   // (7) Not a long external string?  If yes, go to (10).
1428   __ bind(&not_seq_nor_cons);
1429   // Compare flags are still set from (3).
1430   __ j(greater, &not_long_external, Label::kNear);  // Go to (10).
1431 
1432   // (8) External string.  Short external strings have been ruled out.
1433   __ bind(&external_string);
1434   __ movp(rbx, FieldOperand(rdi, HeapObject::kMapOffset));
1435   __ movzxbl(rbx, FieldOperand(rbx, Map::kInstanceTypeOffset));
1436   if (FLAG_debug_code) {
1437     // Assert that we do not have a cons or slice (indirect strings) here.
1438     // Sequential strings have already been ruled out.
1439     __ testb(rbx, Immediate(kIsIndirectStringMask));
1440     __ Assert(zero, kExternalStringExpectedButNotFound);
1441   }
1442   __ movp(rdi, FieldOperand(rdi, ExternalString::kResourceDataOffset));
1443   // Move the pointer so that offset-wise, it looks like a sequential string.
1444   STATIC_ASSERT(SeqTwoByteString::kHeaderSize == SeqOneByteString::kHeaderSize);
1445   __ subp(rdi, Immediate(SeqTwoByteString::kHeaderSize - kHeapObjectTag));
1446   STATIC_ASSERT(kTwoByteStringTag == 0);
1447   // (8a) Is the external string one byte?  If yes, go to (6).
1448   __ testb(rbx, Immediate(kStringEncodingMask));
1449   __ j(not_zero, &seq_one_byte_string);  // Goto (6).
1450 
1451   // rdi: subject string (flat two-byte)
1452   // rax: RegExp data (FixedArray)
1453   // (9) Two byte sequential.  Load regexp code for one byte.  Go to (E).
1454   __ bind(&seq_two_byte_string);
1455   __ movp(r11, FieldOperand(rax, JSRegExp::kDataUC16CodeOffset));
1456   __ Set(rcx, 0);  // Type is two byte.
1457   __ jmp(&check_code);  // Go to (E).
1458 
1459   // (10) Not a string or a short external string?  If yes, bail out to runtime.
1460   __ bind(&not_long_external);
1461   // Catch non-string subject or short external string.
1462   STATIC_ASSERT(kNotStringTag != 0 && kShortExternalStringTag !=0);
1463   __ testb(rbx, Immediate(kIsNotStringMask | kShortExternalStringMask));
1464   __ j(not_zero, &runtime);
1465 
1466   // (11) Sliced string.  Replace subject with parent. Go to (5a).
1467   // Load offset into r14 and replace subject string with parent.
1468   __ SmiToInteger32(r14, FieldOperand(rdi, SlicedString::kOffsetOffset));
1469   __ movp(rdi, FieldOperand(rdi, SlicedString::kParentOffset));
1470   __ jmp(&check_underlying);
1471 #endif  // V8_INTERPRETED_REGEXP
1472 }
1473 
1474 
NegativeComparisonResult(Condition cc)1475 static int NegativeComparisonResult(Condition cc) {
1476   DCHECK(cc != equal);
1477   DCHECK((cc == less) || (cc == less_equal)
1478       || (cc == greater) || (cc == greater_equal));
1479   return (cc == greater || cc == greater_equal) ? LESS : GREATER;
1480 }
1481 
1482 
CheckInputType(MacroAssembler * masm,Register input,CompareICState::State expected,Label * fail)1483 static void CheckInputType(MacroAssembler* masm, Register input,
1484                            CompareICState::State expected, Label* fail) {
1485   Label ok;
1486   if (expected == CompareICState::SMI) {
1487     __ JumpIfNotSmi(input, fail);
1488   } else if (expected == CompareICState::NUMBER) {
1489     __ JumpIfSmi(input, &ok);
1490     __ CompareMap(input, masm->isolate()->factory()->heap_number_map());
1491     __ j(not_equal, fail);
1492   }
1493   // We could be strict about internalized/non-internalized here, but as long as
1494   // hydrogen doesn't care, the stub doesn't have to care either.
1495   __ bind(&ok);
1496 }
1497 
1498 
BranchIfNotInternalizedString(MacroAssembler * masm,Label * label,Register object,Register scratch)1499 static void BranchIfNotInternalizedString(MacroAssembler* masm,
1500                                           Label* label,
1501                                           Register object,
1502                                           Register scratch) {
1503   __ JumpIfSmi(object, label);
1504   __ movp(scratch, FieldOperand(object, HeapObject::kMapOffset));
1505   __ movzxbp(scratch,
1506              FieldOperand(scratch, Map::kInstanceTypeOffset));
1507   STATIC_ASSERT(kInternalizedTag == 0 && kStringTag == 0);
1508   __ testb(scratch, Immediate(kIsNotStringMask | kIsNotInternalizedMask));
1509   __ j(not_zero, label);
1510 }
1511 
1512 
GenerateGeneric(MacroAssembler * masm)1513 void CompareICStub::GenerateGeneric(MacroAssembler* masm) {
1514   Label runtime_call, check_unequal_objects, done;
1515   Condition cc = GetCondition();
1516   Factory* factory = isolate()->factory();
1517 
1518   Label miss;
1519   CheckInputType(masm, rdx, left(), &miss);
1520   CheckInputType(masm, rax, right(), &miss);
1521 
1522   // Compare two smis.
1523   Label non_smi, smi_done;
1524   __ JumpIfNotBothSmi(rax, rdx, &non_smi);
1525   __ subp(rdx, rax);
1526   __ j(no_overflow, &smi_done);
1527   __ notp(rdx);  // Correct sign in case of overflow. rdx cannot be 0 here.
1528   __ bind(&smi_done);
1529   __ movp(rax, rdx);
1530   __ ret(0);
1531   __ bind(&non_smi);
1532 
1533   // The compare stub returns a positive, negative, or zero 64-bit integer
1534   // value in rax, corresponding to result of comparing the two inputs.
1535   // NOTICE! This code is only reached after a smi-fast-case check, so
1536   // it is certain that at least one operand isn't a smi.
1537 
1538   // Two identical objects are equal unless they are both NaN or undefined.
1539   {
1540     Label not_identical;
1541     __ cmpp(rax, rdx);
1542     __ j(not_equal, &not_identical, Label::kNear);
1543 
1544     if (cc != equal) {
1545       // Check for undefined.  undefined OP undefined is false even though
1546       // undefined == undefined.
1547       __ CompareRoot(rdx, Heap::kUndefinedValueRootIndex);
1548       if (is_strong(strength())) {
1549         // In strong mode, this comparison must throw, so call the runtime.
1550         __ j(equal, &runtime_call, Label::kFar);
1551       } else {
1552         Label check_for_nan;
1553         __ j(not_equal, &check_for_nan, Label::kNear);
1554         __ Set(rax, NegativeComparisonResult(cc));
1555         __ ret(0);
1556         __ bind(&check_for_nan);
1557       }
1558     }
1559 
1560     // Test for NaN. Sadly, we can't just compare to Factory::nan_value(),
1561     // so we do the second best thing - test it ourselves.
1562     Label heap_number;
1563     // If it's not a heap number, then return equal for (in)equality operator.
1564     __ Cmp(FieldOperand(rdx, HeapObject::kMapOffset),
1565            factory->heap_number_map());
1566     __ j(equal, &heap_number, Label::kNear);
1567     if (cc != equal) {
1568       __ movp(rcx, FieldOperand(rax, HeapObject::kMapOffset));
1569       __ movzxbl(rcx, FieldOperand(rcx, Map::kInstanceTypeOffset));
1570       // Call runtime on identical objects.  Otherwise return equal.
1571       __ cmpb(rcx, Immediate(static_cast<uint8_t>(FIRST_JS_RECEIVER_TYPE)));
1572       __ j(above_equal, &runtime_call, Label::kFar);
1573       // Call runtime on identical symbols since we need to throw a TypeError.
1574       __ cmpb(rcx, Immediate(static_cast<uint8_t>(SYMBOL_TYPE)));
1575       __ j(equal, &runtime_call, Label::kFar);
1576       // Call runtime on identical SIMD values since we must throw a TypeError.
1577       __ cmpb(rcx, Immediate(static_cast<uint8_t>(SIMD128_VALUE_TYPE)));
1578       __ j(equal, &runtime_call, Label::kFar);
1579       if (is_strong(strength())) {
1580         // We have already tested for smis and heap numbers, so if both
1581         // arguments are not strings we must proceed to the slow case.
1582         __ testb(rcx, Immediate(kIsNotStringMask));
1583         __ j(not_zero, &runtime_call, Label::kFar);
1584       }
1585     }
1586     __ Set(rax, EQUAL);
1587     __ ret(0);
1588 
1589     __ bind(&heap_number);
1590     // It is a heap number, so return  equal if it's not NaN.
1591     // For NaN, return 1 for every condition except greater and
1592     // greater-equal.  Return -1 for them, so the comparison yields
1593     // false for all conditions except not-equal.
1594     __ Set(rax, EQUAL);
1595     __ Movsd(xmm0, FieldOperand(rdx, HeapNumber::kValueOffset));
1596     __ Ucomisd(xmm0, xmm0);
1597     __ setcc(parity_even, rax);
1598     // rax is 0 for equal non-NaN heapnumbers, 1 for NaNs.
1599     if (cc == greater_equal || cc == greater) {
1600       __ negp(rax);
1601     }
1602     __ ret(0);
1603 
1604     __ bind(&not_identical);
1605   }
1606 
1607   if (cc == equal) {  // Both strict and non-strict.
1608     Label slow;  // Fallthrough label.
1609 
1610     // If we're doing a strict equality comparison, we don't have to do
1611     // type conversion, so we generate code to do fast comparison for objects
1612     // and oddballs. Non-smi numbers and strings still go through the usual
1613     // slow-case code.
1614     if (strict()) {
1615       // If either is a Smi (we know that not both are), then they can only
1616       // be equal if the other is a HeapNumber. If so, use the slow case.
1617       {
1618         Label not_smis;
1619         __ SelectNonSmi(rbx, rax, rdx, &not_smis);
1620 
1621         // Check if the non-smi operand is a heap number.
1622         __ Cmp(FieldOperand(rbx, HeapObject::kMapOffset),
1623                factory->heap_number_map());
1624         // If heap number, handle it in the slow case.
1625         __ j(equal, &slow);
1626         // Return non-equal.  ebx (the lower half of rbx) is not zero.
1627         __ movp(rax, rbx);
1628         __ ret(0);
1629 
1630         __ bind(&not_smis);
1631       }
1632 
1633       // If either operand is a JSObject or an oddball value, then they are not
1634       // equal since their pointers are different
1635       // There is no test for undetectability in strict equality.
1636 
1637       // If the first object is a JS object, we have done pointer comparison.
1638       STATIC_ASSERT(LAST_TYPE == LAST_JS_RECEIVER_TYPE);
1639       Label first_non_object;
1640       __ CmpObjectType(rax, FIRST_JS_RECEIVER_TYPE, rcx);
1641       __ j(below, &first_non_object, Label::kNear);
1642       // Return non-zero (rax (not rax) is not zero)
1643       Label return_not_equal;
1644       STATIC_ASSERT(kHeapObjectTag != 0);
1645       __ bind(&return_not_equal);
1646       __ ret(0);
1647 
1648       __ bind(&first_non_object);
1649       // Check for oddballs: true, false, null, undefined.
1650       __ CmpInstanceType(rcx, ODDBALL_TYPE);
1651       __ j(equal, &return_not_equal);
1652 
1653       __ CmpObjectType(rdx, FIRST_JS_RECEIVER_TYPE, rcx);
1654       __ j(above_equal, &return_not_equal);
1655 
1656       // Check for oddballs: true, false, null, undefined.
1657       __ CmpInstanceType(rcx, ODDBALL_TYPE);
1658       __ j(equal, &return_not_equal);
1659 
1660       // Fall through to the general case.
1661     }
1662     __ bind(&slow);
1663   }
1664 
1665   // Generate the number comparison code.
1666   Label non_number_comparison;
1667   Label unordered;
1668   FloatingPointHelper::LoadSSE2UnknownOperands(masm, &non_number_comparison);
1669   __ xorl(rax, rax);
1670   __ xorl(rcx, rcx);
1671   __ Ucomisd(xmm0, xmm1);
1672 
1673   // Don't base result on EFLAGS when a NaN is involved.
1674   __ j(parity_even, &unordered, Label::kNear);
1675   // Return a result of -1, 0, or 1, based on EFLAGS.
1676   __ setcc(above, rax);
1677   __ setcc(below, rcx);
1678   __ subp(rax, rcx);
1679   __ ret(0);
1680 
1681   // If one of the numbers was NaN, then the result is always false.
1682   // The cc is never not-equal.
1683   __ bind(&unordered);
1684   DCHECK(cc != not_equal);
1685   if (cc == less || cc == less_equal) {
1686     __ Set(rax, 1);
1687   } else {
1688     __ Set(rax, -1);
1689   }
1690   __ ret(0);
1691 
1692   // The number comparison code did not provide a valid result.
1693   __ bind(&non_number_comparison);
1694 
1695   // Fast negative check for internalized-to-internalized equality.
1696   Label check_for_strings;
1697   if (cc == equal) {
1698     BranchIfNotInternalizedString(
1699         masm, &check_for_strings, rax, kScratchRegister);
1700     BranchIfNotInternalizedString(
1701         masm, &check_for_strings, rdx, kScratchRegister);
1702 
1703     // We've already checked for object identity, so if both operands are
1704     // internalized strings they aren't equal. Register rax (not rax) already
1705     // holds a non-zero value, which indicates not equal, so just return.
1706     __ ret(0);
1707   }
1708 
1709   __ bind(&check_for_strings);
1710 
1711   __ JumpIfNotBothSequentialOneByteStrings(rdx, rax, rcx, rbx,
1712                                            &check_unequal_objects);
1713 
1714   // Inline comparison of one-byte strings.
1715   if (cc == equal) {
1716     StringHelper::GenerateFlatOneByteStringEquals(masm, rdx, rax, rcx, rbx);
1717   } else {
1718     StringHelper::GenerateCompareFlatOneByteStrings(masm, rdx, rax, rcx, rbx,
1719                                                     rdi, r8);
1720   }
1721 
1722 #ifdef DEBUG
1723   __ Abort(kUnexpectedFallThroughFromStringComparison);
1724 #endif
1725 
1726   __ bind(&check_unequal_objects);
1727   if (cc == equal && !strict()) {
1728     // Not strict equality.  Objects are unequal if
1729     // they are both JSObjects and not undetectable,
1730     // and their pointers are different.
1731     Label return_unequal;
1732     // At most one is a smi, so we can test for smi by adding the two.
1733     // A smi plus a heap object has the low bit set, a heap object plus
1734     // a heap object has the low bit clear.
1735     STATIC_ASSERT(kSmiTag == 0);
1736     STATIC_ASSERT(kSmiTagMask == 1);
1737     __ leap(rcx, Operand(rax, rdx, times_1, 0));
1738     __ testb(rcx, Immediate(kSmiTagMask));
1739     __ j(not_zero, &runtime_call, Label::kNear);
1740     __ CmpObjectType(rax, FIRST_JS_RECEIVER_TYPE, rbx);
1741     __ j(below, &runtime_call, Label::kNear);
1742     __ CmpObjectType(rdx, FIRST_JS_RECEIVER_TYPE, rcx);
1743     __ j(below, &runtime_call, Label::kNear);
1744     __ testb(FieldOperand(rbx, Map::kBitFieldOffset),
1745              Immediate(1 << Map::kIsUndetectable));
1746     __ j(zero, &return_unequal, Label::kNear);
1747     __ testb(FieldOperand(rcx, Map::kBitFieldOffset),
1748              Immediate(1 << Map::kIsUndetectable));
1749     __ j(zero, &return_unequal, Label::kNear);
1750     // The objects are both undetectable, so they both compare as the value
1751     // undefined, and are equal.
1752     __ Set(rax, EQUAL);
1753     __ bind(&return_unequal);
1754     // Return non-equal by returning the non-zero object pointer in rax,
1755     // or return equal if we fell through to here.
1756     __ ret(0);
1757   }
1758   __ bind(&runtime_call);
1759 
1760   // Push arguments below the return address to prepare jump to builtin.
1761   __ PopReturnAddressTo(rcx);
1762   __ Push(rdx);
1763   __ Push(rax);
1764 
1765   // Figure out which native to call and setup the arguments.
1766   if (cc == equal) {
1767     __ PushReturnAddressFrom(rcx);
1768     __ TailCallRuntime(strict() ? Runtime::kStrictEquals : Runtime::kEquals);
1769   } else {
1770     __ Push(Smi::FromInt(NegativeComparisonResult(cc)));
1771     __ PushReturnAddressFrom(rcx);
1772     __ TailCallRuntime(is_strong(strength()) ? Runtime::kCompare_Strong
1773                                              : Runtime::kCompare);
1774   }
1775 
1776   __ bind(&miss);
1777   GenerateMiss(masm);
1778 }
1779 
1780 
CallStubInRecordCallTarget(MacroAssembler * masm,CodeStub * stub)1781 static void CallStubInRecordCallTarget(MacroAssembler* masm, CodeStub* stub) {
1782   // rax : number of arguments to the construct function
1783   // rbx : feedback vector
1784   // rdx : slot in feedback vector (Smi)
1785   // rdi : the function to call
1786   FrameScope scope(masm, StackFrame::INTERNAL);
1787 
1788   // Number-of-arguments register must be smi-tagged to call out.
1789   __ Integer32ToSmi(rax, rax);
1790   __ Push(rax);
1791   __ Push(rdi);
1792   __ Integer32ToSmi(rdx, rdx);
1793   __ Push(rdx);
1794   __ Push(rbx);
1795 
1796   __ CallStub(stub);
1797 
1798   __ Pop(rbx);
1799   __ Pop(rdx);
1800   __ Pop(rdi);
1801   __ Pop(rax);
1802   __ SmiToInteger32(rax, rax);
1803 }
1804 
1805 
GenerateRecordCallTarget(MacroAssembler * masm)1806 static void GenerateRecordCallTarget(MacroAssembler* masm) {
1807   // Cache the called function in a feedback vector slot.  Cache states
1808   // are uninitialized, monomorphic (indicated by a JSFunction), and
1809   // megamorphic.
1810   // rax : number of arguments to the construct function
1811   // rbx : feedback vector
1812   // rdx : slot in feedback vector (Smi)
1813   // rdi : the function to call
1814   Isolate* isolate = masm->isolate();
1815   Label initialize, done, miss, megamorphic, not_array_function,
1816       done_no_smi_convert;
1817 
1818   // Load the cache state into r11.
1819   __ SmiToInteger32(rdx, rdx);
1820   __ movp(r11,
1821           FieldOperand(rbx, rdx, times_pointer_size, FixedArray::kHeaderSize));
1822 
1823   // A monomorphic cache hit or an already megamorphic state: invoke the
1824   // function without changing the state.
1825   // We don't know if r11 is a WeakCell or a Symbol, but it's harmless to read
1826   // at this position in a symbol (see static asserts in
1827   // type-feedback-vector.h).
1828   Label check_allocation_site;
1829   __ cmpp(rdi, FieldOperand(r11, WeakCell::kValueOffset));
1830   __ j(equal, &done, Label::kFar);
1831   __ CompareRoot(r11, Heap::kmegamorphic_symbolRootIndex);
1832   __ j(equal, &done, Label::kFar);
1833   __ CompareRoot(FieldOperand(r11, HeapObject::kMapOffset),
1834                  Heap::kWeakCellMapRootIndex);
1835   __ j(not_equal, &check_allocation_site);
1836 
1837   // If the weak cell is cleared, we have a new chance to become monomorphic.
1838   __ CheckSmi(FieldOperand(r11, WeakCell::kValueOffset));
1839   __ j(equal, &initialize);
1840   __ jmp(&megamorphic);
1841 
1842   __ bind(&check_allocation_site);
1843   // If we came here, we need to see if we are the array function.
1844   // If we didn't have a matching function, and we didn't find the megamorph
1845   // sentinel, then we have in the slot either some other function or an
1846   // AllocationSite.
1847   __ CompareRoot(FieldOperand(r11, 0), Heap::kAllocationSiteMapRootIndex);
1848   __ j(not_equal, &miss);
1849 
1850   // Make sure the function is the Array() function
1851   __ LoadNativeContextSlot(Context::ARRAY_FUNCTION_INDEX, r11);
1852   __ cmpp(rdi, r11);
1853   __ j(not_equal, &megamorphic);
1854   __ jmp(&done);
1855 
1856   __ bind(&miss);
1857 
1858   // A monomorphic miss (i.e, here the cache is not uninitialized) goes
1859   // megamorphic.
1860   __ CompareRoot(r11, Heap::kuninitialized_symbolRootIndex);
1861   __ j(equal, &initialize);
1862   // MegamorphicSentinel is an immortal immovable object (undefined) so no
1863   // write-barrier is needed.
1864   __ bind(&megamorphic);
1865   __ Move(FieldOperand(rbx, rdx, times_pointer_size, FixedArray::kHeaderSize),
1866           TypeFeedbackVector::MegamorphicSentinel(isolate));
1867   __ jmp(&done);
1868 
1869   // An uninitialized cache is patched with the function or sentinel to
1870   // indicate the ElementsKind if function is the Array constructor.
1871   __ bind(&initialize);
1872 
1873   // Make sure the function is the Array() function
1874   __ LoadNativeContextSlot(Context::ARRAY_FUNCTION_INDEX, r11);
1875   __ cmpp(rdi, r11);
1876   __ j(not_equal, &not_array_function);
1877 
1878   CreateAllocationSiteStub create_stub(isolate);
1879   CallStubInRecordCallTarget(masm, &create_stub);
1880   __ jmp(&done_no_smi_convert);
1881 
1882   __ bind(&not_array_function);
1883   CreateWeakCellStub weak_cell_stub(isolate);
1884   CallStubInRecordCallTarget(masm, &weak_cell_stub);
1885   __ jmp(&done_no_smi_convert);
1886 
1887   __ bind(&done);
1888   __ Integer32ToSmi(rdx, rdx);
1889 
1890   __ bind(&done_no_smi_convert);
1891 }
1892 
1893 
Generate(MacroAssembler * masm)1894 void CallConstructStub::Generate(MacroAssembler* masm) {
1895   // rax : number of arguments
1896   // rbx : feedback vector
1897   // rdx : slot in feedback vector (Smi)
1898   // rdi : constructor function
1899 
1900   Label non_function;
1901   // Check that the constructor is not a smi.
1902   __ JumpIfSmi(rdi, &non_function);
1903   // Check that constructor is a JSFunction.
1904   __ CmpObjectType(rdi, JS_FUNCTION_TYPE, r11);
1905   __ j(not_equal, &non_function);
1906 
1907   GenerateRecordCallTarget(masm);
1908 
1909   __ SmiToInteger32(rdx, rdx);
1910   Label feedback_register_initialized;
1911   // Put the AllocationSite from the feedback vector into rbx, or undefined.
1912   __ movp(rbx,
1913           FieldOperand(rbx, rdx, times_pointer_size, FixedArray::kHeaderSize));
1914   __ CompareRoot(FieldOperand(rbx, 0), Heap::kAllocationSiteMapRootIndex);
1915   __ j(equal, &feedback_register_initialized, Label::kNear);
1916   __ LoadRoot(rbx, Heap::kUndefinedValueRootIndex);
1917   __ bind(&feedback_register_initialized);
1918 
1919   __ AssertUndefinedOrAllocationSite(rbx);
1920 
1921   // Pass new target to construct stub.
1922   __ movp(rdx, rdi);
1923 
1924   // Tail call to the function-specific construct stub (still in the caller
1925   // context at this point).
