1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #include "src/zone.h"
6
7 #include <cstring>
8
9 #include "src/v8.h"
10
11 #ifdef V8_USE_ADDRESS_SANITIZER
12 #include <sanitizer/asan_interface.h>
13 #endif // V8_USE_ADDRESS_SANITIZER
14
15 namespace v8 {
16 namespace internal {
17
18 namespace {
19
20 #if V8_USE_ADDRESS_SANITIZER
21
22 const size_t kASanRedzoneBytes = 24; // Must be a multiple of 8.
23
24 #else
25
26 #define ASAN_POISON_MEMORY_REGION(start, size) \
27 do { \
28 USE(start); \
29 USE(size); \
30 } while (false)
31
32 #define ASAN_UNPOISON_MEMORY_REGION(start, size) \
33 do { \
34 USE(start); \
35 USE(size); \
36 } while (false)
37
38 const size_t kASanRedzoneBytes = 0;
39
40 #endif // V8_USE_ADDRESS_SANITIZER
41
42 } // namespace
43
44
45 // Segments represent chunks of memory: They have starting address
46 // (encoded in the this pointer) and a size in bytes. Segments are
47 // chained together forming a LIFO structure with the newest segment
48 // available as segment_head_. Segments are allocated using malloc()
49 // and de-allocated using free().
50
51 class Segment {
52 public:
Initialize(Segment * next,size_t size)53 void Initialize(Segment* next, size_t size) {
54 next_ = next;
55 size_ = size;
56 }
57
next() const58 Segment* next() const { return next_; }
clear_next()59 void clear_next() { next_ = nullptr; }
60
size() const61 size_t size() const { return size_; }
capacity() const62 size_t capacity() const { return size_ - sizeof(Segment); }
63
start() const64 Address start() const { return address(sizeof(Segment)); }
end() const65 Address end() const { return address(size_); }
66
67 private:
68 // Computes the address of the nth byte in this segment.
address(size_t n) const69 Address address(size_t n) const { return Address(this) + n; }
70
71 Segment* next_;
72 size_t size_;
73 };
74
75
Zone()76 Zone::Zone()
77 : allocation_size_(0),
78 segment_bytes_allocated_(0),
79 position_(0),
80 limit_(0),
81 segment_head_(nullptr) {}
82
83
~Zone()84 Zone::~Zone() {
85 DeleteAll();
86 DeleteKeptSegment();
87
88 DCHECK(segment_bytes_allocated_ == 0);
89 }
90
91
New(size_t size)92 void* Zone::New(size_t size) {
93 // Round up the requested size to fit the alignment.
94 size = RoundUp(size, kAlignment);
95
96 // If the allocation size is divisible by 8 then we return an 8-byte aligned
97 // address.
98 if (kPointerSize == 4 && kAlignment == 4) {
99 position_ += ((~size) & 4) & (reinterpret_cast<intptr_t>(position_) & 4);
100 } else {
101 DCHECK(kAlignment >= kPointerSize);
102 }
103
104 // Check if the requested size is available without expanding.
105 Address result = position_;
106
107 const size_t size_with_redzone = size + kASanRedzoneBytes;
108 if (limit_ < position_ + size_with_redzone) {
109 result = NewExpand(size_with_redzone);
110 } else {
111 position_ += size_with_redzone;
112 }
113
114 Address redzone_position = result + size;
115 DCHECK(redzone_position + kASanRedzoneBytes == position_);
116 ASAN_POISON_MEMORY_REGION(redzone_position, kASanRedzoneBytes);
117
118 // Check that the result has the proper alignment and return it.
119 DCHECK(IsAddressAligned(result, kAlignment, 0));
120 allocation_size_ += size;
121 return reinterpret_cast<void*>(result);
122 }
123
124
DeleteAll()125 void Zone::DeleteAll() {
126 #ifdef DEBUG
127 // Constant byte value used for zapping dead memory in debug mode.
128 static const unsigned char kZapDeadByte = 0xcd;
129 #endif
130
131 // Find a segment with a suitable size to keep around.
132 Segment* keep = nullptr;
133 // Traverse the chained list of segments, zapping (in debug mode)
134 // and freeing every segment except the one we wish to keep.
135 for (Segment* current = segment_head_; current;) {
136 Segment* next = current->next();
137 if (!keep && current->size() <= kMaximumKeptSegmentSize) {
138 // Unlink the segment we wish to keep from the list.
139 keep = current;
140 keep->clear_next();
141 } else {
142 size_t size = current->size();
143 #ifdef DEBUG
144 // Un-poison first so the zapping doesn't trigger ASan complaints.
145 ASAN_UNPOISON_MEMORY_REGION(current, size);
146 // Zap the entire current segment (including the header).
147 memset(current, kZapDeadByte, size);
148 #endif
149 DeleteSegment(current, size);
150 }
151 current = next;
152 }
153
154 // If we have found a segment we want to keep, we must recompute the
155 // variables 'position' and 'limit' to prepare for future allocate
156 // attempts. Otherwise, we must clear the position and limit to
157 // force a new segment to be allocated on demand.