1926   __ movp(rcx, FieldOperand(rdi, JSFunction::kSharedFunctionInfoOffset));
1927   __ movp(rcx, FieldOperand(rcx, SharedFunctionInfo::kConstructStubOffset));
1928   __ leap(rcx, FieldOperand(rcx, Code::kHeaderSize));
1929   __ jmp(rcx);
1930 
1931   __ bind(&non_function);
1932   __ movp(rdx, rdi);
1933   __ Jump(isolate()->builtins()->Construct(), RelocInfo::CODE_TARGET);
1934 }
1935 
1936 
HandleArrayCase(MacroAssembler * masm,Label * miss)1937 void CallICStub::HandleArrayCase(MacroAssembler* masm, Label* miss) {
1938   // rdi - function
1939   // rdx - slot id
1940   // rbx - vector
1941   // rcx - allocation site (loaded from vector[slot]).
1942   __ LoadNativeContextSlot(Context::ARRAY_FUNCTION_INDEX, r8);
1943   __ cmpp(rdi, r8);
1944   __ j(not_equal, miss);
1945 
1946   __ movp(rax, Immediate(arg_count()));
1947 
1948   // Increment the call count for monomorphic function calls.
1949   __ SmiAddConstant(FieldOperand(rbx, rdx, times_pointer_size,
1950                                  FixedArray::kHeaderSize + kPointerSize),
1951                     Smi::FromInt(CallICNexus::kCallCountIncrement));
1952 
1953   __ movp(rbx, rcx);
1954   __ movp(rdx, rdi);
1955   ArrayConstructorStub stub(masm->isolate(), arg_count());
1956   __ TailCallStub(&stub);
1957 }
1958 
1959 
Generate(MacroAssembler * masm)1960 void CallICStub::Generate(MacroAssembler* masm) {
1961   // ----------- S t a t e -------------
1962   // -- rdi - function
1963   // -- rdx - slot id
1964   // -- rbx - vector
1965   // -----------------------------------
1966   Isolate* isolate = masm->isolate();
1967   Label extra_checks_or_miss, call, call_function;
1968   int argc = arg_count();
1969   StackArgumentsAccessor args(rsp, argc);
1970   ParameterCount actual(argc);
1971 
1972   // The checks. First, does rdi match the recorded monomorphic target?
1973   __ SmiToInteger32(rdx, rdx);
1974   __ movp(rcx,
1975           FieldOperand(rbx, rdx, times_pointer_size, FixedArray::kHeaderSize));
1976 
1977   // We don't know that we have a weak cell. We might have a private symbol
1978   // or an AllocationSite, but the memory is safe to examine.
1979   // AllocationSite::kTransitionInfoOffset - contains a Smi or pointer to
1980   // FixedArray.
1981   // WeakCell::kValueOffset - contains a JSFunction or Smi(0)
1982   // Symbol::kHashFieldSlot - if the low bit is 1, then the hash is not
1983   // computed, meaning that it can't appear to be a pointer. If the low bit is
1984   // 0, then hash is computed, but the 0 bit prevents the field from appearing
1985   // to be a pointer.
1986   STATIC_ASSERT(WeakCell::kSize >= kPointerSize);
1987   STATIC_ASSERT(AllocationSite::kTransitionInfoOffset ==
1988                     WeakCell::kValueOffset &&
1989                 WeakCell::kValueOffset == Symbol::kHashFieldSlot);
1990 
1991   __ cmpp(rdi, FieldOperand(rcx, WeakCell::kValueOffset));
1992   __ j(not_equal, &extra_checks_or_miss);
1993 
1994   // The compare above could have been a SMI/SMI comparison. Guard against this
1995   // convincing us that we have a monomorphic JSFunction.
1996   __ JumpIfSmi(rdi, &extra_checks_or_miss);
1997 
1998   // Increment the call count for monomorphic function calls.
1999   __ SmiAddConstant(FieldOperand(rbx, rdx, times_pointer_size,
2000                                  FixedArray::kHeaderSize + kPointerSize),
2001                     Smi::FromInt(CallICNexus::kCallCountIncrement));
2002 
2003   __ bind(&call_function);
2004   __ Set(rax, argc);
2005   __ Jump(masm->isolate()->builtins()->CallFunction(convert_mode()),
2006           RelocInfo::CODE_TARGET);
2007 
2008   __ bind(&extra_checks_or_miss);
2009   Label uninitialized, miss, not_allocation_site;
2010 
2011   __ Cmp(rcx, TypeFeedbackVector::MegamorphicSentinel(isolate));
2012   __ j(equal, &call);
2013 
2014   // Check if we have an allocation site.
2015   __ CompareRoot(FieldOperand(rcx, HeapObject::kMapOffset),
2016                  Heap::kAllocationSiteMapRootIndex);
2017   __ j(not_equal, &not_allocation_site);
2018 
2019   // We have an allocation site.
2020   HandleArrayCase(masm, &miss);
2021 
2022   __ bind(&not_allocation_site);
2023 
2024   // The following cases attempt to handle MISS cases without going to the
2025   // runtime.
2026   if (FLAG_trace_ic) {
2027     __ jmp(&miss);
2028   }
2029 
2030   __ Cmp(rcx, TypeFeedbackVector::UninitializedSentinel(isolate));
2031   __ j(equal, &uninitialized);
2032 
2033   // We are going megamorphic. If the feedback is a JSFunction, it is fine
2034   // to handle it here. More complex cases are dealt with in the runtime.
2035   __ AssertNotSmi(rcx);
2036   __ CmpObjectType(rcx, JS_FUNCTION_TYPE, rcx);
2037   __ j(not_equal, &miss);
2038   __ Move(FieldOperand(rbx, rdx, times_pointer_size, FixedArray::kHeaderSize),
2039           TypeFeedbackVector::MegamorphicSentinel(isolate));
2040 
2041   __ bind(&call);
2042   __ Set(rax, argc);
2043   __ Jump(masm->isolate()->builtins()->Call(convert_mode()),
2044           RelocInfo::CODE_TARGET);
2045 
2046   __ bind(&uninitialized);
2047 
2048   // We are going monomorphic, provided we actually have a JSFunction.
2049   __ JumpIfSmi(rdi, &miss);
2050 
2051   // Goto miss case if we do not have a function.
2052   __ CmpObjectType(rdi, JS_FUNCTION_TYPE, rcx);
2053   __ j(not_equal, &miss);
2054 
2055   // Make sure the function is not the Array() function, which requires special
2056   // behavior on MISS.
2057   __ LoadNativeContextSlot(Context::ARRAY_FUNCTION_INDEX, rcx);
2058   __ cmpp(rdi, rcx);
2059   __ j(equal, &miss);
2060 
2061   // Make sure the function belongs to the same native context.
2062   __ movp(rcx, FieldOperand(rdi, JSFunction::kContextOffset));
2063   __ movp(rcx, ContextOperand(rcx, Context::NATIVE_CONTEXT_INDEX));
2064   __ cmpp(rcx, NativeContextOperand());
2065   __ j(not_equal, &miss);
2066 
2067   // Initialize the call counter.
2068   __ Move(FieldOperand(rbx, rdx, times_pointer_size,
2069                        FixedArray::kHeaderSize + kPointerSize),
2070           Smi::FromInt(CallICNexus::kCallCountIncrement));
2071 
2072   // Store the function. Use a stub since we need a frame for allocation.
2073   // rbx - vector
2074   // rdx - slot (needs to be in smi form)
2075   // rdi - function
2076   {
2077     FrameScope scope(masm, StackFrame::INTERNAL);
2078     CreateWeakCellStub create_stub(isolate);
2079 
2080     __ Integer32ToSmi(rdx, rdx);
2081     __ Push(rdi);
2082     __ CallStub(&create_stub);
2083     __ Pop(rdi);
2084   }
2085 
2086   __ jmp(&call_function);
2087 
2088   // We are here because tracing is on or we encountered a MISS case we can't
2089   // handle here.
2090   __ bind(&miss);
2091   GenerateMiss(masm);
2092 
2093   __ jmp(&call);
2094 
2095   // Unreachable
2096   __ int3();
2097 }
2098 
2099 
GenerateMiss(MacroAssembler * masm)2100 void CallICStub::GenerateMiss(MacroAssembler* masm) {
2101   FrameScope scope(masm, StackFrame::INTERNAL);
2102 
2103   // Push the receiver and the function and feedback info.
2104   __ Push(rdi);
2105   __ Push(rbx);
2106   __ Integer32ToSmi(rdx, rdx);
2107   __ Push(rdx);
2108 
2109   // Call the entry.
2110   __ CallRuntime(Runtime::kCallIC_Miss);
2111 
2112   // Move result to edi and exit the internal frame.
2113   __ movp(rdi, rax);
2114 }
2115 
2116 
NeedsImmovableCode()2117 bool CEntryStub::NeedsImmovableCode() {
2118   return false;
2119 }
2120 
2121 
GenerateStubsAheadOfTime(Isolate * isolate)2122 void CodeStub::GenerateStubsAheadOfTime(Isolate* isolate) {
2123   CEntryStub::GenerateAheadOfTime(isolate);
2124   StoreBufferOverflowStub::GenerateFixedRegStubsAheadOfTime(isolate);
2125   StubFailureTrampolineStub::GenerateAheadOfTime(isolate);
2126   // It is important that the store buffer overflow stubs are generated first.
2127   ArrayConstructorStubBase::GenerateStubsAheadOfTime(isolate);
2128   CreateAllocationSiteStub::GenerateAheadOfTime(isolate);
2129   CreateWeakCellStub::GenerateAheadOfTime(isolate);
2130   BinaryOpICStub::GenerateAheadOfTime(isolate);
2131   BinaryOpICWithAllocationSiteStub::GenerateAheadOfTime(isolate);
2132   StoreFastElementStub::GenerateAheadOfTime(isolate);
2133   TypeofStub::GenerateAheadOfTime(isolate);
2134 }
2135 
2136 
GenerateFPStubs(Isolate * isolate)2137 void CodeStub::GenerateFPStubs(Isolate* isolate) {
2138 }
2139 
2140 
GenerateAheadOfTime(Isolate * isolate)2141 void CEntryStub::GenerateAheadOfTime(Isolate* isolate) {
2142   CEntryStub stub(isolate, 1, kDontSaveFPRegs);
2143   stub.GetCode();
2144   CEntryStub save_doubles(isolate, 1, kSaveFPRegs);
2145   save_doubles.GetCode();
2146 }
2147 
2148 
Generate(MacroAssembler * masm)2149 void CEntryStub::Generate(MacroAssembler* masm) {
2150   // rax: number of arguments including receiver
2151   // rbx: pointer to C function  (C callee-saved)
2152   // rbp: frame pointer of calling JS frame (restored after C call)
2153   // rsp: stack pointer  (restored after C call)
2154   // rsi: current context (restored)
2155   //
2156   // If argv_in_register():
2157   // r15: pointer to the first argument
2158 
2159   ProfileEntryHookStub::MaybeCallEntryHook(masm);
2160 
2161   // Enter the exit frame that transitions from JavaScript to C++.
2162 #ifdef _WIN64
2163   int arg_stack_space = (result_size() < 2 ? 2 : 4);
2164 #else   // _WIN64
2165   int arg_stack_space = 0;
2166 #endif  // _WIN64
2167   if (argv_in_register()) {
2168     DCHECK(!save_doubles());
2169     __ EnterApiExitFrame(arg_stack_space);
2170     // Move argc into r14 (argv is already in r15).
2171     __ movp(r14, rax);
2172   } else {
2173     __ EnterExitFrame(arg_stack_space, save_doubles());
2174   }
2175 
2176   // rbx: pointer to builtin function  (C callee-saved).
2177   // rbp: frame pointer of exit frame  (restored after C call).
2178   // rsp: stack pointer (restored after C call).
2179   // r14: number of arguments including receiver (C callee-saved).
2180   // r15: argv pointer (C callee-saved).
2181 
2182   // Simple results returned in rax (both AMD64 and Win64 calling conventions).
2183   // Complex results must be written to address passed as first argument.
2184   // AMD64 calling convention: a struct of two pointers in rax+rdx
2185 
2186   // Check stack alignment.
2187   if (FLAG_debug_code) {
2188     __ CheckStackAlignment();
2189   }
2190 
2191   // Call C function.
2192 #ifdef _WIN64
2193   // Windows 64-bit ABI passes arguments in rcx, rdx, r8, r9.
2194   // Pass argv and argc as two parameters. The arguments object will
2195   // be created by stubs declared by DECLARE_RUNTIME_FUNCTION().
2196   if (result_size() < 2) {
2197     // Pass a pointer to the Arguments object as the first argument.
2198     // Return result in single register (rax).
2199     __ movp(rcx, r14);  // argc.
2200     __ movp(rdx, r15);  // argv.
2201     __ Move(r8, ExternalReference::isolate_address(isolate()));
2202   } else {
2203     DCHECK_EQ(2, result_size());
2204     // Pass a pointer to the result location as the first argument.
2205     __ leap(rcx, StackSpaceOperand(2));
2206     // Pass a pointer to the Arguments object as the second argument.
2207     __ movp(rdx, r14);  // argc.
2208     __ movp(r8, r15);   // argv.
2209     __ Move(r9, ExternalReference::isolate_address(isolate()));
2210   }
2211 
2212 #else  // _WIN64
2213   // GCC passes arguments in rdi, rsi, rdx, rcx, r8, r9.
2214   __ movp(rdi, r14);  // argc.
2215   __ movp(rsi, r15);  // argv.
2216   __ Move(rdx, ExternalReference::isolate_address(isolate()));
2217 #endif  // _WIN64
2218   __ call(rbx);
2219   // Result is in rax - do not destroy this register!
2220 
2221 #ifdef _WIN64
2222   // If return value is on the stack, pop it to registers.
2223   if (result_size() > 1) {
2224     DCHECK_EQ(2, result_size());
2225     // Read result values stored on stack. Result is stored
2226     // above the four argument mirror slots and the two
2227     // Arguments object slots.
2228     __ movq(rax, Operand(rsp, 6 * kRegisterSize));
2229     __ movq(rdx, Operand(rsp, 7 * kRegisterSize));
2230   }
2231 #endif  // _WIN64
2232 
2233   // Check result for exception sentinel.
2234   Label exception_returned;
2235   __ CompareRoot(rax, Heap::kExceptionRootIndex);
2236   __ j(equal, &exception_returned);
2237 
2238   // Check that there is no pending exception, otherwise we
2239   // should have returned the exception sentinel.
2240   if (FLAG_debug_code) {
2241     Label okay;
2242     __ LoadRoot(r14, Heap::kTheHoleValueRootIndex);
2243     ExternalReference pending_exception_address(
2244         Isolate::kPendingExceptionAddress, isolate());
2245     Operand pending_exception_operand =
2246         masm->ExternalOperand(pending_exception_address);
2247     __ cmpp(r14, pending_exception_operand);
2248     __ j(equal, &okay, Label::kNear);
2249     __ int3();
2250     __ bind(&okay);
2251   }
2252 
2253   // Exit the JavaScript to C++ exit frame.
2254   __ LeaveExitFrame(save_doubles(), !argv_in_register());
2255   __ ret(0);
2256 
2257   // Handling of exception.
2258   __ bind(&exception_returned);
2259 
2260   ExternalReference pending_handler_context_address(
2261       Isolate::kPendingHandlerContextAddress, isolate());
2262   ExternalReference pending_handler_code_address(
2263       Isolate::kPendingHandlerCodeAddress, isolate());
2264   ExternalReference pending_handler_offset_address(
2265       Isolate::kPendingHandlerOffsetAddress, isolate());
2266   ExternalReference pending_handler_fp_address(
2267       Isolate::kPendingHandlerFPAddress, isolate());
2268   ExternalReference pending_handler_sp_address(
2269       Isolate::kPendingHandlerSPAddress, isolate());
2270 
2271   // Ask the runtime for help to determine the handler. This will set rax to
2272   // contain the current pending exception, don't clobber it.
2273   ExternalReference find_handler(Runtime::kUnwindAndFindExceptionHandler,
2274                                  isolate());
2275   {
2276     FrameScope scope(masm, StackFrame::MANUAL);
2277     __ movp(arg_reg_1, Immediate(0));  // argc.
2278     __ movp(arg_reg_2, Immediate(0));  // argv.
2279     __ Move(arg_reg_3, ExternalReference::isolate_address(isolate()));
2280     __ PrepareCallCFunction(3);
2281     __ CallCFunction(find_handler, 3);
2282   }
2283 
2284   // Retrieve the handler context, SP and FP.
2285   __ movp(rsi, masm->ExternalOperand(pending_handler_context_address));
2286   __ movp(rsp, masm->ExternalOperand(pending_handler_sp_address));
2287   __ movp(rbp, masm->ExternalOperand(pending_handler_fp_address));
2288 
2289   // If the handler is a JS frame, restore the context to the frame. Note that
2290   // the context will be set to (rsi == 0) for non-JS frames.
2291   Label skip;
2292   __ testp(rsi, rsi);
2293   __ j(zero, &skip, Label::kNear);
2294   __ movp(Operand(rbp, StandardFrameConstants::kContextOffset), rsi);
2295   __ bind(&skip);
2296 
2297   // Compute the handler entry address and jump to it.
2298   __ movp(rdi, masm->ExternalOperand(pending_handler_code_address));
2299   __ movp(rdx, masm->ExternalOperand(pending_handler_offset_address));
2300   __ leap(rdi, FieldOperand(rdi, rdx, times_1, Code::kHeaderSize));
2301   __ jmp(rdi);
2302 }
2303 
2304 
Generate(MacroAssembler * masm)2305 void JSEntryStub::Generate(MacroAssembler* masm) {
2306   Label invoke, handler_entry, exit;
2307   Label not_outermost_js, not_outermost_js_2;
2308 
2309   ProfileEntryHookStub::MaybeCallEntryHook(masm);
2310 
2311   {  // NOLINT. Scope block confuses linter.
2312     MacroAssembler::NoRootArrayScope uninitialized_root_register(masm);
2313     // Set up frame.
2314     __ pushq(rbp);
2315     __ movp(rbp, rsp);
2316 
2317     // Push the stack frame type marker twice.
2318     int marker = type();
2319     // Scratch register is neither callee-save, nor an argument register on any
2320     // platform. It's free to use at this point.
2321     // Cannot use smi-register for loading yet.
2322     __ Move(kScratchRegister, Smi::FromInt(marker), Assembler::RelocInfoNone());
2323     __ Push(kScratchRegister);  // context slot
2324     __ Push(kScratchRegister);  // function slot
2325     // Save callee-saved registers (X64/X32/Win64 calling conventions).
2326     __ pushq(r12);
2327     __ pushq(r13);
2328     __ pushq(r14);
2329     __ pushq(r15);
2330 #ifdef _WIN64
2331     __ pushq(rdi);  // Only callee save in Win64 ABI, argument in AMD64 ABI.
2332     __ pushq(rsi);  // Only callee save in Win64 ABI, argument in AMD64 ABI.
2333 #endif
2334     __ pushq(rbx);
2335 
2336 #ifdef _WIN64
2337     // On Win64 XMM6-XMM15 are callee-save
2338     __ subp(rsp, Immediate(EntryFrameConstants::kXMMRegistersBlockSize));
2339     __ movdqu(Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 0), xmm6);
2340     __ movdqu(Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 1), xmm7);
2341     __ movdqu(Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 2), xmm8);
2342     __ movdqu(Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 3), xmm9);
2343     __ movdqu(Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 4), xmm10);
2344     __ movdqu(Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 5), xmm11);
2345     __ movdqu(Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 6), xmm12);
2346     __ movdqu(Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 7), xmm13);
2347     __ movdqu(Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 8), xmm14);
2348     __ movdqu(Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 9), xmm15);
2349 #endif
2350 
2351     // Set up the roots and smi constant registers.
2352     // Needs to be done before any further smi loads.
2353     __ InitializeRootRegister();
2354   }
2355 
2356   // Save copies of the top frame descriptor on the stack.
2357   ExternalReference c_entry_fp(Isolate::kCEntryFPAddress, isolate());
2358   {
2359     Operand c_entry_fp_operand = masm->ExternalOperand(c_entry_fp);
2360     __ Push(c_entry_fp_operand);
2361   }
2362 
2363   // If this is the outermost JS call, set js_entry_sp value.
2364   ExternalReference js_entry_sp(Isolate::kJSEntrySPAddress, isolate());
2365   __ Load(rax, js_entry_sp);
2366   __ testp(rax, rax);
2367   __ j(not_zero, &not_outermost_js);
2368   __ Push(Smi::FromInt(StackFrame::OUTERMOST_JSENTRY_FRAME));
2369   __ movp(rax, rbp);
2370   __ Store(js_entry_sp, rax);
2371   Label cont;
2372   __ jmp(&cont);
2373   __ bind(&not_outermost_js);
2374   __ Push(Smi::FromInt(StackFrame::INNER_JSENTRY_FRAME));
2375   __ bind(&cont);
2376 
2377   // Jump to a faked try block that does the invoke, with a faked catch
2378   // block that sets the pending exception.
2379   __ jmp(&invoke);
2380   __ bind(&handler_entry);
2381   handler_offset_ = handler_entry.pos();
2382   // Caught exception: Store result (exception) in the pending exception
2383   // field in the JSEnv and return a failure sentinel.
2384   ExternalReference pending_exception(Isolate::kPendingExceptionAddress,
2385                                       isolate());
2386   __ Store(pending_exception, rax);
2387   __ LoadRoot(rax, Heap::kExceptionRootIndex);
2388   __ jmp(&exit);
2389 
2390   // Invoke: Link this frame into the handler chain.
2391   __ bind(&invoke);
2392   __ PushStackHandler();
2393 
2394   // Clear any pending exceptions.
2395   __ LoadRoot(rax, Heap::kTheHoleValueRootIndex);
2396   __ Store(pending_exception, rax);
2397 
2398   // Fake a receiver (NULL).
2399   __ Push(Immediate(0));  // receiver
2400 
2401   // Invoke the function by calling through JS entry trampoline builtin and
2402   // pop the faked function when we return. We load the address from an
2403   // external reference instead of inlining the call target address directly
2404   // in the code, because the builtin stubs may not have been generated yet
2405   // at the time this code is generated.
2406   if (type() == StackFrame::ENTRY_CONSTRUCT) {
2407     ExternalReference construct_entry(Builtins::kJSConstructEntryTrampoline,
2408                                       isolate());
2409     __ Load(rax, construct_entry);
2410   } else {
2411     ExternalReference entry(Builtins::kJSEntryTrampoline, isolate());
2412     __ Load(rax, entry);
2413   }
2414   __ leap(kScratchRegister, FieldOperand(rax, Code::kHeaderSize));
2415   __ call(kScratchRegister);
2416 
2417   // Unlink this frame from the handler chain.
2418   __ PopStackHandler();
2419 
2420   __ bind(&exit);
2421   // Check if the current stack frame is marked as the outermost JS frame.
2422   __ Pop(rbx);
2423   __ Cmp(rbx, Smi::FromInt(StackFrame::OUTERMOST_JSENTRY_FRAME));
2424   __ j(not_equal, &not_outermost_js_2);
2425   __ Move(kScratchRegister, js_entry_sp);
2426   __ movp(Operand(kScratchRegister, 0), Immediate(0));
2427   __ bind(&not_outermost_js_2);
2428 
2429   // Restore the top frame descriptor from the stack.
2430   { Operand c_entry_fp_operand = masm->ExternalOperand(c_entry_fp);
2431     __ Pop(c_entry_fp_operand);
2432   }
2433 
2434   // Restore callee-saved registers (X64 conventions).