158 if (keep) {
159 Address start = keep->start();
160 position_ = RoundUp(start, kAlignment);
161 limit_ = keep->end();
162 // Un-poison so we can re-use the segment later.
163 ASAN_UNPOISON_MEMORY_REGION(start, keep->capacity());
164 #ifdef DEBUG
165 // Zap the contents of the kept segment (but not the header).
166 memset(start, kZapDeadByte, keep->capacity());
167 #endif
168 } else {
169 position_ = limit_ = 0;
170 }
171
172 allocation_size_ = 0;
173 // Update the head segment to be the kept segment (if any).
174 segment_head_ = keep;
175 }
176
177
DeleteKeptSegment()178 void Zone::DeleteKeptSegment() {
179 #ifdef DEBUG
180 // Constant byte value used for zapping dead memory in debug mode.
181 static const unsigned char kZapDeadByte = 0xcd;
182 #endif
183
184 DCHECK(segment_head_ == nullptr || segment_head_->next() == nullptr);
185 if (segment_head_ != nullptr) {
186 size_t size = segment_head_->size();
187 #ifdef DEBUG
188 // Un-poison first so the zapping doesn't trigger ASan complaints.
189 ASAN_UNPOISON_MEMORY_REGION(segment_head_, size);
190 // Zap the entire kept segment (including the header).
191 memset(segment_head_, kZapDeadByte, size);
192 #endif
193 DeleteSegment(segment_head_, size);
194 segment_head_ = nullptr;
195 }
196
197 DCHECK(segment_bytes_allocated_ == 0);
198 }
199
200
201 // Creates a new segment, sets it size, and pushes it to the front
202 // of the segment chain. Returns the new segment.
NewSegment(size_t size)203 Segment* Zone::NewSegment(size_t size) {
204 Segment* result = reinterpret_cast<Segment*>(Malloced::New(size));
205 segment_bytes_allocated_ += size;
206 if (result != nullptr) {
207 result->Initialize(segment_head_, size);
208 segment_head_ = result;
209 }
210 return result;
211 }
212
213
214 // Deletes the given segment. Does not touch the segment chain.
DeleteSegment(Segment * segment,size_t size)215 void Zone::DeleteSegment(Segment* segment, size_t size) {
216 segment_bytes_allocated_ -= size;
217 Malloced::Delete(segment);
218 }
219
220
NewExpand(size_t size)221 Address Zone::NewExpand(size_t size) {
222 // Make sure the requested size is already properly aligned and that
223 // there isn't enough room in the Zone to satisfy the request.
224 DCHECK_EQ(size, RoundDown(size, kAlignment));
225 DCHECK_LT(limit_, position_ + size);
226
227 // Compute the new segment size. We use a 'high water mark'
228 // strategy, where we increase the segment size every time we expand
229 // except that we employ a maximum segment size when we delete. This
230 // is to avoid excessive malloc() and free() overhead.
231 Segment* head = segment_head_;
232 const size_t old_size = (head == nullptr) ? 0 : head->size();
233 static const size_t kSegmentOverhead = sizeof(Segment) + kAlignment;
234 const size_t new_size_no_overhead = size + (old_size << 1);
235 size_t new_size = kSegmentOverhead + new_size_no_overhead;
236 const size_t min_new_size = kSegmentOverhead + size;
237 // Guard against integer overflow.
238 if (new_size_no_overhead < size || new_size < kSegmentOverhead) {
239 V8::FatalProcessOutOfMemory("Zone");
240 return nullptr;
241 }
242 if (new_size < kMinimumSegmentSize) {
243 new_size = kMinimumSegmentSize;
244 } else if (new_size > kMaximumSegmentSize) {
245 // Limit the size of new segments to avoid growing the segment size
246 // exponentially, thus putting pressure on contiguous virtual address space.
247 // All the while making sure to allocate a segment large enough to hold the
248 // requested size.
249 new_size = Max(min_new_size, kMaximumSegmentSize);
250 }
251 if (new_size > INT_MAX) {
252 V8::FatalProcessOutOfMemory("Zone");
253 return nullptr;
254 }
255 Segment* segment = NewSegment(new_size);
256 if (segment == nullptr) {
257 V8::FatalProcessOutOfMemory("Zone");
258 return nullptr;
259 }
260
261 // Recompute 'top' and 'limit' based on the new segment.
262 Address result = RoundUp(segment->start(), kAlignment);
263 position_ = result + size;
264 // Check for address overflow.
265 // (Should not happen since the segment is guaranteed to accomodate
266 // size bytes + header and alignment padding)
267 DCHECK(reinterpret_cast<uintptr_t>(position_) >=
268 reinterpret_cast<uintptr_t>(result));
269 limit_ = segment->end();
270 DCHECK(position_ <= limit_);
271 return result;
272 }
273
274 } // namespace internal
275 } // namespace v8
276