2435 #ifdef _WIN64
2436   // On Win64 XMM6-XMM15 are callee-save
2437   __ movdqu(xmm6, Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 0));
2438   __ movdqu(xmm7, Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 1));
2439   __ movdqu(xmm8, Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 2));
2440   __ movdqu(xmm9, Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 3));
2441   __ movdqu(xmm10, Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 4));
2442   __ movdqu(xmm11, Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 5));
2443   __ movdqu(xmm12, Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 6));
2444   __ movdqu(xmm13, Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 7));
2445   __ movdqu(xmm14, Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 8));
2446   __ movdqu(xmm15, Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 9));
2447   __ addp(rsp, Immediate(EntryFrameConstants::kXMMRegistersBlockSize));
2448 #endif
2449 
2450   __ popq(rbx);
2451 #ifdef _WIN64
2452   // Callee save on in Win64 ABI, arguments/volatile in AMD64 ABI.
2453   __ popq(rsi);
2454   __ popq(rdi);
2455 #endif
2456   __ popq(r15);
2457   __ popq(r14);
2458   __ popq(r13);
2459   __ popq(r12);
2460   __ addp(rsp, Immediate(2 * kPointerSize));  // remove markers
2461 
2462   // Restore frame pointer and return.
2463   __ popq(rbp);
2464   __ ret(0);
2465 }
2466 
2467 
Generate(MacroAssembler * masm)2468 void InstanceOfStub::Generate(MacroAssembler* masm) {
2469   Register const object = rdx;              // Object (lhs).
2470   Register const function = rax;            // Function (rhs).
2471   Register const object_map = rcx;          // Map of {object}.
2472   Register const function_map = r8;         // Map of {function}.
2473   Register const function_prototype = rdi;  // Prototype of {function}.
2474 
2475   DCHECK(object.is(InstanceOfDescriptor::LeftRegister()));
2476   DCHECK(function.is(InstanceOfDescriptor::RightRegister()));
2477 
2478   // Check if {object} is a smi.
2479   Label object_is_smi;
2480   __ JumpIfSmi(object, &object_is_smi, Label::kNear);
2481 
2482   // Lookup the {function} and the {object} map in the global instanceof cache.
2483   // Note: This is safe because we clear the global instanceof cache whenever
2484   // we change the prototype of any object.
2485   Label fast_case, slow_case;
2486   __ movp(object_map, FieldOperand(object, HeapObject::kMapOffset));
2487   __ CompareRoot(function, Heap::kInstanceofCacheFunctionRootIndex);
2488   __ j(not_equal, &fast_case, Label::kNear);
2489   __ CompareRoot(object_map, Heap::kInstanceofCacheMapRootIndex);
2490   __ j(not_equal, &fast_case, Label::kNear);
2491   __ LoadRoot(rax, Heap::kInstanceofCacheAnswerRootIndex);
2492   __ ret(0);
2493 
2494   // If {object} is a smi we can safely return false if {function} is a JS
2495   // function, otherwise we have to miss to the runtime and throw an exception.
2496   __ bind(&object_is_smi);
2497   __ JumpIfSmi(function, &slow_case);
2498   __ CmpObjectType(function, JS_FUNCTION_TYPE, function_map);
2499   __ j(not_equal, &slow_case);
2500   __ LoadRoot(rax, Heap::kFalseValueRootIndex);
2501   __ ret(0);
2502 
2503   // Fast-case: The {function} must be a valid JSFunction.
2504   __ bind(&fast_case);
2505   __ JumpIfSmi(function, &slow_case);
2506   __ CmpObjectType(function, JS_FUNCTION_TYPE, function_map);
2507   __ j(not_equal, &slow_case);
2508 
2509   // Ensure that {function} has an instance prototype.
2510   __ testb(FieldOperand(function_map, Map::kBitFieldOffset),
2511            Immediate(1 << Map::kHasNonInstancePrototype));
2512   __ j(not_zero, &slow_case);
2513 
2514   // Get the "prototype" (or initial map) of the {function}.
2515   __ movp(function_prototype,
2516           FieldOperand(function, JSFunction::kPrototypeOrInitialMapOffset));
2517   __ AssertNotSmi(function_prototype);
2518 
2519   // Resolve the prototype if the {function} has an initial map.  Afterwards the
2520   // {function_prototype} will be either the JSReceiver prototype object or the
2521   // hole value, which means that no instances of the {function} were created so
2522   // far and hence we should return false.
2523   Label function_prototype_valid;
2524   Register const function_prototype_map = kScratchRegister;
2525   __ CmpObjectType(function_prototype, MAP_TYPE, function_prototype_map);
2526   __ j(not_equal, &function_prototype_valid, Label::kNear);
2527   __ movp(function_prototype,
2528           FieldOperand(function_prototype, Map::kPrototypeOffset));
2529   __ bind(&function_prototype_valid);
2530   __ AssertNotSmi(function_prototype);
2531 
2532   // Update the global instanceof cache with the current {object} map and
2533   // {function}.  The cached answer will be set when it is known below.
2534   __ StoreRoot(function, Heap::kInstanceofCacheFunctionRootIndex);
2535   __ StoreRoot(object_map, Heap::kInstanceofCacheMapRootIndex);
2536 
2537   // Loop through the prototype chain looking for the {function} prototype.
2538   // Assume true, and change to false if not found.
2539   Label done, loop, fast_runtime_fallback;
2540   __ LoadRoot(rax, Heap::kTrueValueRootIndex);
2541   __ bind(&loop);
2542 
2543   __ testb(FieldOperand(object_map, Map::kBitFieldOffset),
2544            Immediate(1 << Map::kIsAccessCheckNeeded));
2545   __ j(not_zero, &fast_runtime_fallback, Label::kNear);
2546   __ CmpInstanceType(object_map, JS_PROXY_TYPE);
2547   __ j(equal, &fast_runtime_fallback, Label::kNear);
2548 
2549   __ movp(object, FieldOperand(object_map, Map::kPrototypeOffset));
2550   __ cmpp(object, function_prototype);
2551   __ j(equal, &done, Label::kNear);
2552   __ CompareRoot(object, Heap::kNullValueRootIndex);
2553   __ movp(object_map, FieldOperand(object, HeapObject::kMapOffset));
2554   __ j(not_equal, &loop);
2555   __ LoadRoot(rax, Heap::kFalseValueRootIndex);
2556   __ bind(&done);
2557   __ StoreRoot(rax, Heap::kInstanceofCacheAnswerRootIndex);
2558   __ ret(0);
2559 
2560   // Found Proxy or access check needed: Call the runtime.
2561   __ bind(&fast_runtime_fallback);
2562   __ PopReturnAddressTo(kScratchRegister);
2563   __ Push(object);
2564   __ Push(function_prototype);
2565   __ PushReturnAddressFrom(kScratchRegister);
2566   // Invalidate the instanceof cache.
2567   __ Move(rax, Smi::FromInt(0));
2568   __ StoreRoot(rax, Heap::kInstanceofCacheFunctionRootIndex);
2569   __ TailCallRuntime(Runtime::kHasInPrototypeChain);
2570 
2571   // Slow-case: Call the %InstanceOf runtime function.
2572   __ bind(&slow_case);
2573   __ PopReturnAddressTo(kScratchRegister);
2574   __ Push(object);
2575   __ Push(function);
2576   __ PushReturnAddressFrom(kScratchRegister);
2577   __ TailCallRuntime(Runtime::kInstanceOf);
2578 }
2579 
2580 
2581 // -------------------------------------------------------------------------
2582 // StringCharCodeAtGenerator
2583 
GenerateFast(MacroAssembler * masm)2584 void StringCharCodeAtGenerator::GenerateFast(MacroAssembler* masm) {
2585   // If the receiver is a smi trigger the non-string case.
2586   if (check_mode_ == RECEIVER_IS_UNKNOWN) {
2587     __ JumpIfSmi(object_, receiver_not_string_);
2588 
2589     // Fetch the instance type of the receiver into result register.
2590     __ movp(result_, FieldOperand(object_, HeapObject::kMapOffset));
2591     __ movzxbl(result_, FieldOperand(result_, Map::kInstanceTypeOffset));
2592     // If the receiver is not a string trigger the non-string case.
2593     __ testb(result_, Immediate(kIsNotStringMask));
2594     __ j(not_zero, receiver_not_string_);
2595   }
2596 
2597   // If the index is non-smi trigger the non-smi case.
2598   __ JumpIfNotSmi(index_, &index_not_smi_);
2599   __ bind(&got_smi_index_);
2600 
2601   // Check for index out of range.
2602   __ SmiCompare(index_, FieldOperand(object_, String::kLengthOffset));
2603   __ j(above_equal, index_out_of_range_);
2604 
2605   __ SmiToInteger32(index_, index_);
2606 
2607   StringCharLoadGenerator::Generate(
2608       masm, object_, index_, result_, &call_runtime_);
2609 
2610   __ Integer32ToSmi(result_, result_);
2611   __ bind(&exit_);
2612 }
2613 
2614 
GenerateSlow(MacroAssembler * masm,EmbedMode embed_mode,const RuntimeCallHelper & call_helper)2615 void StringCharCodeAtGenerator::GenerateSlow(
2616     MacroAssembler* masm, EmbedMode embed_mode,
2617     const RuntimeCallHelper& call_helper) {
2618   __ Abort(kUnexpectedFallthroughToCharCodeAtSlowCase);
2619 
2620   Factory* factory = masm->isolate()->factory();
2621   // Index is not a smi.
2622   __ bind(&index_not_smi_);
2623   // If index is a heap number, try converting it to an integer.
2624   __ CheckMap(index_,
2625               factory->heap_number_map(),
2626               index_not_number_,
2627               DONT_DO_SMI_CHECK);
2628   call_helper.BeforeCall(masm);
2629   if (embed_mode == PART_OF_IC_HANDLER) {
2630     __ Push(LoadWithVectorDescriptor::VectorRegister());
2631     __ Push(LoadDescriptor::SlotRegister());
2632   }
2633   __ Push(object_);
2634   __ Push(index_);  // Consumed by runtime conversion function.
2635   if (index_flags_ == STRING_INDEX_IS_NUMBER) {
2636     __ CallRuntime(Runtime::kNumberToIntegerMapMinusZero);
2637   } else {
2638     DCHECK(index_flags_ == STRING_INDEX_IS_ARRAY_INDEX);
2639     // NumberToSmi discards numbers that are not exact integers.
2640     __ CallRuntime(Runtime::kNumberToSmi);
2641   }
2642   if (!index_.is(rax)) {
2643     // Save the conversion result before the pop instructions below
2644     // have a chance to overwrite it.
2645     __ movp(index_, rax);
2646   }
2647   __ Pop(object_);
2648   if (embed_mode == PART_OF_IC_HANDLER) {
2649     __ Pop(LoadDescriptor::SlotRegister());
2650     __ Pop(LoadWithVectorDescriptor::VectorRegister());
2651   }
2652   // Reload the instance type.
2653   __ movp(result_, FieldOperand(object_, HeapObject::kMapOffset));
2654   __ movzxbl(result_, FieldOperand(result_, Map::kInstanceTypeOffset));
2655   call_helper.AfterCall(masm);
2656   // If index is still not a smi, it must be out of range.
2657   __ JumpIfNotSmi(index_, index_out_of_range_);
2658   // Otherwise, return to the fast path.
2659   __ jmp(&got_smi_index_);
2660 
2661   // Call runtime. We get here when the receiver is a string and the
2662   // index is a number, but the code of getting the actual character
2663   // is too complex (e.g., when the string needs to be flattened).
2664   __ bind(&call_runtime_);
2665   call_helper.BeforeCall(masm);
2666   __ Push(object_);
2667   __ Integer32ToSmi(index_, index_);
2668   __ Push(index_);
2669   __ CallRuntime(Runtime::kStringCharCodeAtRT);
2670   if (!result_.is(rax)) {
2671     __ movp(result_, rax);
2672   }
2673   call_helper.AfterCall(masm);
2674   __ jmp(&exit_);
2675 
2676   __ Abort(kUnexpectedFallthroughFromCharCodeAtSlowCase);
2677 }
2678 
2679 
2680 // -------------------------------------------------------------------------
2681 // StringCharFromCodeGenerator
2682 
GenerateFast(MacroAssembler * masm)2683 void StringCharFromCodeGenerator::GenerateFast(MacroAssembler* masm) {
2684   // Fast case of Heap::LookupSingleCharacterStringFromCode.
2685   __ JumpIfNotSmi(code_, &slow_case_);
2686   __ SmiCompare(code_, Smi::FromInt(String::kMaxOneByteCharCode));
2687   __ j(above, &slow_case_);
2688 
2689   __ LoadRoot(result_, Heap::kSingleCharacterStringCacheRootIndex);
2690   SmiIndex index = masm->SmiToIndex(kScratchRegister, code_, kPointerSizeLog2);
2691   __ movp(result_, FieldOperand(result_, index.reg, index.scale,
2692                                 FixedArray::kHeaderSize));
2693   __ CompareRoot(result_, Heap::kUndefinedValueRootIndex);
2694   __ j(equal, &slow_case_);
2695   __ bind(&exit_);
2696 }
2697 
2698 
GenerateSlow(MacroAssembler * masm,const RuntimeCallHelper & call_helper)2699 void StringCharFromCodeGenerator::GenerateSlow(
2700     MacroAssembler* masm,
2701     const RuntimeCallHelper& call_helper) {
2702   __ Abort(kUnexpectedFallthroughToCharFromCodeSlowCase);
2703 
2704   __ bind(&slow_case_);
2705   call_helper.BeforeCall(masm);
2706   __ Push(code_);
2707   __ CallRuntime(Runtime::kStringCharFromCode);
2708   if (!result_.is(rax)) {
2709     __ movp(result_, rax);
2710   }
2711   call_helper.AfterCall(masm);
2712   __ jmp(&exit_);
2713 
2714   __ Abort(kUnexpectedFallthroughFromCharFromCodeSlowCase);
2715 }
2716 
2717 
GenerateCopyCharacters(MacroAssembler * masm,Register dest,Register src,Register count,String::Encoding encoding)2718 void StringHelper::GenerateCopyCharacters(MacroAssembler* masm,
2719                                           Register dest,
2720                                           Register src,
2721                                           Register count,
2722                                           String::Encoding encoding) {
2723   // Nothing to do for zero characters.
2724   Label done;
2725   __ testl(count, count);
2726   __ j(zero, &done, Label::kNear);
2727 
2728   // Make count the number of bytes to copy.
2729   if (encoding == String::TWO_BYTE_ENCODING) {
2730     STATIC_ASSERT(2 == sizeof(uc16));
2731     __ addl(count, count);
2732   }
2733 
2734   // Copy remaining characters.
2735   Label loop;
2736   __ bind(&loop);
2737   __ movb(kScratchRegister, Operand(src, 0));
2738   __ movb(Operand(dest, 0), kScratchRegister);
2739   __ incp(src);
2740   __ incp(dest);
2741   __ decl(count);
2742   __ j(not_zero, &loop);
2743 
2744   __ bind(&done);
2745 }
2746 
2747 
Generate(MacroAssembler * masm)2748 void SubStringStub::Generate(MacroAssembler* masm) {
2749   Label runtime;
2750 
2751   // Stack frame on entry.
2752   //  rsp[0]  : return address
2753   //  rsp[8]  : to
2754   //  rsp[16] : from
2755   //  rsp[24] : string
2756 
2757   enum SubStringStubArgumentIndices {
2758     STRING_ARGUMENT_INDEX,
2759     FROM_ARGUMENT_INDEX,
2760     TO_ARGUMENT_INDEX,
2761     SUB_STRING_ARGUMENT_COUNT
2762   };
2763 
2764   StackArgumentsAccessor args(rsp, SUB_STRING_ARGUMENT_COUNT,
2765                               ARGUMENTS_DONT_CONTAIN_RECEIVER);
2766 
2767   // Make sure first argument is a string.
2768   __ movp(rax, args.GetArgumentOperand(STRING_ARGUMENT_INDEX));
2769   STATIC_ASSERT(kSmiTag == 0);
2770   __ testl(rax, Immediate(kSmiTagMask));
2771   __ j(zero, &runtime);
2772   Condition is_string = masm->IsObjectStringType(rax, rbx, rbx);
2773   __ j(NegateCondition(is_string), &runtime);
2774 
2775   // rax: string
2776   // rbx: instance type
2777   // Calculate length of sub string using the smi values.
2778   __ movp(rcx, args.GetArgumentOperand(TO_ARGUMENT_INDEX));
2779   __ movp(rdx, args.GetArgumentOperand(FROM_ARGUMENT_INDEX));
2780   __ JumpUnlessBothNonNegativeSmi(rcx, rdx, &runtime);
2781 
2782   __ SmiSub(rcx, rcx, rdx);  // Overflow doesn't happen.
2783   __ cmpp(rcx, FieldOperand(rax, String::kLengthOffset));
2784   Label not_original_string;
2785   // Shorter than original string's length: an actual substring.
2786   __ j(below, &not_original_string, Label::kNear);
2787   // Longer than original string's length or negative: unsafe arguments.
2788   __ j(above, &runtime);
2789   // Return original string.
2790   Counters* counters = isolate()->counters();
2791   __ IncrementCounter(counters->sub_string_native(), 1);
2792   __ ret(SUB_STRING_ARGUMENT_COUNT * kPointerSize);
2793   __ bind(&not_original_string);
2794 
2795   Label single_char;
2796   __ SmiCompare(rcx, Smi::FromInt(1));
2797   __ j(equal, &single_char);
2798 
2799   __ SmiToInteger32(rcx, rcx);
2800 
2801   // rax: string
2802   // rbx: instance type
2803   // rcx: sub string length
2804   // rdx: from index (smi)
2805   // Deal with different string types: update the index if necessary
2806   // and put the underlying string into edi.
2807   Label underlying_unpacked, sliced_string, seq_or_external_string;
2808   // If the string is not indirect, it can only be sequential or external.
2809   STATIC_ASSERT(kIsIndirectStringMask == (kSlicedStringTag & kConsStringTag));
2810   STATIC_ASSERT(kIsIndirectStringMask != 0);
2811   __ testb(rbx, Immediate(kIsIndirectStringMask));
2812   __ j(zero, &seq_or_external_string, Label::kNear);
2813 
2814   __ testb(rbx, Immediate(kSlicedNotConsMask));
2815   __ j(not_zero, &sliced_string, Label::kNear);
2816   // Cons string.  Check whether it is flat, then fetch first part.
2817   // Flat cons strings have an empty second part.
2818   __ CompareRoot(FieldOperand(rax, ConsString::kSecondOffset),
2819                  Heap::kempty_stringRootIndex);
2820   __ j(not_equal, &runtime);
2821   __ movp(rdi, FieldOperand(rax, ConsString::kFirstOffset));
2822   // Update instance type.
2823   __ movp(rbx, FieldOperand(rdi, HeapObject::kMapOffset));
2824   __ movzxbl(rbx, FieldOperand(rbx, Map::kInstanceTypeOffset));
2825   __ jmp(&underlying_unpacked, Label::kNear);
2826 
2827   __ bind(&sliced_string);
2828   // Sliced string.  Fetch parent and correct start index by offset.
2829   __ addp(rdx, FieldOperand(rax, SlicedString::kOffsetOffset));
2830   __ movp(rdi, FieldOperand(rax, SlicedString::kParentOffset));
2831   // Update instance type.
2832   __ movp(rbx, FieldOperand(rdi, HeapObject::kMapOffset));
2833   __ movzxbl(rbx, FieldOperand(rbx, Map::kInstanceTypeOffset));
2834   __ jmp(&underlying_unpacked, Label::kNear);
2835 
2836   __ bind(&seq_or_external_string);
2837   // Sequential or external string.  Just move string to the correct register.
2838   __ movp(rdi, rax);
2839 
2840   __ bind(&underlying_unpacked);
2841 
2842   if (FLAG_string_slices) {
2843     Label copy_routine;
2844     // rdi: underlying subject string
2845     // rbx: instance type of underlying subject string
2846     // rdx: adjusted start index (smi)
2847     // rcx: length
2848     // If coming from the make_two_character_string path, the string
2849     // is too short to be sliced anyways.
2850     __ cmpp(rcx, Immediate(SlicedString::kMinLength));
2851     // Short slice.  Copy instead of slicing.
2852     __ j(less, &copy_routine);
2853     // Allocate new sliced string.  At this point we do not reload the instance
2854     // type including the string encoding because we simply rely on the info
2855     // provided by the original string.  It does not matter if the original
2856     // string's encoding is wrong because we always have to recheck encoding of
2857     // the newly created string's parent anyways due to externalized strings.
2858     Label two_byte_slice, set_slice_header;
2859     STATIC_ASSERT((kStringEncodingMask & kOneByteStringTag) != 0);
2860     STATIC_ASSERT((kStringEncodingMask & kTwoByteStringTag) == 0);
2861     __ testb(rbx, Immediate(kStringEncodingMask));
2862     __ j(zero, &two_byte_slice, Label::kNear);
2863     __ AllocateOneByteSlicedString(rax, rbx, r14, &runtime);
2864     __ jmp(&set_slice_header, Label::kNear);
2865     __ bind(&two_byte_slice);
2866     __ AllocateTwoByteSlicedString(rax, rbx, r14, &runtime);
2867     __ bind(&set_slice_header);
2868     __ Integer32ToSmi(rcx, rcx);
2869     __ movp(FieldOperand(rax, SlicedString::kLengthOffset), rcx);
2870     __ movp(FieldOperand(rax, SlicedString::kHashFieldOffset),
2871            Immediate(String::kEmptyHashField));
2872     __ movp(FieldOperand(rax, SlicedString::kParentOffset), rdi);
2873     __ movp(FieldOperand(rax, SlicedString::kOffsetOffset), rdx);
2874     __ IncrementCounter(counters->sub_string_native(), 1);
2875     __ ret(3 * kPointerSize);
2876 
2877     __ bind(&copy_routine);
2878   }
2879 
2880   // rdi: underlying subject string
2881   // rbx: instance type of underlying subject string
2882   // rdx: adjusted start index (smi)
2883   // rcx: length
2884   // The subject string can only be external or sequential string of either
2885   // encoding at this point.
2886   Label two_byte_sequential, sequential_string;
2887   STATIC_ASSERT(kExternalStringTag != 0);
2888   STATIC_ASSERT(kSeqStringTag == 0);
2889   __ testb(rbx, Immediate(kExternalStringTag));
2890   __ j(zero, &sequential_string);
2891 
2892   // Handle external string.
2893   // Rule out short external strings.
2894   STATIC_ASSERT(kShortExternalStringTag != 0);
2895   __ testb(rbx, Immediate(kShortExternalStringMask));
2896   __ j(not_zero, &runtime);
2897   __ movp(rdi, FieldOperand(rdi, ExternalString::kResourceDataOffset));
2898   // Move the pointer so that offset-wise, it looks like a sequential string.
2899   STATIC_ASSERT(SeqTwoByteString::kHeaderSize == SeqOneByteString::kHeaderSize);
2900   __ subp(rdi, Immediate(SeqTwoByteString::kHeaderSize - kHeapObjectTag));
2901 
2902   __ bind(&sequential_string);
2903   STATIC_ASSERT((kOneByteStringTag & kStringEncodingMask) != 0);
2904   __ testb(rbx, Immediate(kStringEncodingMask));
2905   __ j(zero, &two_byte_sequential);
2906 
2907   // Allocate the result.
2908   __ AllocateOneByteString(rax, rcx, r11, r14, r15, &runtime);
2909 
2910   // rax: result string
2911   // rcx: result string length
2912   {  // Locate character of sub string start.
2913     SmiIndex smi_as_index = masm->SmiToIndex(rdx, rdx, times_1);
2914     __ leap(r14, Operand(rdi, smi_as_index.reg, smi_as_index.scale,
2915                         SeqOneByteString::kHeaderSize - kHeapObjectTag));
2916   }
2917   // Locate first character of result.
2918   __ leap(rdi, FieldOperand(rax, SeqOneByteString::kHeaderSize));
2919 
2920   // rax: result string
2921   // rcx: result length
2922   // r14: first character of result
2923   // rsi: character of sub string start
2924   StringHelper::GenerateCopyCharacters(
2925       masm, rdi, r14, rcx, String::ONE_BYTE_ENCODING);
2926   __ IncrementCounter(counters->sub_string_native(), 1);
2927   __ ret(SUB_STRING_ARGUMENT_COUNT * kPointerSize);
2928 
2929   __ bind(&two_byte_sequential);
2930   // Allocate the result.
2931   __ AllocateTwoByteString(rax, rcx, r11, r14, r15, &runtime);
2932 
2933   // rax: result string
2934   // rcx: result string length
2935   {  // Locate character of sub string start.
2936     SmiIndex smi_as_index = masm->SmiToIndex(rdx, rdx, times_2);
2937     __ leap(r14, Operand(rdi, smi_as_index.reg, smi_as_index.scale,
2938                         SeqOneByteString::kHeaderSize - kHeapObjectTag));
2939   }
2940   // Locate first character of result.
2941   __ leap(rdi, FieldOperand(rax, SeqTwoByteString::kHeaderSize));
2942 
2943   // rax: result string
2944   // rcx: result length
2945   // rdi: first character of result
2946   // r14: character of sub string start
2947   StringHelper::GenerateCopyCharacters(
2948       masm, rdi, r14, rcx, String::TWO_BYTE_ENCODING);
2949   __ IncrementCounter(counters->sub_string_native(), 1);
2950   __ ret(SUB_STRING_ARGUMENT_COUNT * kPointerSize);
2951 
2952   // Just jump to runtime to create the sub string.
2953   __ bind(&runtime);
2954   __ TailCallRuntime(Runtime::kSubString);
2955 
2956   __ bind(&single_char);
2957   // rax: string
2958   // rbx: instance type
2959   // rcx: sub string length (smi)
2960   // rdx: from index (smi)
2961   StringCharAtGenerator generator(rax, rdx, rcx, rax, &runtime, &runtime,
2962                                   &runtime, STRING_INDEX_IS_NUMBER,
2963                                   RECEIVER_IS_STRING);
2964   generator.GenerateFast(masm);
2965   __ ret(SUB_STRING_ARGUMENT_COUNT * kPointerSize);
2966   generator.SkipSlow(masm, &runtime);
2967 }
2968 
2969 
Generate(MacroAssembler * masm)2970 void ToNumberStub::Generate(MacroAssembler* masm) {
2971   // The ToNumber stub takes one argument in rax.
2972   Label not_smi;
2973   __ JumpIfNotSmi(rax, &not_smi, Label::kNear);
2974   __ Ret();
2975   __ bind(&not_smi);
2976 
2977   Label not_heap_number;
2978   __ CompareRoot(FieldOperand(rax, HeapObject::kMapOffset),
2979                  Heap::kHeapNumberMapRootIndex);
2980   __ j(not_equal, &not_heap_number, Label::kNear);
2981   __ Ret();
2982   __ bind(&not_heap_number);
2983 
2984   Label not_string, slow_string;
2985   __ CmpObjectType(rax, FIRST_NONSTRING_TYPE, rdi);
2986   // rax: object
2987   // rdi: object map
2988   __ j(above_equal, &not_string, Label::kNear);
2989   // Check if string has a cached array index.
2990   __ testl(FieldOperand(rax, String::kHashFieldOffset),
2991            Immediate(String::kContainsCachedArrayIndexMask));
2992   __ j(not_zero, &slow_string, Label::kNear);
2993   __ movl(rax, FieldOperand(rax, String::kHashFieldOffset));
2994   __ IndexFromHash(rax, rax);
2995   __ Ret();
2996   __ bind(&slow_string);
2997   __ PopReturnAddressTo(rcx);     // Pop return address.
2998   __ Push(rax);                   // Push argument.
2999   __ PushReturnAddressFrom(rcx);  // Push return address.
3000   __ TailCallRuntime(Runtime::kStringToNumber);
3001   __ bind(&not_string);
3002 
3003   Label not_oddball;
3004   __ CmpInstanceType(rdi, ODDBALL_TYPE);
3005   __ j(not_equal, &not_oddball, Label::kNear);
3006   __ movp(rax, FieldOperand(rax, Oddball::kToNumberOffset));
3007   __ Ret();
3008   __ bind(&not_oddball);
3009 
3010   __ PopReturnAddressTo(rcx);     // Pop return address.
3011   __ Push(rax);                   // Push argument.
3012   __ PushReturnAddressFrom(rcx);  // Push return address.
3013   __ TailCallRuntime(Runtime::kToNumber);
3014 }
3015 
3016 
Generate(MacroAssembler * masm)3017 void ToLengthStub::Generate(MacroAssembler* masm) {
3018   // The ToLength stub takes on argument in rax.
3019   Label not_smi, positive_smi;
3020   __ JumpIfNotSmi(rax, &not_smi, Label::kNear);
3021   STATIC_ASSERT(kSmiTag == 0);
3022   __ testp(rax, rax);
3023   __ j(greater_equal, &positive_smi, Label::kNear);
3024   __ xorl(rax, rax);
3025   __ bind(&positive_smi);
3026   __ Ret();
3027   __ bind(&not_smi);
3028 
3029   __ PopReturnAddressTo(rcx);     // Pop return address.
3030   __ Push(rax);                   // Push argument.
3031   __ PushReturnAddressFrom(rcx);  // Push return address.
3032   __ TailCallRuntime(Runtime::kToLength);
3033 }
3034 
3035 
Generate(MacroAssembler * masm)3036 void ToStringStub::Generate(MacroAssembler* masm) {
3037   // The ToString stub takes one argument in rax.
3038   Label is_number;
3039   __ JumpIfSmi(rax, &is_number, Label::kNear);
3040 
3041   Label not_string;
3042   __ CmpObjectType(rax, FIRST_NONSTRING_TYPE, rdi);
3043   // rax: receiver
3044   // rdi: receiver map
3045   __ j(above_equal, &not_string, Label::kNear);
3046   __ Ret();
3047   __ bind(&not_string);
3048 
3049   Label not_heap_number;
3050   __ CompareRoot(rdi, Heap::kHeapNumberMapRootIndex);
3051   __ j(not_equal, &not_heap_number, Label::kNear);
3052   __ bind(&is_number);
3053   NumberToStringStub stub(isolate());
3054   __ TailCallStub(&stub);
3055   __ bind(&not_heap_number);
3056 
3057   Label not_oddball;
3058   __ CmpInstanceType(rdi, ODDBALL_TYPE);
3059   __ j(not_equal, &not_oddball, Label::kNear);
3060   __ movp(rax, FieldOperand(rax, Oddball::kToStringOffset));
3061   __ Ret();
3062   __ bind(&not_oddball);
3063 
3064   __ PopReturnAddressTo(rcx);     // Pop return address.
3065   __ Push(rax);                   // Push argument.
3066   __ PushReturnAddressFrom(rcx);  // Push return address.
3067   __ TailCallRuntime(Runtime::kToString);
3068 }
3069 
3070 
GenerateFlatOneByteStringEquals(MacroAssembler * masm,Register left,Register right,Register scratch1,Register scratch2)3071 void StringHelper::GenerateFlatOneByteStringEquals(MacroAssembler* masm,
3072                                                    Register left,
3073                                                    Register right,
3074                                                    Register scratch1,
3075                                                    Register scratch2) {
3076   Register length = scratch1;
3077 
3078   // Compare lengths.
3079   Label check_zero_length;
3080   __ movp(length, FieldOperand(left, String::kLengthOffset));
3081   __ SmiCompare(length, FieldOperand(right, String::kLengthOffset));
3082   __ j(equal, &check_zero_length, Label::kNear);
3083   __ Move(rax, Smi::FromInt(NOT_EQUAL));
3084   __ ret(0);
3085 
3086   // Check if the length is zero.
3087   Label compare_chars;
3088   __ bind(&check_zero_length);
3089   STATIC_ASSERT(kSmiTag == 0);
3090   __ SmiTest(length);
3091   __ j(not_zero, &compare_chars, Label::kNear);
3092   __ Move(rax, Smi::FromInt(EQUAL));
3093   __ ret(0);
3094 
3095   // Compare characters.
3096   __ bind(&compare_chars);
3097   Label strings_not_equal;
3098   GenerateOneByteCharsCompareLoop(masm, left, right, length, scratch2,
3099                                   &strings_not_equal, Label::kNear);
3100 
3101   // Characters are equal.
3102   __ Move(rax, Smi::FromInt(EQUAL));
3103   __ ret(0);
3104 
3105   // Characters are not equal.
3106   __ bind(&strings_not_equal);
3107   __ Move(rax, Smi::FromInt(NOT_EQUAL));
3108   __ ret(0);
3109 }
3110 
3111 
GenerateCompareFlatOneByteStrings(MacroAssembler * masm,Register left,Register right,Register scratch1,Register scratch2,Register scratch3,Register scratch4)3112 void StringHelper::GenerateCompareFlatOneByteStrings(
3113     MacroAssembler* masm, Register left, Register right, Register scratch1,
3114     Register scratch2, Register scratch3, Register scratch4) {
3115   // Ensure that you can always subtract a string length from a non-negative
3116   // number (e.g. another length).
3117   STATIC_ASSERT(String::kMaxLength < 0x7fffffff);
3118 
3119   // Find minimum length and length difference.
3120   __ movp(scratch1, FieldOperand(left, String::kLengthOffset));
3121   __ movp(scratch4, scratch1);
3122   __ SmiSub(scratch4,
3123             scratch4,
3124             FieldOperand(right, String::kLengthOffset));
3125   // Register scratch4 now holds left.length - right.length.
3126   const Register length_difference = scratch4;
3127   Label left_shorter;
3128   __ j(less, &left_shorter, Label::kNear);
3129   // The right string isn't longer that the left one.
3130   // Get the right string's length by subtracting the (non-negative) difference
3131   // from the left string's length.
3132   __ SmiSub(scratch1, scratch1, length_difference);
3133   __ bind(&left_shorter);
3134   // Register scratch1 now holds Min(left.length, right.length).
3135   const Register min_length = scratch1;
3136 
3137   Label compare_lengths;
3138   // If min-length is zero, go directly to comparing lengths.
3139   __ SmiTest(min_length);
3140   __ j(zero, &compare_lengths, Label::kNear);
3141 
3142   // Compare loop.
3143   Label result_not_equal;
3144   GenerateOneByteCharsCompareLoop(
3145       masm, left, right, min_length, scratch2, &result_not_equal,
3146       // In debug-code mode, SmiTest below might push
3147       // the target label outside the near range.
3148       Label::kFar);
3149 
3150   // Completed loop without finding different characters.
3151   // Compare lengths (precomputed).
3152   __ bind(&compare_lengths);
3153   __ SmiTest(length_difference);
3154   Label length_not_equal;
3155   __ j(not_zero, &length_not_equal, Label::kNear);
3156 
3157   // Result is EQUAL.
3158   __ Move(rax, Smi::FromInt(EQUAL));
3159   __ ret(0);
3160 
3161   Label result_greater;
3162   Label result_less;
3163   __ bind(&length_not_equal);
3164   __ j(greater, &result_greater, Label::kNear);
3165   __ jmp(&result_less, Label::kNear);
3166   __ bind(&result_not_equal);
3167   // Unequal comparison of left to right, either character or length.
3168   __ j(above, &result_greater, Label::kNear);
3169   __ bind(&result_less);
3170 
3171   // Result is LESS.
3172   __ Move(rax, Smi::FromInt(LESS));
3173   __ ret(0);
3174 
3175   // Result is GREATER.
3176   __ bind(&result_greater);
3177   __ Move(rax, Smi::FromInt(GREATER));
3178   __ ret(0);
3179 }
3180 
3181 
GenerateOneByteCharsCompareLoop(MacroAssembler * masm,Register left,Register right,Register length,Register scratch,Label * chars_not_equal,Label::Distance near_jump)3182 void StringHelper::GenerateOneByteCharsCompareLoop(
3183     MacroAssembler* masm, Register left, Register right, Register length,
3184     Register scratch, Label* chars_not_equal, Label::Distance near_jump) {
3185   // Change index to run from -length to -1 by adding length to string
3186   // start. This means that loop ends when index reaches zero, which
3187   // doesn't need an additional compare.
3188   __ SmiToInteger32(length, length);
3189   __ leap(left,
3190          FieldOperand(left, length, times_1, SeqOneByteString::kHeaderSize));
3191   __ leap(right,
3192          FieldOperand(right, length, times_1, SeqOneByteString::kHeaderSize));
3193   __ negq(length);
3194   Register index = length;  // index = -length;
3195 
3196   // Compare loop.
3197   Label loop;
3198   __ bind(&loop);
3199   __ movb(scratch, Operand(left, index, times_1, 0));
3200   __ cmpb(scratch, Operand(right, index, times_1, 0));
3201   __ j(not_equal, chars_not_equal, near_jump);
3202   __ incq(index);
3203   __ j(not_zero, &loop);
3204 }
3205 
3206 
Generate(MacroAssembler * masm)3207 void StringCompareStub::Generate(MacroAssembler* masm) {
3208   // ----------- S t a t e -------------
3209   //  -- rdx    : left string
3210   //  -- rax    : right string
3211   //  -- rsp[0] : return address
3212   // -----------------------------------
3213   __ AssertString(rdx);
3214   __ AssertString(rax);
3215 
3216   // Check for identity.
3217   Label not_same;
3218   __ cmpp(rdx, rax);
3219   __ j(not_equal, &not_same, Label::kNear);
3220   __ Move(rax, Smi::FromInt(EQUAL));
3221   __ IncrementCounter(isolate()->counters()->string_compare_native(), 1);
3222   __ Ret();
3223 
3224   __ bind(&not_same);
3225 
3226   // Check that both are sequential one-byte strings.
3227   Label runtime;
3228   __ JumpIfNotBothSequentialOneByteStrings(rdx, rax, rcx, rbx, &runtime);
3229 
3230   // Inline comparison of one-byte strings.
3231   __ IncrementCounter(isolate()->counters()->string_compare_native(), 1);
3232   StringHelper::GenerateCompareFlatOneByteStrings(masm, rdx, rax, rcx, rbx, rdi,
3233                                                   r8);
3234 
3235   // Call the runtime; it returns -1 (less), 0 (equal), or 1 (greater)
3236   // tagged as a small integer.
3237   __ bind(&runtime);
3238   __ PopReturnAddressTo(rcx);
3239   __ Push(rdx);
3240   __ Push(rax);
3241   __ PushReturnAddressFrom(rcx);
3242   __ TailCallRuntime(Runtime::kStringCompare);
3243 }
3244 
3245 
Generate(MacroAssembler * masm)3246 void BinaryOpICWithAllocationSiteStub::Generate(MacroAssembler* masm) {
3247   // ----------- S t a t e -------------
3248   //  -- rdx    : left
3249   //  -- rax    : right
3250   //  -- rsp[0] : return address
3251   // -----------------------------------
3252 
3253   // Load rcx with the allocation site.  We stick an undefined dummy value here
3254   // and replace it with the real allocation site later when we instantiate this
3255   // stub in BinaryOpICWithAllocationSiteStub::GetCodeCopyFromTemplate().
3256   __ Move(rcx, handle(isolate()->heap()->undefined_value()));
3257 
3258   // Make sure that we actually patched the allocation site.
3259   if (FLAG_debug_code) {
3260     __ testb(rcx, Immediate(kSmiTagMask));
3261     __ Assert(not_equal, kExpectedAllocationSite);
3262     __ Cmp(FieldOperand(rcx, HeapObject::kMapOffset),
3263            isolate()->factory()->allocation_site_map());
3264     __ Assert(equal, kExpectedAllocationSite);
3265   }
3266 
3267   // Tail call into the stub that handles binary operations with allocation
3268   // sites.
3269   BinaryOpWithAllocationSiteStub stub(isolate(), state());
3270   __ TailCallStub(&stub);
3271 }
3272 
3273 
GenerateBooleans(MacroAssembler * masm)3274 void CompareICStub::GenerateBooleans(MacroAssembler* masm) {
3275   DCHECK_EQ(CompareICState::BOOLEAN, state());
3276   Label miss;
3277   Label::Distance const miss_distance =
3278       masm->emit_debug_code() ? Label::kFar : Label::kNear;
3279 
3280   __ JumpIfSmi(rdx, &miss, miss_distance);
3281   __ movp(rcx, FieldOperand(rdx, HeapObject::kMapOffset));
3282   __ JumpIfSmi(rax, &miss, miss_distance);
3283   __ movp(rbx, FieldOperand(rax, HeapObject::kMapOffset));
3284   __ JumpIfNotRoot(rcx, Heap::kBooleanMapRootIndex, &miss, miss_distance);
3285   __ JumpIfNotRoot(rbx, Heap::kBooleanMapRootIndex, &miss, miss_distance);
3286   if (op() != Token::EQ_STRICT && is_strong(strength())) {
3287     __ TailCallRuntime(Runtime::kThrowStrongModeImplicitConversion);
3288   } else {
3289     if (!Token::IsEqualityOp(op())) {
3290       __ movp(rax, FieldOperand(rax, Oddball::kToNumberOffset));
3291       __ AssertSmi(rax);
3292       __ movp(rdx, FieldOperand(rdx, Oddball::kToNumberOffset));
3293       __ AssertSmi(rdx);
3294       __ pushq(rax);
3295       __ movq(rax, rdx);
3296       __ popq(rdx);
3297     }
3298     __ subp(rax, rdx);
3299     __ Ret();
3300   }
3301 
3302   __ bind(&miss);
3303   GenerateMiss(masm);
3304 }
3305 
3306 
GenerateSmis(MacroAssembler * masm)3307 void CompareICStub::GenerateSmis(MacroAssembler* masm) {
3308   DCHECK(state() == CompareICState::SMI);
3309   Label miss;
3310   __ JumpIfNotBothSmi(rdx, rax, &miss, Label::kNear);
3311 
3312   if (GetCondition() == equal) {
3313     // For equality we do not care about the sign of the result.
3314     __ subp(rax, rdx);
3315   } else {
3316     Label done;
3317     __ subp(rdx, rax);
3318     __ j(no_overflow, &done, Label::kNear);
3319     // Correct sign of result in case of overflow.
3320     __ notp(rdx);
3321     __ bind(&done);
3322     __ movp(rax, rdx);
3323   }
3324   __ ret(0);
3325 
3326   __ bind(&miss);
3327   GenerateMiss(masm);
3328 }
3329 
3330 
GenerateNumbers(MacroAssembler * masm)3331 void CompareICStub::GenerateNumbers(MacroAssembler* masm) {
3332   DCHECK(state() == CompareICState::NUMBER);
3333 
3334   Label generic_stub;
3335   Label unordered, maybe_undefined1, maybe_undefined2;
3336   Label miss;
3337 
3338   if (left() == CompareICState::SMI) {
3339     __ JumpIfNotSmi(rdx, &miss);
3340   }
3341   if (right() == CompareICState::SMI) {
3342     __ JumpIfNotSmi(rax, &miss);
3343   }
3344 
3345   // Load left and right operand.
3346   Label done, left, left_smi, right_smi;
3347   __ JumpIfSmi(rax, &right_smi, Label::kNear);
3348   __ CompareMap(rax, isolate()->factory()->heap_number_map());
3349   __ j(not_equal, &maybe_undefined1, Label::kNear);
3350   __ Movsd(xmm1, FieldOperand(rax, HeapNumber::kValueOffset));
3351   __ jmp(&left, Label::kNear);
3352   __ bind(&right_smi);
3353   __ SmiToInteger32(rcx, rax);  // Can't clobber rax yet.
3354   __ Cvtlsi2sd(xmm1, rcx);
3355 
3356   __ bind(&left);
3357   __ JumpIfSmi(rdx, &left_smi, Label::kNear);
3358   __ CompareMap(rdx, isolate()->factory()->heap_number_map());
3359   __ j(not_equal, &maybe_undefined2, Label::kNear);
3360   __ Movsd(xmm0, FieldOperand(rdx, HeapNumber::kValueOffset));
3361   __ jmp(&done);
3362   __ bind(&left_smi);
3363   __ SmiToInteger32(rcx, rdx);  // Can't clobber rdx yet.
3364   __ Cvtlsi2sd(xmm0, rcx);
3365 
3366   __ bind(&done);
3367   // Compare operands
3368   __ Ucomisd(xmm0, xmm1);
3369 
3370   // Don't base result on EFLAGS when a NaN is involved.
3371   __ j(parity_even, &unordered, Label::kNear);
3372 
3373   // Return a result of -1, 0, or 1, based on EFLAGS.
3374   // Performing mov, because xor would destroy the flag register.
3375   __ movl(rax, Immediate(0));
3376   __ movl(rcx, Immediate(0));
3377   __ setcc(above, rax);  // Add one to zero if carry clear and not equal.
3378   __ sbbp(rax, rcx);  // Subtract one if below (aka. carry set).
3379   __ ret(0);
3380 
3381   __ bind(&unordered);
3382   __ bind(&generic_stub);
3383   CompareICStub stub(isolate(), op(), strength(), CompareICState::GENERIC,
3384                      CompareICState::GENERIC, CompareICState::GENERIC);
3385   __ jmp(stub.GetCode(), RelocInfo::CODE_TARGET);
3386 
3387   __ bind(&maybe_undefined1);
3388   if (Token::IsOrderedRelationalCompareOp(op())) {
3389     __ Cmp(rax, isolate()->factory()->undefined_value());
3390     __ j(not_equal, &miss);
3391     __ JumpIfSmi(rdx, &unordered);
3392     __ CmpObjectType(rdx, HEAP_NUMBER_TYPE, rcx);
3393     __ j(not_equal, &maybe_undefined2, Label::kNear);
3394     __ jmp(&unordered);
3395   }
3396 
3397   __ bind(&maybe_undefined2);
3398   if (Token::IsOrderedRelationalCompareOp(op())) {
3399     __ Cmp(rdx, isolate()->factory()->undefined_value());
3400     __ j(equal, &unordered);
3401   }
3402 
3403   __ bind(&miss);
3404   GenerateMiss(masm);
3405 }
3406 
3407 
GenerateInternalizedStrings(MacroAssembler * masm)3408 void CompareICStub::GenerateInternalizedStrings(MacroAssembler* masm) {
3409   DCHECK(state() == CompareICState::INTERNALIZED_STRING);
3410   DCHECK(GetCondition() == equal);
3411 
3412   // Registers containing left and right operands respectively.
3413   Register left = rdx;
3414   Register right = rax;
3415   Register tmp1 = rcx;
3416   Register tmp2 = rbx;
3417 
3418   // Check that both operands are heap objects.
3419   Label miss;
3420   Condition cond = masm->CheckEitherSmi(left, right, tmp1);
3421   __ j(cond, &miss, Label::kNear);
3422 
3423   // Check that both operands are internalized strings.
3424   __ movp(tmp1, FieldOperand(left, HeapObject::kMapOffset));
3425   __ movp(tmp2, FieldOperand(right, HeapObject::kMapOffset));
3426   __ movzxbp(tmp1, FieldOperand(tmp1, Map::kInstanceTypeOffset));
3427   __ movzxbp(tmp2, FieldOperand(tmp2, Map::kInstanceTypeOffset));
3428   STATIC_ASSERT(kInternalizedTag == 0 && kStringTag == 0);
3429   __ orp(tmp1, tmp2);
3430   __ testb(tmp1, Immediate(kIsNotStringMask | kIsNotInternalizedMask));
3431   __ j(not_zero, &miss, Label::kNear);
3432 
3433   // Internalized strings are compared by identity.
3434   Label done;
3435   __ cmpp(left, right);
3436   // Make sure rax is non-zero. At this point input operands are
3437   // guaranteed to be non-zero.
3438   DCHECK(right.is(rax));
3439   __ j(not_equal, &done, Label::kNear);
3440   STATIC_ASSERT(EQUAL == 0);
3441   STATIC_ASSERT(kSmiTag == 0);
3442   __ Move(rax, Smi::FromInt(EQUAL));
3443   __ bind(&done);
3444   __ ret(0);
3445 
3446   __ bind(&miss);
3447   GenerateMiss(masm);
3448 }
3449 
3450 
GenerateUniqueNames(MacroAssembler * masm)3451 void CompareICStub::GenerateUniqueNames(MacroAssembler* masm) {
3452   DCHECK(state() == CompareICState::UNIQUE_NAME);
3453   DCHECK(GetCondition() == equal);
3454 
3455   // Registers containing left and right operands respectively.
3456   Register left = rdx;
3457   Register right = rax;
3458   Register tmp1 = rcx;
3459   Register tmp2 = rbx;
3460 
3461   // Check that both operands are heap objects.
3462   Label miss;
3463   Condition cond = masm->CheckEitherSmi(left, right, tmp1);
3464   __ j(cond, &miss, Label::kNear);
3465 
3466   // Check that both operands are unique names. This leaves the instance
3467   // types loaded in tmp1 and tmp2.
3468   __ movp(tmp1, FieldOperand(left, HeapObject::kMapOffset));
3469   __ movp(tmp2, FieldOperand(right, HeapObject::kMapOffset));
3470   __ movzxbp(tmp1, FieldOperand(tmp1, Map::kInstanceTypeOffset));
3471   __ movzxbp(tmp2, FieldOperand(tmp2, Map::kInstanceTypeOffset));
3472 
3473   __ JumpIfNotUniqueNameInstanceType(tmp1, &miss, Label::kNear);
3474   __ JumpIfNotUniqueNameInstanceType(tmp2, &miss, Label::kNear);
3475 
3476   // Unique names are compared by identity.
3477   Label done;
3478   __ cmpp(left, right);
3479   // Make sure rax is non-zero. At this point input operands are
3480   // guaranteed to be non-zero.
3481   DCHECK(right.is(rax));
3482   __ j(not_equal, &done, Label::kNear);
3483   STATIC_ASSERT(EQUAL == 0);
3484   STATIC_ASSERT(kSmiTag == 0);
3485   __ Move(rax, Smi::FromInt(EQUAL));
3486   __ bind(&done);
3487   __ ret(0);
3488 
3489   __ bind(&miss);
3490   GenerateMiss(masm);
3491 }
3492 
3493 
GenerateStrings(MacroAssembler * masm)3494 void CompareICStub::GenerateStrings(MacroAssembler* masm) {
3495   DCHECK(state() == CompareICState::STRING);
3496   Label miss;
3497 
3498   bool equality = Token::IsEqualityOp(op());
3499 
3500   // Registers containing left and right operands respectively.
3501   Register left = rdx;
3502   Register right = rax;
3503   Register tmp1 = rcx;
3504   Register tmp2 = rbx;
3505   Register tmp3 = rdi;
3506 
3507   // Check that both operands are heap objects.
3508   Condition cond = masm->CheckEitherSmi(left, right, tmp1);
3509   __ j(cond, &miss);
3510 
3511   // Check that both operands are strings. This leaves the instance
3512   // types loaded in tmp1 and tmp2.
3513   __ movp(tmp1, FieldOperand(left, HeapObject::kMapOffset));
3514   __ movp(tmp2, FieldOperand(right, HeapObject::kMapOffset));
3515   __ movzxbp(tmp1, FieldOperand(tmp1, Map::kInstanceTypeOffset));
3516   __ movzxbp(tmp2, FieldOperand(tmp2, Map::kInstanceTypeOffset));
3517   __ movp(tmp3, tmp1);
3518   STATIC_ASSERT(kNotStringTag != 0);
3519   __ orp(tmp3, tmp2);
3520   __ testb(tmp3, Immediate(kIsNotStringMask));
3521   __ j(not_zero, &miss);
3522 
3523   // Fast check for identical strings.
3524   Label not_same;
3525   __ cmpp(left, right);
3526   __ j(not_equal, &not_same, Label::kNear);
3527   STATIC_ASSERT(EQUAL == 0);
3528   STATIC_ASSERT(kSmiTag == 0);
3529   __ Move(rax, Smi::FromInt(EQUAL));
3530   __ ret(0);
3531 
3532   // Handle not identical strings.
3533   __ bind(&not_same);
3534 
3535   // Check that both strings are internalized strings. If they are, we're done
3536   // because we already know they are not identical. We also know they are both
3537   // strings.
3538   if (equality) {
3539     Label do_compare;
3540     STATIC_ASSERT(kInternalizedTag == 0);
3541     __ orp(tmp1, tmp2);
3542     __ testb(tmp1, Immediate(kIsNotInternalizedMask));
3543     __ j(not_zero, &do_compare, Label::kNear);
3544     // Make sure rax is non-zero. At this point input operands are
3545     // guaranteed to be non-zero.
3546     DCHECK(right.is(rax));
3547     __ ret(0);
3548     __ bind(&do_compare);
3549   }
3550 
3551   // Check that both strings are sequential one-byte.
3552   Label runtime;
3553   __ JumpIfNotBothSequentialOneByteStrings(left, right, tmp1, tmp2, &runtime);
3554 
3555   // Compare flat one-byte strings. Returns when done.
3556   if (equality) {
3557     StringHelper::GenerateFlatOneByteStringEquals(masm, left, right, tmp1,
3558                                                   tmp2);
3559   } else {
3560     StringHelper::GenerateCompareFlatOneByteStrings(
3561         masm, left, right, tmp1, tmp2, tmp3, kScratchRegister);
3562   }
3563 
3564   // Handle more complex cases in runtime.
3565   __ bind(&runtime);
3566   __ PopReturnAddressTo(tmp1);
3567   __ Push(left);
3568   __ Push(right);
3569   __ PushReturnAddressFrom(tmp1);
3570   if (equality) {
3571     __ TailCallRuntime(Runtime::kStringEquals);
3572   } else {
3573     __ TailCallRuntime(Runtime::kStringCompare);
3574   }
3575 
3576   __ bind(&miss);
3577   GenerateMiss(masm);
3578 }
3579 
3580 
GenerateReceivers(MacroAssembler * masm)3581 void CompareICStub::GenerateReceivers(MacroAssembler* masm) {
3582   DCHECK_EQ(CompareICState::RECEIVER, state());
3583   Label miss;
3584   Condition either_smi = masm->CheckEitherSmi(rdx, rax);
3585   __ j(either_smi, &miss, Label::kNear);
3586 
3587   STATIC_ASSERT(LAST_TYPE == LAST_JS_RECEIVER_TYPE);
3588   __ CmpObjectType(rax, FIRST_JS_RECEIVER_TYPE, rcx);
3589   __ j(below, &miss, Label::kNear);
3590   __ CmpObjectType(rdx, FIRST_JS_RECEIVER_TYPE, rcx);
3591   __ j(below, &miss, Label::kNear);
3592 
3593   DCHECK_EQ(equal, GetCondition());
3594   __ subp(rax, rdx);
3595   __ ret(0);
3596 
3597   __ bind(&miss);
3598   GenerateMiss(masm);
3599 }
3600 
3601 
GenerateKnownReceivers(MacroAssembler * masm)3602 void CompareICStub::GenerateKnownReceivers(MacroAssembler* masm) {
3603   Label miss;
3604   Handle<WeakCell> cell = Map::WeakCellForMap(known_map_);
3605   Condition either_smi = masm->CheckEitherSmi(rdx, rax);
3606   __ j(either_smi, &miss, Label::kNear);
3607 
3608   __ GetWeakValue(rdi, cell);
3609   __ cmpp(FieldOperand(rdx, HeapObject::kMapOffset), rdi);
3610   __ j(not_equal, &miss, Label::kNear);
3611   __ cmpp(FieldOperand(rax, HeapObject::kMapOffset), rdi);
3612   __ j(not_equal, &miss, Label::kNear);
3613 
3614   if (Token::IsEqualityOp(op())) {
3615     __ subp(rax, rdx);
3616     __ ret(0);
3617   } else if (is_strong(strength())) {
3618     __ TailCallRuntime(Runtime::kThrowStrongModeImplicitConversion);
3619   } else {
3620     __ PopReturnAddressTo(rcx);
3621     __ Push(rdx);
3622     __ Push(rax);
3623     __ Push(Smi::FromInt(NegativeComparisonResult(GetCondition())));
3624     __ PushReturnAddressFrom(rcx);
3625     __ TailCallRuntime(Runtime::kCompare);
3626   }
3627 
3628   __ bind(&miss);
3629   GenerateMiss(masm);
3630 }
3631 
3632 
GenerateMiss(MacroAssembler * masm)3633 void CompareICStub::GenerateMiss(MacroAssembler* masm) {
3634   {
3635     // Call the runtime system in a fresh internal frame.
3636     FrameScope scope(masm, StackFrame::INTERNAL);
3637     __ Push(rdx);
3638     __ Push(rax);
3639     __ Push(rdx);
3640     __ Push(rax);
3641     __ Push(Smi::FromInt(op()));
3642     __ CallRuntime(Runtime::kCompareIC_Miss);
3643 
3644     // Compute the entry point of the rewritten stub.
3645     __ leap(rdi, FieldOperand(rax, Code::kHeaderSize));
3646     __ Pop(rax);
3647     __ Pop(rdx);
3648   }
3649 
3650   // Do a tail call to the rewritten stub.
3651   __ jmp(rdi);
3652 }
3653 
3654 
GenerateNegativeLookup(MacroAssembler * masm,Label * miss,Label * done,Register properties,Handle<Name> name,Register r0)3655 void NameDictionaryLookupStub::GenerateNegativeLookup(MacroAssembler* masm,
3656                                                       Label* miss,
3657                                                       Label* done,
3658                                                       Register properties,
3659                                                       Handle<Name> name,
3660                                                       Register r0) {
3661   DCHECK(name->IsUniqueName());
3662   // If names of slots in range from 1 to kProbes - 1 for the hash value are
3663   // not equal to the name and kProbes-th slot is not used (its name is the
3664   // undefined value), it guarantees the hash table doesn't contain the
3665   // property. It's true even if some slots represent deleted properties
3666   // (their names are the hole value).
3667   for (int i = 0; i < kInlinedProbes; i++) {
3668     // r0 points to properties hash.
3669     // Compute the masked index: (hash + i + i * i) & mask.
3670     Register index = r0;
3671     // Capacity is smi 2^n.
3672     __ SmiToInteger32(index, FieldOperand(properties, kCapacityOffset));
3673     __ decl(index);
3674     __ andp(index,
3675             Immediate(name->Hash() + NameDictionary::GetProbeOffset(i)));
3676 
3677     // Scale the index by multiplying by the entry size.
3678     STATIC_ASSERT(NameDictionary::kEntrySize == 3);
3679     __ leap(index, Operand(index, index, times_2, 0));  // index *= 3.
3680 
3681     Register entity_name = r0;
3682     // Having undefined at this place means the name is not contained.
3683     STATIC_ASSERT(kSmiTagSize == 1);
3684     __ movp(entity_name, Operand(properties,
3685                                  index,
3686                                  times_pointer_size,
3687                                  kElementsStartOffset - kHeapObjectTag));
3688     __ Cmp(entity_name, masm->isolate()->factory()->undefined_value());
3689     __ j(equal, done);
3690 
3691     // Stop if found the property.
3692     __ Cmp(entity_name, Handle<Name>(name));
3693     __ j(equal, miss);
3694 
3695     Label good;
3696     // Check for the hole and skip.
3697     __ CompareRoot(entity_name, Heap::kTheHoleValueRootIndex);
3698     __ j(equal, &good, Label::kNear);
3699 
3700     // Check if the entry name is not a unique name.
3701     __ movp(entity_name, FieldOperand(entity_name, HeapObject::kMapOffset));
3702     __ JumpIfNotUniqueNameInstanceType(
3703         FieldOperand(entity_name, Map::kInstanceTypeOffset), miss);
3704     __ bind(&good);
3705   }
3706 
3707   NameDictionaryLookupStub stub(masm->isolate(), properties, r0, r0,
3708                                 NEGATIVE_LOOKUP);
3709   __ Push(Handle<Object>(name));
3710   __ Push(Immediate(name->Hash()));
3711   __ CallStub(&stub);
3712   __ testp(r0, r0);
3713   __ j(not_zero, miss);
3714   __ jmp(done);
3715 }
3716 
3717 
3718 // Probe the name dictionary in the |elements| register. Jump to the
3719 // |done| label if a property with the given name is found leaving the
3720 // index into the dictionary in |r1|. Jump to the |miss| label
3721 // otherwise.
GeneratePositiveLookup(MacroAssembler * masm,Label * miss,Label * done,Register elements,Register name,Register r0,Register r1)3722 void NameDictionaryLookupStub::GeneratePositiveLookup(MacroAssembler* masm,
3723                                                       Label* miss,
3724                                                       Label* done,
3725                                                       Register elements,
3726                                                       Register name,
3727                                                       Register r0,
3728                                                       Register r1) {
3729   DCHECK(!elements.is(r0));
3730   DCHECK(!elements.is(r1));
3731   DCHECK(!name.is(r0));
3732   DCHECK(!name.is(r1));
3733 
3734   __ AssertName(name);
3735 
3736   __ SmiToInteger32(r0, FieldOperand(elements, kCapacityOffset));
3737   __ decl(r0);
3738 
3739   for (int i = 0; i < kInlinedProbes; i++) {
3740     // Compute the masked index: (hash + i + i * i) & mask.
3741     __ movl(r1, FieldOperand(name, Name::kHashFieldOffset));
3742     __ shrl(r1, Immediate(Name::kHashShift));
3743     if (i > 0) {
3744       __ addl(r1, Immediate(NameDictionary::GetProbeOffset(i)));
3745     }
3746     __ andp(r1, r0);
3747 
3748     // Scale the index by multiplying by the entry size.
3749     STATIC_ASSERT(NameDictionary::kEntrySize == 3);
3750     __ leap(r1, Operand(r1, r1, times_2, 0));  // r1 = r1 * 3
3751 
3752     // Check if the key is identical to the name.
3753     __ cmpp(name, Operand(elements, r1, times_pointer_size,
3754                           kElementsStartOffset - kHeapObjectTag));
3755     __ j(equal, done);
3756   }
3757 
3758   NameDictionaryLookupStub stub(masm->isolate(), elements, r0, r1,
3759                                 POSITIVE_LOOKUP);
3760   __ Push(name);
3761   __ movl(r0, FieldOperand(name, Name::kHashFieldOffset));
3762   __ shrl(r0, Immediate(Name::kHashShift));
3763   __ Push(r0);
3764   __ CallStub(&stub);
3765 
3766   __ testp(r0, r0);
3767   __ j(zero, miss);
3768   __ jmp(done);
3769 }
3770 
3771 
Generate(MacroAssembler * masm)3772 void NameDictionaryLookupStub::Generate(MacroAssembler* masm) {
3773   // This stub overrides SometimesSetsUpAFrame() to return false.  That means
3774   // we cannot call anything that could cause a GC from this stub.
3775   // Stack frame on entry:
3776   //  rsp[0 * kPointerSize] : return address.
3777   //  rsp[1 * kPointerSize] : key's hash.
3778   //  rsp[2 * kPointerSize] : key.
3779   // Registers:
3780   //  dictionary_: NameDictionary to probe.
3781   //  result_: used as scratch.
3782   //  index_: will hold an index of entry if lookup is successful.
3783   //          might alias with result_.
3784   // Returns:
3785   //  result_ is zero if lookup failed, non zero otherwise.
3786 
3787   Label in_dictionary, maybe_in_dictionary, not_in_dictionary;
3788 
3789   Register scratch = result();
3790 
3791   __ SmiToInteger32(scratch, FieldOperand(dictionary(), kCapacityOffset));
3792   __ decl(scratch);
3793   __ Push(scratch);
3794 
3795   // If names of slots in range from 1 to kProbes - 1 for the hash value are
3796   // not equal to the name and kProbes-th slot is not used (its name is the
3797   // undefined value), it guarantees the hash table doesn't contain the
3798   // property. It's true even if some slots represent deleted properties
3799   // (their names are the null value).
3800   StackArgumentsAccessor args(rsp, 2, ARGUMENTS_DONT_CONTAIN_RECEIVER,
3801                               kPointerSize);
3802   for (int i = kInlinedProbes; i < kTotalProbes; i++) {
3803     // Compute the masked index: (hash + i + i * i) & mask.
3804     __ movp(scratch, args.GetArgumentOperand(1));
3805     if (i > 0) {
3806       __ addl(scratch, Immediate(NameDictionary::GetProbeOffset(i)));
3807     }
3808     __ andp(scratch, Operand(rsp, 0));
3809 
3810     // Scale the index by multiplying by the entry size.
3811     STATIC_ASSERT(NameDictionary::kEntrySize == 3);
3812     __ leap(index(), Operand(scratch, scratch, times_2, 0));  // index *= 3.
3813 
3814     // Having undefined at this place means the name is not contained.
3815     __ movp(scratch, Operand(dictionary(), index(), times_pointer_size,
3816                              kElementsStartOffset - kHeapObjectTag));
3817 
3818     __ Cmp(scratch, isolate()->factory()->undefined_value());
3819     __ j(equal, &not_in_dictionary);
3820 
3821     // Stop if found the property.
3822     __ cmpp(scratch, args.GetArgumentOperand(0));
3823     __ j(equal, &in_dictionary);
3824 
3825     if (i != kTotalProbes - 1 && mode() == NEGATIVE_LOOKUP) {
3826       // If we hit a key that is not a unique name during negative
3827       // lookup we have to bailout as this key might be equal to the
3828       // key we are looking for.
3829 
3830       // Check if the entry name is not a unique name.
3831       __ movp(scratch, FieldOperand(scratch, HeapObject::kMapOffset));
3832       __ JumpIfNotUniqueNameInstanceType(
3833           FieldOperand(scratch, Map::kInstanceTypeOffset),
3834           &maybe_in_dictionary);
3835     }
3836   }
3837 
3838   __ bind(&maybe_in_dictionary);
3839   // If we are doing negative lookup then probing failure should be
3840   // treated as a lookup success. For positive lookup probing failure
3841   // should be treated as lookup failure.
3842   if (mode() == POSITIVE_LOOKUP) {
3843     __ movp(scratch, Immediate(0));
3844     __ Drop(1);
3845     __ ret(2 * kPointerSize);
3846   }
3847 
3848   __ bind(&in_dictionary);
3849   __ movp(scratch, Immediate(1));
3850   __ Drop(1);
3851   __ ret(2 * kPointerSize);
3852 
3853   __ bind(&not_in_dictionary);
3854   __ movp(scratch, Immediate(0));
3855   __ Drop(1);
3856   __ ret(2 * kPointerSize);
3857 }
3858 
3859 
GenerateFixedRegStubsAheadOfTime(Isolate * isolate)3860 void StoreBufferOverflowStub::GenerateFixedRegStubsAheadOfTime(
3861     Isolate* isolate) {
3862   StoreBufferOverflowStub stub1(isolate, kDontSaveFPRegs);
3863   stub1.GetCode();
3864   StoreBufferOverflowStub stub2(isolate, kSaveFPRegs);
3865   stub2.GetCode();
3866 }
3867 
3868 
3869 // Takes the input in 3 registers: address_ value_ and object_.  A pointer to
3870 // the value has just been written into the object, now this stub makes sure
3871 // we keep the GC informed.  The word in the object where the value has been
3872 // written is in the address register.
Generate(MacroAssembler * masm)3873 void RecordWriteStub::Generate(MacroAssembler* masm) {
3874   Label skip_to_incremental_noncompacting;
3875   Label skip_to_incremental_compacting;
3876 
3877   // The first two instructions are generated with labels so as to get the
3878   // offset fixed up correctly by the bind(Label*) call.  We patch it back and
3879   // forth between a compare instructions (a nop in this position) and the
3880   // real branch when we start and stop incremental heap marking.
3881   // See RecordWriteStub::Patch for details.
3882   __ jmp(&skip_to_incremental_noncompacting, Label::kNear);
3883   __ jmp(&skip_to_incremental_compacting, Label::kFar);
3884 
3885   if (remembered_set_action() == EMIT_REMEMBERED_SET) {
3886     __ RememberedSetHelper(object(), address(), value(), save_fp_regs_mode(),
3887                            MacroAssembler::kReturnAtEnd);
3888   } else {
3889     __ ret(0);
3890   }
3891 
3892   __ bind(&skip_to_incremental_noncompacting);
3893   GenerateIncremental(masm, INCREMENTAL);
3894 
3895   __ bind(&skip_to_incremental_compacting);
3896   GenerateIncremental(masm, INCREMENTAL_COMPACTION);
3897 
3898   // Initial mode of the stub is expected to be STORE_BUFFER_ONLY.
3899   // Will be checked in IncrementalMarking::ActivateGeneratedStub.
3900   masm->set_byte_at(0, kTwoByteNopInstruction);
3901   masm->set_byte_at(2, kFiveByteNopInstruction);
3902 }
3903 
3904 
GenerateIncremental(MacroAssembler * masm,Mode mode)3905 void RecordWriteStub::GenerateIncremental(MacroAssembler* masm, Mode mode) {
3906   regs_.Save(masm);
3907 
3908   if (remembered_set_action() == EMIT_REMEMBERED_SET) {
3909     Label dont_need_remembered_set;
3910 
3911     __ movp(regs_.scratch0(), Operand(regs_.address(), 0));
3912     __ JumpIfNotInNewSpace(regs_.scratch0(),
3913                            regs_.scratch0(),
3914                            &dont_need_remembered_set);
3915 
3916     __ CheckPageFlag(regs_.object(),
3917                      regs_.scratch0(),
3918                      1 << MemoryChunk::SCAN_ON_SCAVENGE,
3919                      not_zero,
3920                      &dont_need_remembered_set);
3921 
3922     // First notify the incremental marker if necessary, then update the
3923     // remembered set.
3924     CheckNeedsToInformIncrementalMarker(
3925         masm, kUpdateRememberedSetOnNoNeedToInformIncrementalMarker, mode);
3926     InformIncrementalMarker(masm);
3927     regs_.Restore(masm);
3928     __ RememberedSetHelper(object(), address(), value(), save_fp_regs_mode(),
3929                            MacroAssembler::kReturnAtEnd);
3930 
3931     __ bind(&dont_need_remembered_set);
3932   }
3933 
3934   CheckNeedsToInformIncrementalMarker(
3935       masm, kReturnOnNoNeedToInformIncrementalMarker, mode);
3936   InformIncrementalMarker(masm);
3937   regs_.Restore(masm);
3938   __ ret(0);
3939 }
3940 
3941 
InformIncrementalMarker(MacroAssembler * masm)3942 void RecordWriteStub::InformIncrementalMarker(MacroAssembler* masm) {
3943   regs_.SaveCallerSaveRegisters(masm, save_fp_regs_mode());
3944   Register address =
3945       arg_reg_1.is(regs_.address()) ? kScratchRegister : regs_.address();
3946   DCHECK(!address.is(regs_.object()));
3947   DCHECK(!address.is(arg_reg_1));
3948   __ Move(address, regs_.address());
3949   __ Move(arg_reg_1, regs_.object());
3950   // TODO(gc) Can we just set address arg2 in the beginning?
3951   __ Move(arg_reg_2, address);
3952   __ LoadAddress(arg_reg_3,
3953                  ExternalReference::isolate_address(isolate()));
3954   int argument_count = 3;
3955 
3956   AllowExternalCallThatCantCauseGC scope(masm);
3957   __ PrepareCallCFunction(argument_count);
3958   __ CallCFunction(
3959       ExternalReference::incremental_marking_record_write_function(isolate()),
3960       argument_count);
3961   regs_.RestoreCallerSaveRegisters(masm, save_fp_regs_mode());
3962 }
3963 
3964 
CheckNeedsToInformIncrementalMarker(MacroAssembler * masm,OnNoNeedToInformIncrementalMarker on_no_need,Mode mode)3965 void RecordWriteStub::CheckNeedsToInformIncrementalMarker(
3966     MacroAssembler* masm,
3967     OnNoNeedToInformIncrementalMarker on_no_need,
3968     Mode mode) {
3969   Label on_black;
3970   Label need_incremental;
3971   Label need_incremental_pop_object;
3972 
3973   __ movp(regs_.scratch0(), Immediate(~Page::kPageAlignmentMask));
3974   __ andp(regs_.scratch0(), regs_.object());
3975   __ movp(regs_.scratch1(),
3976          Operand(regs_.scratch0(),
3977                  MemoryChunk::kWriteBarrierCounterOffset));
3978   __ subp(regs_.scratch1(), Immediate(1));
3979   __ movp(Operand(regs_.scratch0(),
3980                  MemoryChunk::kWriteBarrierCounterOffset),
3981          regs_.scratch1());
3982   __ j(negative, &need_incremental);
3983 
3984   // Let's look at the color of the object:  If it is not black we don't have
3985   // to inform the incremental marker.
3986   __ JumpIfBlack(regs_.object(),
3987                  regs_.scratch0(),
3988                  regs_.scratch1(),
3989                  &on_black,
3990                  Label::kNear);
3991 
3992   regs_.Restore(masm);
3993   if (on_no_need == kUpdateRememberedSetOnNoNeedToInformIncrementalMarker) {
3994     __ RememberedSetHelper(object(), address(), value(), save_fp_regs_mode(),
3995                            MacroAssembler::kReturnAtEnd);
3996   } else {
3997     __ ret(0);
3998   }
3999 
4000   __ bind(&on_black);
4001 
4002   // Get the value from the slot.
4003   __ movp(regs_.scratch0(), Operand(regs_.address(), 0));
4004 
4005   if (mode == INCREMENTAL_COMPACTION) {
4006     Label ensure_not_white;
4007 
4008     __ CheckPageFlag(regs_.scratch0(),  // Contains value.
4009                      regs_.scratch1(),  // Scratch.
4010                      MemoryChunk::kEvacuationCandidateMask,
4011                      zero,
4012                      &ensure_not_white,
4013                      Label::kNear);
4014 
4015     __ CheckPageFlag(regs_.object(),
4016                      regs_.scratch1(),  // Scratch.
4017                      MemoryChunk::kSkipEvacuationSlotsRecordingMask,
4018                      zero,
4019                      &need_incremental);
4020 
4021     __ bind(&ensure_not_white);
4022   }
4023 
4024   // We need an extra register for this, so we push the object register
4025   // temporarily.
4026   __ Push(regs_.object());
4027   __ JumpIfWhite(regs_.scratch0(),  // The value.
4028                  regs_.scratch1(),  // Scratch.
4029                  regs_.object(),    // Scratch.
4030                  &need_incremental_pop_object, Label::kNear);
4031   __ Pop(regs_.object());
4032 
4033   regs_.Restore(masm);
4034   if (on_no_need == kUpdateRememberedSetOnNoNeedToInformIncrementalMarker) {
4035     __ RememberedSetHelper(object(), address(), value(), save_fp_regs_mode(),
4036                            MacroAssembler::kReturnAtEnd);
4037   } else {
4038     __ ret(0);
4039   }
4040 
4041   __ bind(&need_incremental_pop_object);
4042   __ Pop(regs_.object());
4043 
4044   __ bind(&need_incremental);
4045 
4046   // Fall through when we need to inform the incremental marker.
4047 }
4048 
4049 
Generate(MacroAssembler * masm)4050 void StubFailureTrampolineStub::Generate(MacroAssembler* masm) {
4051   CEntryStub ces(isolate(), 1, kSaveFPRegs);
4052   __ Call(ces.GetCode(), RelocInfo::CODE_TARGET);
4053   int parameter_count_offset =
4054       StubFailureTrampolineFrame::kCallerStackParameterCountFrameOffset;
4055   __ movp(rbx, MemOperand(rbp, parameter_count_offset));
4056   masm->LeaveFrame(StackFrame::STUB_FAILURE_TRAMPOLINE);
4057   __ PopReturnAddressTo(rcx);
4058   int additional_offset =
4059       function_mode() == JS_FUNCTION_STUB_MODE ? kPointerSize : 0;
4060   __ leap(rsp, MemOperand(rsp, rbx, times_pointer_size, additional_offset));
4061   __ jmp(rcx);  // Return to IC Miss stub, continuation still on stack.
4062 }
4063 
4064 
Generate(MacroAssembler * masm)4065 void LoadICTrampolineStub::Generate(MacroAssembler* masm) {
4066   __ EmitLoadTypeFeedbackVector(LoadWithVectorDescriptor::VectorRegister());
4067   LoadICStub stub(isolate(), state());
4068   stub.GenerateForTrampoline(masm);
4069 }
4070 
4071 
Generate(MacroAssembler * masm)4072 void KeyedLoadICTrampolineStub::Generate(MacroAssembler* masm) {
4073   __ EmitLoadTypeFeedbackVector(LoadWithVectorDescriptor::VectorRegister());
4074   KeyedLoadICStub stub(isolate(), state());
4075   stub.GenerateForTrampoline(masm);
4076 }
4077 
4078 
HandleArrayCases(MacroAssembler * masm,Register feedback,Register receiver_map,Register scratch1,Register scratch2,Register scratch3,bool is_polymorphic,Label * miss)4079 static void HandleArrayCases(MacroAssembler* masm, Register feedback,
4080                              Register receiver_map, Register scratch1,
4081                              Register scratch2, Register scratch3,
4082                              bool is_polymorphic, Label* miss) {
4083   // feedback initially contains the feedback array
4084   Label next_loop, prepare_next;
4085   Label start_polymorphic;
4086 
4087   Register counter = scratch1;
4088   Register length = scratch2;
4089   Register cached_map = scratch3;
4090 
4091   __ movp(cached_map, FieldOperand(feedback, FixedArray::OffsetOfElementAt(0)));
4092   __ cmpp(receiver_map, FieldOperand(cached_map, WeakCell::kValueOffset));
4093   __ j(not_equal, &start_polymorphic);
4094 
4095   // found, now call handler.
4096   Register handler = feedback;
4097   __ movp(handler, FieldOperand(feedback, FixedArray::OffsetOfElementAt(1)));
4098   __ leap(handler, FieldOperand(handler, Code::kHeaderSize));
4099   __ jmp(handler);
4100 
4101   // Polymorphic, we have to loop from 2 to N
4102   __ bind(&start_polymorphic);
4103   __ SmiToInteger32(length, FieldOperand(feedback, FixedArray::kLengthOffset));
4104   if (!is_polymorphic) {
4105     // If the IC could be monomorphic we have to make sure we don't go past the
4106     // end of the feedback array.
4107     __ cmpl(length, Immediate(2));
4108     __ j(equal, miss);
4109   }
4110   __ movl(counter, Immediate(2));
4111 
4112   __ bind(&next_loop);
4113   __ movp(cached_map, FieldOperand(feedback, counter, times_pointer_size,
4114                                    FixedArray::kHeaderSize));
4115   __ cmpp(receiver_map, FieldOperand(cached_map, WeakCell::kValueOffset));
4116   __ j(not_equal, &prepare_next);
4117   __ movp(handler, FieldOperand(feedback, counter, times_pointer_size,
4118                                 FixedArray::kHeaderSize + kPointerSize));
4119   __ leap(handler, FieldOperand(handler, Code::kHeaderSize));
4120   __ jmp(handler);
4121 
4122   __ bind(&prepare_next);
4123   __ addl(counter, Immediate(2));
4124   __ cmpl(counter, length);
4125   __ j(less, &next_loop);
4126 
4127   // We exhausted our array of map handler pairs.
4128   __ jmp(miss);
4129 }
4130 
4131 
HandleMonomorphicCase(MacroAssembler * masm,Register receiver,Register receiver_map,Register feedback,Register vector,Register integer_slot,Label * compare_map,Label * load_smi_map,Label * try_array)4132 static void HandleMonomorphicCase(MacroAssembler* masm, Register receiver,
4133                                   Register receiver_map, Register feedback,
4134                                   Register vector, Register integer_slot,
4135                                   Label* compare_map, Label* load_smi_map,
4136                                   Label* try_array) {
4137   __ JumpIfSmi(receiver, load_smi_map);
4138   __ movp(receiver_map, FieldOperand(receiver, 0));
4139 
4140   __ bind(compare_map);
4141   __ cmpp(receiver_map, FieldOperand(feedback, WeakCell::kValueOffset));
4142   __ j(not_equal, try_array);
4143   Register handler = feedback;
4144   __ movp(handler, FieldOperand(vector, integer_slot, times_pointer_size,
4145                                 FixedArray::kHeaderSize + kPointerSize));
4146   __ leap(handler, FieldOperand(handler, Code::kHeaderSize));
4147   __ jmp(handler);
4148 }
4149 
4150 
Generate(MacroAssembler * masm)4151 void LoadICStub::Generate(MacroAssembler* masm) { GenerateImpl(masm, false); }
4152 
4153 
GenerateForTrampoline(MacroAssembler * masm)4154 void LoadICStub::GenerateForTrampoline(MacroAssembler* masm) {
4155   GenerateImpl(masm, true);
4156 }
4157 
4158 
GenerateImpl(MacroAssembler * masm,bool in_frame)4159 void LoadICStub::GenerateImpl(MacroAssembler* masm, bool in_frame) {
4160   Register receiver = LoadWithVectorDescriptor::ReceiverRegister();  // rdx
4161   Register name = LoadWithVectorDescriptor::NameRegister();          // rcx
4162   Register vector = LoadWithVectorDescriptor::VectorRegister();      // rbx
4163   Register slot = LoadWithVectorDescriptor::SlotRegister();          // rax
4164   Register feedback = rdi;
4165   Register integer_slot = r8;
4166   Register receiver_map = r9;
4167 
4168   __ SmiToInteger32(integer_slot, slot);
4169   __ movp(feedback, FieldOperand(vector, integer_slot, times_pointer_size,
4170                                  FixedArray::kHeaderSize));
4171 
4172   // Try to quickly handle the monomorphic case without knowing for sure
4173   // if we have a weak cell in feedback. We do know it's safe to look
4174   // at WeakCell::kValueOffset.
4175   Label try_array, load_smi_map, compare_map;
4176   Label not_array, miss;
4177   HandleMonomorphicCase(masm, receiver, receiver_map, feedback, vector,
4178                         integer_slot, &compare_map, &load_smi_map, &try_array);
4179 
4180   // Is it a fixed array?
4181   __ bind(&try_array);
4182   __ CompareRoot(FieldOperand(feedback, 0), Heap::kFixedArrayMapRootIndex);
4183   __ j(not_equal, &not_array);
4184   HandleArrayCases(masm, feedback, receiver_map, integer_slot, r11, r15, true,
4185                    &miss);
4186 
4187   __ bind(&not_array);
4188   __ CompareRoot(feedback, Heap::kmegamorphic_symbolRootIndex);
4189   __ j(not_equal, &miss);
4190   Code::Flags code_flags = Code::RemoveTypeAndHolderFromFlags(
4191       Code::ComputeHandlerFlags(Code::LOAD_IC));
4192   masm->isolate()->stub_cache()->GenerateProbe(
4193       masm, Code::LOAD_IC, code_flags, receiver, name, feedback, no_reg);
4194 
4195   __ bind(&miss);
4196   LoadIC::GenerateMiss(masm);
4197 
4198   __ bind(&load_smi_map);
4199   __ LoadRoot(receiver_map, Heap::kHeapNumberMapRootIndex);
4200   __ jmp(&compare_map);
4201 }
4202 
4203 
Generate(MacroAssembler * masm)4204 void KeyedLoadICStub::Generate(MacroAssembler* masm) {
4205   GenerateImpl(masm, false);
4206 }
4207 
4208 
GenerateForTrampoline(MacroAssembler * masm)4209 void KeyedLoadICStub::GenerateForTrampoline(MacroAssembler* masm) {
4210   GenerateImpl(masm, true);
4211 }
4212 
4213 
GenerateImpl(MacroAssembler * masm,bool in_frame)4214 void KeyedLoadICStub::GenerateImpl(MacroAssembler* masm, bool in_frame) {
4215   Register receiver = LoadWithVectorDescriptor::ReceiverRegister();  // rdx
4216   Register key = LoadWithVectorDescriptor::NameRegister();           // rcx
4217   Register vector = LoadWithVectorDescriptor::VectorRegister();      // rbx
4218   Register slot = LoadWithVectorDescriptor::SlotRegister();          // rax
4219   Register feedback = rdi;
4220   Register integer_slot = r8;
4221   Register receiver_map = r9;
4222 
4223   __ SmiToInteger32(integer_slot, slot);
4224   __ movp(feedback, FieldOperand(vector, integer_slot, times_pointer_size,
4225                                  FixedArray::kHeaderSize));
4226 
4227   // Try to quickly handle the monomorphic case without knowing for sure
4228   // if we have a weak cell in feedback. We do know it's safe to look
4229   // at WeakCell::kValueOffset.
4230   Label try_array, load_smi_map, compare_map;
4231   Label not_array, miss;
4232   HandleMonomorphicCase(masm, receiver, receiver_map, feedback, vector,
4233                         integer_slot, &compare_map, &load_smi_map, &try_array);
4234 
4235   __ bind(&try_array);
4236   // Is it a fixed array?
4237   __ CompareRoot(FieldOperand(feedback, 0), Heap::kFixedArrayMapRootIndex);
4238   __ j(not_equal, &not_array);
4239 
4240   // We have a polymorphic element handler.
4241   Label polymorphic, try_poly_name;
4242   __ bind(&polymorphic);
4243   HandleArrayCases(masm, feedback, receiver_map, integer_slot, r11, r15, true,
4244                    &miss);
4245 
4246   __ bind(&not_array);
4247   // Is it generic?
4248   __ CompareRoot(feedback, Heap::kmegamorphic_symbolRootIndex);
4249   __ j(not_equal, &try_poly_name);
4250   Handle<Code> megamorphic_stub =
4251       KeyedLoadIC::ChooseMegamorphicStub(masm->isolate(), GetExtraICState());
4252   __ jmp(megamorphic_stub, RelocInfo::CODE_TARGET);
4253 
4254   __ bind(&try_poly_name);
4255   // We might have a name in feedback, and a fixed array in the next slot.
4256   __ cmpp(key, feedback);
4257   __ j(not_equal, &miss);
4258   // If the name comparison succeeded, we know we have a fixed array with
4259   // at least one map/handler pair.
4260   __ movp(feedback, FieldOperand(vector, integer_slot, times_pointer_size,
4261                                  FixedArray::kHeaderSize + kPointerSize));
4262   HandleArrayCases(masm, feedback, receiver_map, integer_slot, r11, r15, false,
4263                    &miss);
4264 
4265   __ bind(&miss);
4266   KeyedLoadIC::GenerateMiss(masm);
4267 
4268   __ bind(&load_smi_map);
4269   __ LoadRoot(receiver_map, Heap::kHeapNumberMapRootIndex);
4270   __ jmp(&compare_map);
4271 }
4272 
4273 
Generate(MacroAssembler * masm)4274 void VectorStoreICTrampolineStub::Generate(MacroAssembler* masm) {
4275   __ EmitLoadTypeFeedbackVector(VectorStoreICDescriptor::VectorRegister());
4276   VectorStoreICStub stub(isolate(), state());
4277   stub.GenerateForTrampoline(masm);
4278 }
4279 
4280 
Generate(MacroAssembler * masm)4281 void VectorKeyedStoreICTrampolineStub::Generate(MacroAssembler* masm) {
4282   __ EmitLoadTypeFeedbackVector(VectorStoreICDescriptor::VectorRegister());
4283   VectorKeyedStoreICStub stub(isolate(), state());
4284   stub.GenerateForTrampoline(masm);
4285 }
4286 
4287 
Generate(MacroAssembler * masm)4288 void VectorStoreICStub::Generate(MacroAssembler* masm) {
4289   GenerateImpl(masm, false);
4290 }
4291 
4292 
GenerateForTrampoline(MacroAssembler * masm)4293 void VectorStoreICStub::GenerateForTrampoline(MacroAssembler* masm) {
4294   GenerateImpl(masm, true);
4295 }
4296 
4297 
GenerateImpl(MacroAssembler * masm,bool in_frame)4298 void VectorStoreICStub::GenerateImpl(MacroAssembler* masm, bool in_frame) {
4299   Register receiver = VectorStoreICDescriptor::ReceiverRegister();  // rdx
4300   Register key = VectorStoreICDescriptor::NameRegister();           // rcx
4301   Register vector = VectorStoreICDescriptor::VectorRegister();      // rbx
4302   Register slot = VectorStoreICDescriptor::SlotRegister();          // rdi
4303   DCHECK(VectorStoreICDescriptor::ValueRegister().is(rax));         // rax
4304   Register feedback = r8;
4305   Register integer_slot = r9;
4306   Register receiver_map = r11;
4307   DCHECK(!AreAliased(feedback, integer_slot, vector, slot, receiver_map));
4308 
4309   __ SmiToInteger32(integer_slot, slot);
4310   __ movp(feedback, FieldOperand(vector, integer_slot, times_pointer_size,
4311                                  FixedArray::kHeaderSize));
4312 
4313   // Try to quickly handle the monomorphic case without knowing for sure
4314   // if we have a weak cell in feedback. We do know it's safe to look
4315   // at WeakCell::kValueOffset.
4316   Label try_array, load_smi_map, compare_map;
4317   Label not_array, miss;
4318   HandleMonomorphicCase(masm, receiver, receiver_map, feedback, vector,
4319                         integer_slot, &compare_map, &load_smi_map, &try_array);
4320 
4321   // Is it a fixed array?
4322   __ bind(&try_array);
4323   __ CompareRoot(FieldOperand(feedback, 0), Heap::kFixedArrayMapRootIndex);
4324   __ j(not_equal, &not_array);
4325   HandleArrayCases(masm, feedback, receiver_map, integer_slot, r14, r15, true,
4326                    &miss);
4327 
4328   __ bind(&not_array);
4329   __ CompareRoot(feedback, Heap::kmegamorphic_symbolRootIndex);
4330   __ j(not_equal, &miss);
4331 
4332   Code::Flags code_flags = Code::RemoveTypeAndHolderFromFlags(
4333       Code::ComputeHandlerFlags(Code::STORE_IC));
4334   masm->isolate()->stub_cache()->GenerateProbe(masm, Code::STORE_IC, code_flags,
4335                                                receiver, key, feedback, no_reg);
4336 
4337   __ bind(&miss);
4338   StoreIC::GenerateMiss(masm);
4339 
4340   __ bind(&load_smi_map);
4341   __ LoadRoot(receiver_map, Heap::kHeapNumberMapRootIndex);
4342   __ jmp(&compare_map);
4343 }
4344 
4345 
Generate(MacroAssembler * masm)4346 void VectorKeyedStoreICStub::Generate(MacroAssembler* masm) {
4347   GenerateImpl(masm, false);
4348 }
4349 
4350 
GenerateForTrampoline(MacroAssembler * masm)4351 void VectorKeyedStoreICStub::GenerateForTrampoline(MacroAssembler* masm) {
4352   GenerateImpl(masm, true);
4353 }
4354 
4355 
HandlePolymorphicKeyedStoreCase(MacroAssembler * masm,Register receiver_map,Register feedback,Register scratch,Register scratch1,Register scratch2,Label * miss)4356 static void HandlePolymorphicKeyedStoreCase(MacroAssembler* masm,
4357                                             Register receiver_map,
4358                                             Register feedback, Register scratch,
4359                                             Register scratch1,
4360                                             Register scratch2, Label* miss) {
4361   // feedback initially contains the feedback array
4362   Label next, next_loop, prepare_next;
4363   Label transition_call;
4364 
4365   Register cached_map = scratch;
4366   Register counter = scratch1;
4367   Register length = scratch2;
4368 
4369   // Polymorphic, we have to loop from 0 to N - 1
4370   __ movp(counter, Immediate(0));
4371   __ movp(length, FieldOperand(feedback, FixedArray::kLengthOffset));
4372   __ SmiToInteger32(length, length);
4373 
4374   __ bind(&next_loop);
4375   __ movp(cached_map, FieldOperand(feedback, counter, times_pointer_size,
4376                                    FixedArray::kHeaderSize));
4377   __ cmpp(receiver_map, FieldOperand(cached_map, WeakCell::kValueOffset));
4378   __ j(not_equal, &prepare_next);
4379   __ movp(cached_map, FieldOperand(feedback, counter, times_pointer_size,
4380                                    FixedArray::kHeaderSize + kPointerSize));
4381   __ CompareRoot(cached_map, Heap::kUndefinedValueRootIndex);
4382   __ j(not_equal, &transition_call);
4383   __ movp(feedback, FieldOperand(feedback, counter, times_pointer_size,
4384                                  FixedArray::kHeaderSize + 2 * kPointerSize));
4385   __ leap(feedback, FieldOperand(feedback, Code::kHeaderSize));
4386   __ jmp(feedback);
4387 
4388   __ bind(&transition_call);
4389   DCHECK(receiver_map.is(VectorStoreTransitionDescriptor::MapRegister()));
4390   __ movp(receiver_map, FieldOperand(cached_map, WeakCell::kValueOffset));
4391   // The weak cell may have been cleared.
4392   __ JumpIfSmi(receiver_map, miss);
4393   // Get the handler in value.
4394   __ movp(feedback, FieldOperand(feedback, counter, times_pointer_size,
4395                                  FixedArray::kHeaderSize + 2 * kPointerSize));
4396   __ leap(feedback, FieldOperand(feedback, Code::kHeaderSize));
4397   __ jmp(feedback);
4398 
4399   __ bind(&prepare_next);
4400   __ addl(counter, Immediate(3));
4401   __ cmpl(counter, length);
4402   __ j(less, &next_loop);
4403 
4404   // We exhausted our array of map handler pairs.
4405   __ jmp(miss);
4406 }
4407 
4408 
GenerateImpl(MacroAssembler * masm,bool in_frame)4409 void VectorKeyedStoreICStub::GenerateImpl(MacroAssembler* masm, bool in_frame) {
4410   Register receiver = VectorStoreICDescriptor::ReceiverRegister();  // rdx
4411   Register key = VectorStoreICDescriptor::NameRegister();           // rcx
4412   Register vector = VectorStoreICDescriptor::VectorRegister();      // rbx
4413   Register slot = VectorStoreICDescriptor::SlotRegister();          // rdi
4414   DCHECK(VectorStoreICDescriptor::ValueRegister().is(rax));         // rax
4415   Register feedback = r8;
4416   Register integer_slot = r9;
4417   Register receiver_map = r11;
4418   DCHECK(!AreAliased(feedback, integer_slot, vector, slot, receiver_map));
4419 
4420   __ SmiToInteger32(integer_slot, slot);
4421   __ movp(feedback, FieldOperand(vector, integer_slot, times_pointer_size,
4422                                  FixedArray::kHeaderSize));
4423 
4424   // Try to quickly handle the monomorphic case without knowing for sure
4425   // if we have a weak cell in feedback. We do know it's safe to look
4426   // at WeakCell::kValueOffset.
4427   Label try_array, load_smi_map, compare_map;
4428   Label not_array, miss;
4429   HandleMonomorphicCase(masm, receiver, receiver_map, feedback, vector,
4430                         integer_slot, &compare_map, &load_smi_map, &try_array);
4431 
4432   // Is it a fixed array?
4433   __ bind(&try_array);
4434   __ CompareRoot(FieldOperand(feedback, 0), Heap::kFixedArrayMapRootIndex);
4435   __ j(not_equal, &not_array);
4436   HandlePolymorphicKeyedStoreCase(masm, receiver_map, feedback, integer_slot,
4437                                   r15, r14, &miss);
4438 
4439   __ bind(&not_array);
4440   Label try_poly_name;
4441   __ CompareRoot(feedback, Heap::kmegamorphic_symbolRootIndex);
4442   __ j(not_equal, &try_poly_name);
4443 
4444   Handle<Code> megamorphic_stub =
4445       KeyedStoreIC::ChooseMegamorphicStub(masm->isolate(), GetExtraICState());
4446   __ jmp(megamorphic_stub, RelocInfo::CODE_TARGET);
4447 
4448   __ bind(&try_poly_name);
4449   // We might have a name in feedback, and a fixed array in the next slot.
4450   __ cmpp(key, feedback);
4451   __ j(not_equal, &miss);
4452   // If the name comparison succeeded, we know we have a fixed array with
4453   // at least one map/handler pair.
4454   __ movp(feedback, FieldOperand(vector, integer_slot, times_pointer_size,
4455                                  FixedArray::kHeaderSize + kPointerSize));
4456   HandleArrayCases(masm, feedback, receiver_map, integer_slot, r14, r15, false,
4457                    &miss);
4458 
4459   __ bind(&miss);
4460   KeyedStoreIC::GenerateMiss(masm);
4461 
4462   __ bind(&load_smi_map);
4463   __ LoadRoot(receiver_map, Heap::kHeapNumberMapRootIndex);
4464   __ jmp(&compare_map);
4465 }
4466 
4467 
Generate(MacroAssembler * masm)4468 void CallICTrampolineStub::Generate(MacroAssembler* masm) {
4469   __ EmitLoadTypeFeedbackVector(rbx);
4470   CallICStub stub(isolate(), state());
4471   __ jmp(stub.GetCode(), RelocInfo::CODE_TARGET);
4472 }
4473 
4474 
MaybeCallEntryHook(MacroAssembler * masm)4475 void ProfileEntryHookStub::MaybeCallEntryHook(MacroAssembler* masm) {
4476   if (masm->isolate()->function_entry_hook() != NULL) {
4477     ProfileEntryHookStub stub(masm->isolate());
4478     masm->CallStub(&stub);
4479   }
4480 }
4481 
4482 
Generate(MacroAssembler * masm)4483 void ProfileEntryHookStub::Generate(MacroAssembler* masm) {
4484   // This stub can be called from essentially anywhere, so it needs to save
4485   // all volatile and callee-save registers.
4486   const size_t kNumSavedRegisters = 2;
4487   __ pushq(arg_reg_1);
4488   __ pushq(arg_reg_2);
4489 
4490   // Calculate the original stack pointer and store it in the second arg.
4491   __ leap(arg_reg_2,
4492          Operand(rsp, kNumSavedRegisters * kRegisterSize + kPCOnStackSize));
4493 
4494   // Calculate the function address to the first arg.
4495   __ movp(arg_reg_1, Operand(rsp, kNumSavedRegisters * kRegisterSize));
4496   __ subp(arg_reg_1, Immediate(Assembler::kShortCallInstructionLength));
4497 
4498   // Save the remainder of the volatile registers.
4499   masm->PushCallerSaved(kSaveFPRegs, arg_reg_1, arg_reg_2);
4500 
4501   // Call the entry hook function.
4502   __ Move(rax, FUNCTION_ADDR(isolate()->function_entry_hook()),
4503           Assembler::RelocInfoNone());
4504 
4505   AllowExternalCallThatCantCauseGC scope(masm);
4506 
4507   const int kArgumentCount = 2;
4508   __ PrepareCallCFunction(kArgumentCount);
4509   __ CallCFunction(rax, kArgumentCount);
4510 
4511   // Restore volatile regs.
4512   masm->PopCallerSaved(kSaveFPRegs, arg_reg_1, arg_reg_2);
4513   __ popq(arg_reg_2);
4514   __ popq(arg_reg_1);
4515 
4516   __ Ret();
4517 }
4518 
4519 
4520 template<class T>
CreateArrayDispatch(MacroAssembler * masm,AllocationSiteOverrideMode mode)4521 static void CreateArrayDispatch(MacroAssembler* masm,
4522                                 AllocationSiteOverrideMode mode) {
4523   if (mode == DISABLE_ALLOCATION_SITES) {
4524     T stub(masm->isolate(), GetInitialFastElementsKind(), mode);
4525     __ TailCallStub(&stub);
4526   } else if (mode == DONT_OVERRIDE) {
4527     int last_index = GetSequenceIndexFromFastElementsKind(
4528         TERMINAL_FAST_ELEMENTS_KIND);
4529     for (int i = 0; i <= last_index; ++i) {
4530       Label next;
4531       ElementsKind kind = GetFastElementsKindFromSequenceIndex(i);
4532       __ cmpl(rdx, Immediate(kind));
4533       __ j(not_equal, &next);
4534       T stub(masm->isolate(), kind);
4535       __ TailCallStub(&stub);
4536       __ bind(&next);
4537     }
4538 
4539     // If we reached this point there is a problem.
4540     __ Abort(kUnexpectedElementsKindInArrayConstructor);
4541   } else {
4542     UNREACHABLE();
4543   }
4544 }
4545 
4546 
CreateArrayDispatchOneArgument(MacroAssembler * masm,AllocationSiteOverrideMode mode)4547 static void CreateArrayDispatchOneArgument(MacroAssembler* masm,
4548                                            AllocationSiteOverrideMode mode) {
4549   // rbx - allocation site (if mode != DISABLE_ALLOCATION_SITES)
4550   // rdx - kind (if mode != DISABLE_ALLOCATION_SITES)
4551   // rax - number of arguments
4552   // rdi - constructor?
4553   // rsp[0] - return address
4554   // rsp[8] - last argument
4555   Handle<Object> undefined_sentinel(
4556       masm->isolate()->heap()->undefined_value(),
4557       masm->isolate());
4558 
4559   Label normal_sequence;
4560   if (mode == DONT_OVERRIDE) {
4561     STATIC_ASSERT(FAST_SMI_ELEMENTS == 0);
4562     STATIC_ASSERT(FAST_HOLEY_SMI_ELEMENTS == 1);
4563     STATIC_ASSERT(FAST_ELEMENTS == 2);
4564     STATIC_ASSERT(FAST_HOLEY_ELEMENTS == 3);
4565     STATIC_ASSERT(FAST_DOUBLE_ELEMENTS == 4);
4566     STATIC_ASSERT(FAST_HOLEY_DOUBLE_ELEMENTS == 5);
4567 
4568     // is the low bit set? If so, we are holey and that is good.
4569     __ testb(rdx, Immediate(1));
4570     __ j(not_zero, &normal_sequence);
4571   }
4572 
4573   // look at the first argument
4574   StackArgumentsAccessor args(rsp, 1, ARGUMENTS_DONT_CONTAIN_RECEIVER);
4575   __ movp(rcx, args.GetArgumentOperand(0));
4576   __ testp(rcx, rcx);
4577   __ j(zero, &normal_sequence);
4578 
4579   if (mode == DISABLE_ALLOCATION_SITES) {
4580     ElementsKind initial = GetInitialFastElementsKind();
4581     ElementsKind holey_initial = GetHoleyElementsKind(initial);
4582 
4583     ArraySingleArgumentConstructorStub stub_holey(masm->isolate(),
4584                                                   holey_initial,
4585                                                   DISABLE_ALLOCATION_SITES);
4586     __ TailCallStub(&stub_holey);
4587 
4588     __ bind(&normal_sequence);
4589     ArraySingleArgumentConstructorStub stub(masm->isolate(),
4590                                             initial,
4591                                             DISABLE_ALLOCATION_SITES);
4592     __ TailCallStub(&stub);
4593   } else if (mode == DONT_OVERRIDE) {
4594     // We are going to create a holey array, but our kind is non-holey.
4595     // Fix kind and retry (only if we have an allocation site in the slot).
4596     __ incl(rdx);
4597 
4598     if (FLAG_debug_code) {
4599       Handle<Map> allocation_site_map =
4600           masm->isolate()->factory()->allocation_site_map();
4601       __ Cmp(FieldOperand(rbx, 0), allocation_site_map);
4602       __ Assert(equal, kExpectedAllocationSite);
4603     }
4604 
4605     // Save the resulting elements kind in type info. We can't just store r3
4606     // in the AllocationSite::transition_info field because elements kind is
4607     // restricted to a portion of the field...upper bits need to be left alone.
4608     STATIC_ASSERT(AllocationSite::ElementsKindBits::kShift == 0);
4609     __ SmiAddConstant(FieldOperand(rbx, AllocationSite::kTransitionInfoOffset),
4610                       Smi::FromInt(kFastElementsKindPackedToHoley));
4611 
4612     __ bind(&normal_sequence);
4613     int last_index = GetSequenceIndexFromFastElementsKind(
4614         TERMINAL_FAST_ELEMENTS_KIND);
4615     for (int i = 0; i <= last_index; ++i) {
4616       Label next;
4617       ElementsKind kind = GetFastElementsKindFromSequenceIndex(i);
4618       __ cmpl(rdx, Immediate(kind));
4619       __ j(not_equal, &next);
4620       ArraySingleArgumentConstructorStub stub(masm->isolate(), kind);
4621       __ TailCallStub(&stub);
4622       __ bind(&next);
4623     }
4624 
4625     // If we reached this point there is a problem.
4626     __ Abort(kUnexpectedElementsKindInArrayConstructor);
4627   } else {
4628     UNREACHABLE();
4629   }
4630 }
4631 
4632 
4633 template<class T>
ArrayConstructorStubAheadOfTimeHelper(Isolate * isolate)4634 static void ArrayConstructorStubAheadOfTimeHelper(Isolate* isolate) {
4635   int to_index = GetSequenceIndexFromFastElementsKind(
4636       TERMINAL_FAST_ELEMENTS_KIND);
4637   for (int i = 0; i <= to_index; ++i) {
4638     ElementsKind kind = GetFastElementsKindFromSequenceIndex(i);
4639     T stub(isolate, kind);
4640     stub.GetCode();
4641     if (AllocationSite::GetMode(kind) != DONT_TRACK_ALLOCATION_SITE) {
4642       T stub1(isolate, kind, DISABLE_ALLOCATION_SITES);
4643       stub1.GetCode();
4644     }
4645   }
4646 }
4647 
4648 
GenerateStubsAheadOfTime(Isolate * isolate)4649 void ArrayConstructorStubBase::GenerateStubsAheadOfTime(Isolate* isolate) {
4650   ArrayConstructorStubAheadOfTimeHelper<ArrayNoArgumentConstructorStub>(
4651       isolate);
4652   ArrayConstructorStubAheadOfTimeHelper<ArraySingleArgumentConstructorStub>(
4653       isolate);
4654   ArrayConstructorStubAheadOfTimeHelper<ArrayNArgumentsConstructorStub>(
4655       isolate);
4656 }
4657 
4658 
GenerateStubsAheadOfTime(Isolate * isolate)4659 void InternalArrayConstructorStubBase::GenerateStubsAheadOfTime(
4660     Isolate* isolate) {
4661   ElementsKind kinds[2] = { FAST_ELEMENTS, FAST_HOLEY_ELEMENTS };
4662   for (int i = 0; i < 2; i++) {
4663     // For internal arrays we only need a few things
4664     InternalArrayNoArgumentConstructorStub stubh1(isolate, kinds[i]);
4665     stubh1.GetCode();
4666     InternalArraySingleArgumentConstructorStub stubh2(isolate, kinds[i]);
4667     stubh2.GetCode();
4668     InternalArrayNArgumentsConstructorStub stubh3(isolate, kinds[i]);
4669     stubh3.GetCode();
4670   }
4671 }
4672 
4673 
GenerateDispatchToArrayStub(MacroAssembler * masm,AllocationSiteOverrideMode mode)4674 void ArrayConstructorStub::GenerateDispatchToArrayStub(
4675     MacroAssembler* masm,
4676     AllocationSiteOverrideMode mode) {
4677   if (argument_count() == ANY) {
4678     Label not_zero_case, not_one_case;
4679     __ testp(rax, rax);
4680     __ j(not_zero, &not_zero_case);
4681     CreateArrayDispatch<ArrayNoArgumentConstructorStub>(masm, mode);
4682 
4683     __ bind(&not_zero_case);
4684     __ cmpl(rax, Immediate(1));
4685     __ j(greater, &not_one_case);
4686     CreateArrayDispatchOneArgument(masm, mode);
4687 
4688     __ bind(&not_one_case);
4689     CreateArrayDispatch<ArrayNArgumentsConstructorStub>(masm, mode);
4690   } else if (argument_count() == NONE) {
4691     CreateArrayDispatch<ArrayNoArgumentConstructorStub>(masm, mode);
4692   } else if (argument_count() == ONE) {
4693     CreateArrayDispatchOneArgument(masm, mode);
4694   } else if (argument_count() == MORE_THAN_ONE) {
4695     CreateArrayDispatch<ArrayNArgumentsConstructorStub>(masm, mode);
4696   } else {
4697     UNREACHABLE();
4698   }
4699 }
4700 
4701 
Generate(MacroAssembler * masm)4702 void ArrayConstructorStub::Generate(MacroAssembler* masm) {
4703   // ----------- S t a t e -------------
4704   //  -- rax    : argc
4705   //  -- rbx    : AllocationSite or undefined
4706   //  -- rdi    : constructor
4707   //  -- rdx    : new target
4708   //  -- rsp[0] : return address
4709   //  -- rsp[8] : last argument
4710   // -----------------------------------
4711   if (FLAG_debug_code) {
4712     // The array construct code is only set for the global and natives
4713     // builtin Array functions which always have maps.
4714 
4715     // Initial map for the builtin Array function should be a map.
4716     __ movp(rcx, FieldOperand(rdi, JSFunction::kPrototypeOrInitialMapOffset));
4717     // Will both indicate a NULL and a Smi.
4718     STATIC_ASSERT(kSmiTag == 0);
4719     Condition not_smi = NegateCondition(masm->CheckSmi(rcx));
4720     __ Check(not_smi, kUnexpectedInitialMapForArrayFunction);
4721     __ CmpObjectType(rcx, MAP_TYPE, rcx);
4722     __ Check(equal, kUnexpectedInitialMapForArrayFunction);
4723 
4724     // We should either have undefined in rbx or a valid AllocationSite
4725     __ AssertUndefinedOrAllocationSite(rbx);
4726   }
4727 
4728   // Enter the context of the Array function.
4729   __ movp(rsi, FieldOperand(rdi, JSFunction::kContextOffset));
4730 
4731   Label subclassing;
4732   __ cmpp(rdi, rdx);
4733   __ j(not_equal, &subclassing);
4734 
4735   Label no_info;
4736   // If the feedback vector is the undefined value call an array constructor
4737   // that doesn't use AllocationSites.
4738   __ CompareRoot(rbx, Heap::kUndefinedValueRootIndex);
4739   __ j(equal, &no_info);
4740 
4741   // Only look at the lower 16 bits of the transition info.
4742   __ movp(rdx, FieldOperand(rbx, AllocationSite::kTransitionInfoOffset));
4743   __ SmiToInteger32(rdx, rdx);
4744   STATIC_ASSERT(AllocationSite::ElementsKindBits::kShift == 0);
4745   __ andp(rdx, Immediate(AllocationSite::ElementsKindBits::kMask));
4746   GenerateDispatchToArrayStub(masm, DONT_OVERRIDE);
4747 
4748   __ bind(&no_info);
4749   GenerateDispatchToArrayStub(masm, DISABLE_ALLOCATION_SITES);
4750 
4751   // Subclassing
4752   __ bind(&subclassing);
4753   switch (argument_count()) {
4754     case ANY:
4755     case MORE_THAN_ONE: {
4756       StackArgumentsAccessor args(rsp, rax);
4757       __ movp(args.GetReceiverOperand(), rdi);
4758       __ addp(rax, Immediate(3));
4759       break;
4760     }
4761     case NONE: {
4762       StackArgumentsAccessor args(rsp, 0);
4763       __ movp(args.GetReceiverOperand(), rdi);
4764       __ Set(rax, 3);
4765       break;
4766     }
4767     case ONE: {
4768       StackArgumentsAccessor args(rsp, 1);
4769       __ movp(args.GetReceiverOperand(), rdi);
4770       __ Set(rax, 4);
4771       break;
4772     }
4773   }
4774   __ PopReturnAddressTo(rcx);
4775   __ Push(rdx);
4776   __ Push(rbx);
4777   __ PushReturnAddressFrom(rcx);
4778   __ JumpToExternalReference(ExternalReference(Runtime::kNewArray, isolate()));
4779 }
4780 
4781 
GenerateCase(MacroAssembler * masm,ElementsKind kind)4782 void InternalArrayConstructorStub::GenerateCase(
4783     MacroAssembler* masm, ElementsKind kind) {
4784   Label not_zero_case, not_one_case;
4785   Label normal_sequence;
4786 
4787   __ testp(rax, rax);
4788   __ j(not_zero, &not_zero_case);
4789   InternalArrayNoArgumentConstructorStub stub0(isolate(), kind);
4790   __ TailCallStub(&stub0);
4791 
4792   __ bind(&not_zero_case);
4793   __ cmpl(rax, Immediate(1));
4794   __ j(greater, &not_one_case);
4795 
4796   if (IsFastPackedElementsKind(kind)) {
4797     // We might need to create a holey array
4798     // look at the first argument
4799     StackArgumentsAccessor args(rsp, 1, ARGUMENTS_DONT_CONTAIN_RECEIVER);
4800     __ movp(rcx, args.GetArgumentOperand(0));
4801     __ testp(rcx, rcx);
4802     __ j(zero, &normal_sequence);
4803 
4804     InternalArraySingleArgumentConstructorStub
4805         stub1_holey(isolate(), GetHoleyElementsKind(kind));
4806     __ TailCallStub(&stub1_holey);
4807   }
4808 
4809   __ bind(&normal_sequence);
4810   InternalArraySingleArgumentConstructorStub stub1(isolate(), kind);
4811   __ TailCallStub(&stub1);
4812 
4813   __ bind(&not_one_case);
4814   InternalArrayNArgumentsConstructorStub stubN(isolate(), kind);
4815   __ TailCallStub(&stubN);
4816 }
4817 
4818 
Generate(MacroAssembler * masm)4819 void InternalArrayConstructorStub::Generate(MacroAssembler* masm) {
4820   // ----------- S t a t e -------------
4821   //  -- rax    : argc
4822   //  -- rdi    : constructor
4823   //  -- rsp[0] : return address
4824   //  -- rsp[8] : last argument
4825   // -----------------------------------
4826 
4827   if (FLAG_debug_code) {
4828     // The array construct code is only set for the global and natives
4829     // builtin Array functions which always have maps.
4830 
4831     // Initial map for the builtin Array function should be a map.
4832     __ movp(rcx, FieldOperand(rdi, JSFunction::kPrototypeOrInitialMapOffset));
4833     // Will both indicate a NULL and a Smi.
4834     STATIC_ASSERT(kSmiTag == 0);
4835     Condition not_smi = NegateCondition(masm->CheckSmi(rcx));
4836     __ Check(not_smi, kUnexpectedInitialMapForArrayFunction);
4837     __ CmpObjectType(rcx, MAP_TYPE, rcx);
4838     __ Check(equal, kUnexpectedInitialMapForArrayFunction);
4839   }
4840 
4841   // Figure out the right elements kind
4842   __ movp(rcx, FieldOperand(rdi, JSFunction::kPrototypeOrInitialMapOffset));
4843 
4844   // Load the map's "bit field 2" into |result|. We only need the first byte,
4845   // but the following masking takes care of that anyway.
4846   __ movzxbp(rcx, FieldOperand(rcx, Map::kBitField2Offset));
4847   // Retrieve elements_kind from bit field 2.
4848   __ DecodeField<Map::ElementsKindBits>(rcx);
4849 
4850   if (FLAG_debug_code) {
4851     Label done;
4852     __ cmpl(rcx, Immediate(FAST_ELEMENTS));
4853     __ j(equal, &done);
4854     __ cmpl(rcx, Immediate(FAST_HOLEY_ELEMENTS));
4855     __ Assert(equal,
4856               kInvalidElementsKindForInternalArrayOrInternalPackedArray);
4857     __ bind(&done);
4858   }
4859 
4860   Label fast_elements_case;
4861   __ cmpl(rcx, Immediate(FAST_ELEMENTS));
4862   __ j(equal, &fast_elements_case);
4863   GenerateCase(masm, FAST_HOLEY_ELEMENTS);
4864 
4865   __ bind(&fast_elements_case);
4866   GenerateCase(masm, FAST_ELEMENTS);
4867 }
4868 
4869 
Generate(MacroAssembler * masm)4870 void LoadGlobalViaContextStub::Generate(MacroAssembler* masm) {
4871   Register context_reg = rsi;
4872   Register slot_reg = rbx;
4873   Register result_reg = rax;
4874   Label slow_case;
4875 
4876   // Go up context chain to the script context.
4877   for (int i = 0; i < depth(); ++i) {
4878     __ movp(rdi, ContextOperand(context_reg, Context::PREVIOUS_INDEX));
4879     context_reg = rdi;
4880   }
4881 
4882   // Load the PropertyCell value at the specified slot.
4883   __ movp(result_reg, ContextOperand(context_reg, slot_reg));
4884   __ movp(result_reg, FieldOperand(result_reg, PropertyCell::kValueOffset));
4885 
4886   // Check that value is not the_hole.
4887   __ CompareRoot(result_reg, Heap::kTheHoleValueRootIndex);
4888   __ j(equal, &slow_case, Label::kNear);
4889   __ Ret();
4890 
4891   // Fallback to the runtime.
4892   __ bind(&slow_case);
4893   __ Integer32ToSmi(slot_reg, slot_reg);
4894   __ PopReturnAddressTo(kScratchRegister);
4895   __ Push(slot_reg);
4896   __ Push(kScratchRegister);
4897   __ TailCallRuntime(Runtime::kLoadGlobalViaContext);
4898 }
4899 
4900 
Generate(MacroAssembler * masm)4901 void StoreGlobalViaContextStub::Generate(MacroAssembler* masm) {
4902   Register context_reg = rsi;
4903   Register slot_reg = rbx;
4904   Register value_reg = rax;
4905   Register cell_reg = r8;
4906   Register cell_details_reg = rdx;
4907   Register cell_value_reg = r9;
4908   Label fast_heapobject_case, fast_smi_case, slow_case;
4909 
4910   if (FLAG_debug_code) {
4911     __ CompareRoot(value_reg, Heap::kTheHoleValueRootIndex);
4912     __ Check(not_equal, kUnexpectedValue);
4913   }
4914 
4915   // Go up context chain to the script context.
4916   for (int i = 0; i < depth(); ++i) {
4917     __ movp(rdi, ContextOperand(context_reg, Context::PREVIOUS_INDEX));
4918     context_reg = rdi;
4919   }
4920 
4921   // Load the PropertyCell at the specified slot.
4922   __ movp(cell_reg, ContextOperand(context_reg, slot_reg));
4923 
4924   // Load PropertyDetails for the cell (actually only the cell_type, kind and
4925   // READ_ONLY bit of attributes).
4926   __ SmiToInteger32(cell_details_reg,
4927                     FieldOperand(cell_reg, PropertyCell::kDetailsOffset));
4928   __ andl(cell_details_reg,
4929           Immediate(PropertyDetails::PropertyCellTypeField::kMask |
4930                     PropertyDetails::KindField::kMask |
4931                     PropertyDetails::kAttributesReadOnlyMask));
4932 
4933   // Check if PropertyCell holds mutable data.
4934   Label not_mutable_data;
4935   __ cmpl(cell_details_reg,
4936           Immediate(PropertyDetails::PropertyCellTypeField::encode(
4937                         PropertyCellType::kMutable) |
4938                     PropertyDetails::KindField::encode(kData)));
4939   __ j(not_equal, &not_mutable_data);
4940   __ JumpIfSmi(value_reg, &fast_smi_case);
4941   __ bind(&fast_heapobject_case);
4942   __ movp(FieldOperand(cell_reg, PropertyCell::kValueOffset), value_reg);
4943   __ RecordWriteField(cell_reg, PropertyCell::kValueOffset, value_reg,
4944                       cell_value_reg, kDontSaveFPRegs, EMIT_REMEMBERED_SET,
4945                       OMIT_SMI_CHECK);
4946   // RecordWriteField clobbers the value register, so we need to reload.
4947   __ movp(value_reg, FieldOperand(cell_reg, PropertyCell::kValueOffset));
4948   __ Ret();
4949   __ bind(&not_mutable_data);
4950 
4951   // Check if PropertyCell value matches the new value (relevant for Constant,
4952   // ConstantType and Undefined cells).
4953   Label not_same_value;
4954   __ movp(cell_value_reg, FieldOperand(cell_reg, PropertyCell::kValueOffset));
4955   __ cmpp(cell_value_reg, value_reg);
4956   __ j(not_equal, &not_same_value,
4957        FLAG_debug_code ? Label::kFar : Label::kNear);
4958   // Make sure the PropertyCell is not marked READ_ONLY.
4959   __ testl(cell_details_reg,
4960            Immediate(PropertyDetails::kAttributesReadOnlyMask));
4961   __ j(not_zero, &slow_case);
4962   if (FLAG_debug_code) {
4963     Label done;
4964     // This can only be true for Constant, ConstantType and Undefined cells,
4965     // because we never store the_hole via this stub.
4966     __ cmpl(cell_details_reg,
4967             Immediate(PropertyDetails::PropertyCellTypeField::encode(
4968                           PropertyCellType::kConstant) |
4969                       PropertyDetails::KindField::encode(kData)));
4970     __ j(equal, &done);
4971     __ cmpl(cell_details_reg,
4972             Immediate(PropertyDetails::PropertyCellTypeField::encode(
4973                           PropertyCellType::kConstantType) |
4974                       PropertyDetails::KindField::encode(kData)));
4975     __ j(equal, &done);
4976     __ cmpl(cell_details_reg,
4977             Immediate(PropertyDetails::PropertyCellTypeField::encode(
4978                           PropertyCellType::kUndefined) |
4979                       PropertyDetails::KindField::encode(kData)));
4980     __ Check(equal, kUnexpectedValue);
4981     __ bind(&done);
4982   }
4983   __ Ret();
4984   __ bind(&not_same_value);
4985 
4986   // Check if PropertyCell contains data with constant type (and is not
4987   // READ_ONLY).
4988   __ cmpl(cell_details_reg,
4989           Immediate(PropertyDetails::PropertyCellTypeField::encode(
4990                         PropertyCellType::kConstantType) |
4991                     PropertyDetails::KindField::encode(kData)));
4992   __ j(not_equal, &slow_case, Label::kNear);
4993 
4994   // Now either both old and new values must be SMIs or both must be heap
4995   // objects with same map.
4996   Label value_is_heap_object;
4997   __ JumpIfNotSmi(value_reg, &value_is_heap_object, Label::kNear);
4998   __ JumpIfNotSmi(cell_value_reg, &slow_case, Label::kNear);
4999   // Old and new values are SMIs, no need for a write barrier here.
5000   __ bind(&fast_smi_case);
5001   __ movp(FieldOperand(cell_reg, PropertyCell::kValueOffset), value_reg);
5002   __ Ret();
5003   __ bind(&value_is_heap_object);
5004   __ JumpIfSmi(cell_value_reg, &slow_case, Label::kNear);
5005   Register cell_value_map_reg = cell_value_reg;
5006   __ movp(cell_value_map_reg,
5007           FieldOperand(cell_value_reg, HeapObject::kMapOffset));
5008   __ cmpp(cell_value_map_reg, FieldOperand(value_reg, HeapObject::kMapOffset));
5009   __ j(equal, &fast_heapobject_case);
5010 
5011   // Fallback to the runtime.
5012   __ bind(&slow_case);
5013   __ Integer32ToSmi(slot_reg, slot_reg);
5014   __ PopReturnAddressTo(kScratchRegister);
5015   __ Push(slot_reg);
5016   __ Push(value_reg);
5017   __ Push(kScratchRegister);
5018   __ TailCallRuntime(is_strict(language_mode())
5019                          ? Runtime::kStoreGlobalViaContext_Strict
5020                          : Runtime::kStoreGlobalViaContext_Sloppy);
5021 }
5022 
5023 
Offset(ExternalReference ref0,ExternalReference ref1)5024 static int Offset(ExternalReference ref0, ExternalReference ref1) {
5025   int64_t offset = (ref0.address() - ref1.address());
5026   // Check that fits into int.
5027   DCHECK(static_cast<int>(offset) == offset);
5028   return static_cast<int>(offset);
5029 }
5030 
5031 
5032 // Prepares stack to put arguments (aligns and so on).  WIN64 calling
5033 // convention requires to put the pointer to the return value slot into
5034 // rcx (rcx must be preserverd until CallApiFunctionAndReturn).  Saves
5035 // context (rsi).  Clobbers rax.  Allocates arg_stack_space * kPointerSize
5036 // inside the exit frame (not GCed) accessible via StackSpaceOperand.
PrepareCallApiFunction(MacroAssembler * masm,int arg_stack_space)5037 static void PrepareCallApiFunction(MacroAssembler* masm, int arg_stack_space) {
5038   __ EnterApiExitFrame(arg_stack_space);
5039 }
5040 
5041 
5042 // Calls an API function.  Allocates HandleScope, extracts returned value
5043 // from handle and propagates exceptions.  Clobbers r14, r15, rbx and
5044 // caller-save registers.  Restores context.  On return removes
5045 // stack_space * kPointerSize (GCed).
CallApiFunctionAndReturn(MacroAssembler * masm,Register function_address,ExternalReference thunk_ref,Register thunk_last_arg,int stack_space,Operand * stack_space_operand,Operand return_value_operand,Operand * context_restore_operand)5046 static void CallApiFunctionAndReturn(MacroAssembler* masm,
5047                                      Register function_address,
5048                                      ExternalReference thunk_ref,
5049                                      Register thunk_last_arg, int stack_space,
5050                                      Operand* stack_space_operand,
5051                                      Operand return_value_operand,
5052                                      Operand* context_restore_operand) {
5053   Label prologue;
5054   Label promote_scheduled_exception;
5055   Label delete_allocated_handles;
5056   Label leave_exit_frame;
5057   Label write_back;
5058 
5059   Isolate* isolate = masm->isolate();
5060   Factory* factory = isolate->factory();
5061   ExternalReference next_address =
5062       ExternalReference::handle_scope_next_address(isolate);
5063   const int kNextOffset = 0;
5064   const int kLimitOffset = Offset(
5065       ExternalReference::handle_scope_limit_address(isolate), next_address);
5066   const int kLevelOffset = Offset(
5067       ExternalReference::handle_scope_level_address(isolate), next_address);
5068   ExternalReference scheduled_exception_address =
5069       ExternalReference::scheduled_exception_address(isolate);
5070 
5071   DCHECK(rdx.is(function_address) || r8.is(function_address));
5072   // Allocate HandleScope in callee-save registers.
5073   Register prev_next_address_reg = r14;
5074   Register prev_limit_reg = rbx;
5075   Register base_reg = r15;
5076   __ Move(base_reg, next_address);
5077   __ movp(prev_next_address_reg, Operand(base_reg, kNextOffset));
5078   __ movp(prev_limit_reg, Operand(base_reg, kLimitOffset));
5079   __ addl(Operand(base_reg, kLevelOffset), Immediate(1));
5080 
5081   if (FLAG_log_timer_events) {
5082     FrameScope frame(masm, StackFrame::MANUAL);
5083     __ PushSafepointRegisters();
5084     __ PrepareCallCFunction(1);
5085     __ LoadAddress(arg_reg_1, ExternalReference::isolate_address(isolate));
5086     __ CallCFunction(ExternalReference::log_enter_external_function(isolate),
5087                      1);
5088     __ PopSafepointRegisters();
5089   }
5090 
5091   Label profiler_disabled;
5092   Label end_profiler_check;
5093   __ Move(rax, ExternalReference::is_profiling_address(isolate));
5094   __ cmpb(Operand(rax, 0), Immediate(0));
5095   __ j(zero, &profiler_disabled);
5096 
5097   // Third parameter is the address of the actual getter function.
5098   __ Move(thunk_last_arg, function_address);
5099   __ Move(rax, thunk_ref);
5100   __ jmp(&end_profiler_check);
5101 
5102   __ bind(&profiler_disabled);
5103   // Call the api function!
5104   __ Move(rax, function_address);
5105 
5106   __ bind(&end_profiler_check);
5107 
5108   // Call the api function!
5109   __ call(rax);
5110 
5111   if (FLAG_log_timer_events) {
5112     FrameScope frame(masm, StackFrame::MANUAL);
5113     __ PushSafepointRegisters();
5114     __ PrepareCallCFunction(1);
5115     __ LoadAddress(arg_reg_1, ExternalReference::isolate_address(isolate));
5116     __ CallCFunction(ExternalReference::log_leave_external_function(isolate),
5117                      1);
5118     __ PopSafepointRegisters();
5119   }
5120 
5121   // Load the value from ReturnValue
5122   __ movp(rax, return_value_operand);
5123   __ bind(&prologue);
5124 
5125   // No more valid handles (the result handle was the last one). Restore
5126   // previous handle scope.
5127   __ subl(Operand(base_reg, kLevelOffset), Immediate(1));
5128   __ movp(Operand(base_reg, kNextOffset), prev_next_address_reg);
5129   __ cmpp(prev_limit_reg, Operand(base_reg, kLimitOffset));
5130   __ j(not_equal, &delete_allocated_handles);
5131 
5132   // Leave the API exit frame.
5133   __ bind(&leave_exit_frame);
5134   bool restore_context = context_restore_operand != NULL;
5135   if (restore_context) {
5136     __ movp(rsi, *context_restore_operand);
5137   }
5138   if (stack_space_operand != nullptr) {
5139     __ movp(rbx, *stack_space_operand);
5140   }
5141   __ LeaveApiExitFrame(!restore_context);
5142 
5143   // Check if the function scheduled an exception.
5144   __ Move(rdi, scheduled_exception_address);
5145   __ Cmp(Operand(rdi, 0), factory->the_hole_value());
5146   __ j(not_equal, &promote_scheduled_exception);
5147 
5148 #if DEBUG
5149   // Check if the function returned a valid JavaScript value.
5150   Label ok;
5151   Register return_value = rax;
5152   Register map = rcx;
5153 
5154   __ JumpIfSmi(return_value, &ok, Label::kNear);
5155   __ movp(map, FieldOperand(return_value, HeapObject::kMapOffset));
5156 
5157   __ CmpInstanceType(map, LAST_NAME_TYPE);
5158   __ j(below_equal, &ok, Label::kNear);
5159 
5160   __ CmpInstanceType(map, FIRST_JS_RECEIVER_TYPE);
5161   __ j(above_equal, &ok, Label::kNear);
5162 
5163   __ CompareRoot(map, Heap::kHeapNumberMapRootIndex);
5164   __ j(equal, &ok, Label::kNear);
5165 
5166   __ CompareRoot(return_value, Heap::kUndefinedValueRootIndex);
5167   __ j(equal, &ok, Label::kNear);
5168 
5169   __ CompareRoot(return_value, Heap::kTrueValueRootIndex);
5170   __ j(equal, &ok, Label::kNear);
5171 
5172   __ CompareRoot(return_value, Heap::kFalseValueRootIndex);
5173   __ j(equal, &ok, Label::kNear);
5174 
5175   __ CompareRoot(return_value, Heap::kNullValueRootIndex);
5176   __ j(equal, &ok, Label::kNear);
5177 
5178   __ Abort(kAPICallReturnedInvalidObject);
5179 
5180   __ bind(&ok);
5181 #endif
5182 
5183   if (stack_space_operand != nullptr) {
5184     DCHECK_EQ(stack_space, 0);
5185     __ PopReturnAddressTo(rcx);
5186     __ addq(rsp, rbx);
5187     __ jmp(rcx);
5188   } else {
5189     __ ret(stack_space * kPointerSize);
5190   }
5191 
5192   // Re-throw by promoting a scheduled exception.
5193   __ bind(&promote_scheduled_exception);
5194   __ TailCallRuntime(Runtime::kPromoteScheduledException);
5195 
5196   // HandleScope limit has changed. Delete allocated extensions.
5197   __ bind(&delete_allocated_handles);
5198   __ movp(Operand(base_reg, kLimitOffset), prev_limit_reg);
5199   __ movp(prev_limit_reg, rax);
5200   __ LoadAddress(arg_reg_1, ExternalReference::isolate_address(isolate));
5201   __ LoadAddress(rax,
5202                  ExternalReference::delete_handle_scope_extensions(isolate));
5203   __ call(rax);
5204   __ movp(rax, prev_limit_reg);
5205   __ jmp(&leave_exit_frame);
5206 }
5207 
5208 
CallApiFunctionStubHelper(MacroAssembler * masm,const ParameterCount & argc,bool return_first_arg,bool call_data_undefined)5209 static void CallApiFunctionStubHelper(MacroAssembler* masm,
5210                                       const ParameterCount& argc,
5211                                       bool return_first_arg,
5212                                       bool call_data_undefined) {
5213   // ----------- S t a t e -------------
5214   //  -- rdi                 : callee
5215   //  -- rbx                 : call_data
5216   //  -- rcx                 : holder
5217   //  -- rdx                 : api_function_address
5218   //  -- rsi                 : context
5219   //  -- rax                 : number of arguments if argc is a register
5220   //  -- rsp[0]              : return address
5221   //  -- rsp[8]              : last argument
5222   //  -- ...
5223   //  -- rsp[argc * 8]       : first argument
5224   //  -- rsp[(argc + 1) * 8] : receiver
5225   // -----------------------------------
5226 
5227   Register callee = rdi;
5228   Register call_data = rbx;
5229   Register holder = rcx;
5230   Register api_function_address = rdx;
5231   Register context = rsi;
5232   Register return_address = r8;
5233 
5234   typedef FunctionCallbackArguments FCA;
5235 
5236   STATIC_ASSERT(FCA::kContextSaveIndex == 6);
5237   STATIC_ASSERT(FCA::kCalleeIndex == 5);
5238   STATIC_ASSERT(FCA::kDataIndex == 4);
5239   STATIC_ASSERT(FCA::kReturnValueOffset == 3);
5240   STATIC_ASSERT(FCA::kReturnValueDefaultValueIndex == 2);
5241   STATIC_ASSERT(FCA::kIsolateIndex == 1);
5242   STATIC_ASSERT(FCA::kHolderIndex == 0);
5243   STATIC_ASSERT(FCA::kArgsLength == 7);
5244 
5245   DCHECK(argc.is_immediate() || rax.is(argc.reg()));
5246 
5247   __ PopReturnAddressTo(return_address);
5248 
5249   // context save
5250   __ Push(context);
5251 
5252   // callee
5253   __ Push(callee);
5254 
5255   // call data
5256   __ Push(call_data);
5257   Register scratch = call_data;
5258   if (!call_data_undefined) {
5259     __ LoadRoot(scratch, Heap::kUndefinedValueRootIndex);
5260   }
5261   // return value
5262   __ Push(scratch);
5263   // return value default
5264   __ Push(scratch);
5265   // isolate
5266   __ Move(scratch, ExternalReference::isolate_address(masm->isolate()));
5267   __ Push(scratch);
5268   // holder
5269   __ Push(holder);
5270 
5271   __ movp(scratch, rsp);
5272   // Push return address back on stack.
5273   __ PushReturnAddressFrom(return_address);
5274 
5275   // load context from callee
5276   __ movp(context, FieldOperand(callee, JSFunction::kContextOffset));
5277 
5278   // Allocate the v8::Arguments structure in the arguments' space since
5279   // it's not controlled by GC.
5280   const int kApiStackSpace = 4;
5281 
5282   PrepareCallApiFunction(masm, kApiStackSpace);
5283 
5284   // FunctionCallbackInfo::implicit_args_.
5285   __ movp(StackSpaceOperand(0), scratch);
5286   if (argc.is_immediate()) {
5287     __ addp(scratch, Immediate((argc.immediate() + FCA::kArgsLength - 1) *
5288                                kPointerSize));
5289     // FunctionCallbackInfo::values_.
5290     __ movp(StackSpaceOperand(1), scratch);
5291     // FunctionCallbackInfo::length_.
5292     __ Set(StackSpaceOperand(2), argc.immediate());
5293     // FunctionCallbackInfo::is_construct_call_.
5294     __ Set(StackSpaceOperand(3), 0);
5295   } else {
5296     __ leap(scratch, Operand(scratch, argc.reg(), times_pointer_size,
5297                              (FCA::kArgsLength - 1) * kPointerSize));
5298     // FunctionCallbackInfo::values_.
5299     __ movp(StackSpaceOperand(1), scratch);
5300     // FunctionCallbackInfo::length_.
5301     __ movp(StackSpaceOperand(2), argc.reg());
5302     // FunctionCallbackInfo::is_construct_call_.
5303     __ leap(argc.reg(), Operand(argc.reg(), times_pointer_size,
5304                                 (FCA::kArgsLength + 1) * kPointerSize));
5305     __ movp(StackSpaceOperand(3), argc.reg());
5306   }
5307 
5308 #if defined(__MINGW64__) || defined(_WIN64)
5309   Register arguments_arg = rcx;
5310   Register callback_arg = rdx;
5311 #else
5312   Register arguments_arg = rdi;
5313   Register callback_arg = rsi;
5314 #endif
5315 
5316   // It's okay if api_function_address == callback_arg
5317   // but not arguments_arg
5318   DCHECK(!api_function_address.is(arguments_arg));
5319 
5320   // v8::InvocationCallback's argument.
5321   __ leap(arguments_arg, StackSpaceOperand(0));
5322 
5323   ExternalReference thunk_ref =
5324       ExternalReference::invoke_function_callback(masm->isolate());
5325 
5326   // Accessor for FunctionCallbackInfo and first js arg.
5327   StackArgumentsAccessor args_from_rbp(rbp, FCA::kArgsLength + 1,
5328                                        ARGUMENTS_DONT_CONTAIN_RECEIVER);
5329   Operand context_restore_operand = args_from_rbp.GetArgumentOperand(
5330       FCA::kArgsLength - FCA::kContextSaveIndex);
5331   Operand is_construct_call_operand = StackSpaceOperand(3);
5332   Operand return_value_operand = args_from_rbp.GetArgumentOperand(
5333       return_first_arg ? 0 : FCA::kArgsLength - FCA::kReturnValueOffset);
5334   int stack_space = 0;
5335   Operand* stack_space_operand = &is_construct_call_operand;
5336   if (argc.is_immediate()) {
5337     stack_space = argc.immediate() + FCA::kArgsLength + 1;
5338     stack_space_operand = nullptr;
5339   }
5340   CallApiFunctionAndReturn(masm, api_function_address, thunk_ref, callback_arg,
5341                            stack_space, stack_space_operand,
5342                            return_value_operand, &context_restore_operand);
5343 }
5344 
5345 
Generate(MacroAssembler * masm)5346 void CallApiFunctionStub::Generate(MacroAssembler* masm) {
5347   bool call_data_undefined = this->call_data_undefined();
5348   CallApiFunctionStubHelper(masm, ParameterCount(rax), false,
5349                             call_data_undefined);
5350 }
5351 
5352 
Generate(MacroAssembler * masm)5353 void CallApiAccessorStub::Generate(MacroAssembler* masm) {
5354   bool is_store = this->is_store();
5355   int argc = this->argc();
5356   bool call_data_undefined = this->call_data_undefined();
5357   CallApiFunctionStubHelper(masm, ParameterCount(argc), is_store,
5358                             call_data_undefined);
5359 }
5360 
5361 
Generate(MacroAssembler * masm)5362 void CallApiGetterStub::Generate(MacroAssembler* masm) {
5363   // ----------- S t a t e -------------
5364   //  -- rsp[0]                  : return address
5365   //  -- rsp[8]                  : name
5366   //  -- rsp[16 - kArgsLength*8] : PropertyCallbackArguments object
5367   //  -- ...
5368   //  -- r8                    : api_function_address
5369   // -----------------------------------
5370 
5371 #if defined(__MINGW64__) || defined(_WIN64)
5372   Register getter_arg = r8;
5373   Register accessor_info_arg = rdx;
5374   Register name_arg = rcx;
5375 #else
5376   Register getter_arg = rdx;
5377   Register accessor_info_arg = rsi;
5378   Register name_arg = rdi;
5379 #endif
5380   Register api_function_address = ApiGetterDescriptor::function_address();
5381   DCHECK(api_function_address.is(r8));
5382   Register scratch = rax;
5383 
5384   // v8::Arguments::values_ and handler for name.
5385   const int kStackSpace = PropertyCallbackArguments::kArgsLength + 1;
5386 
5387   // Allocate v8::AccessorInfo in non-GCed stack space.
5388   const int kArgStackSpace = 1;
5389 
5390   __ leap(name_arg, Operand(rsp, kPCOnStackSize));
5391 
5392   PrepareCallApiFunction(masm, kArgStackSpace);
5393   __ leap(scratch, Operand(name_arg, 1 * kPointerSize));
5394 
5395   // v8::PropertyAccessorInfo::args_.
5396   __ movp(StackSpaceOperand(0), scratch);
5397 
5398   // The context register (rsi) has been saved in PrepareCallApiFunction and
5399   // could be used to pass arguments.
5400   __ leap(accessor_info_arg, StackSpaceOperand(0));
5401 
5402   ExternalReference thunk_ref =
5403       ExternalReference::invoke_accessor_getter_callback(isolate());
5404 
5405   // It's okay if api_function_address == getter_arg
5406   // but not accessor_info_arg or name_arg
5407   DCHECK(!api_function_address.is(accessor_info_arg) &&
5408          !api_function_address.is(name_arg));
5409 
5410   // The name handler is counted as an argument.
5411   StackArgumentsAccessor args(rbp, PropertyCallbackArguments::kArgsLength);
5412   Operand return_value_operand = args.GetArgumentOperand(
5413       PropertyCallbackArguments::kArgsLength - 1 -
5414       PropertyCallbackArguments::kReturnValueOffset);
5415   CallApiFunctionAndReturn(masm, api_function_address, thunk_ref, getter_arg,
5416                            kStackSpace, nullptr, return_value_operand, NULL);
5417 }
5418 
5419 
5420 #undef __
5421 
5422 }  // namespace internal
5423 }  // namespace v8
5424 
5425 #endif  // V8_TARGET_ARCH_X64
5426