• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2011 Google Inc. All Rights Reserved.
2 //
3 // Use of this source code is governed by a BSD-style license
4 // that can be found in the COPYING file in the root of the source
5 // tree. An additional intellectual property rights grant can be found
6 // in the file PATENTS. All contributing project authors may
7 // be found in the AUTHORS file in the root of the source tree.
8 // -----------------------------------------------------------------------------
9 //
10 // SSE2 version of some decoding functions (idct, loop filtering).
11 //
12 // Author: somnath@google.com (Somnath Banerjee)
13 //         cduvivier@google.com (Christian Duvivier)
14 
15 #include "./dsp.h"
16 
17 #if defined(WEBP_USE_SSE2)
18 
19 // The 3-coeff sparse transform in SSE2 is not really faster than the plain-C
20 // one it seems => disable it by default. Uncomment the following to enable:
21 // #define USE_TRANSFORM_AC3
22 
23 #include <emmintrin.h>
24 #include "../dec/vp8i.h"
25 
26 //------------------------------------------------------------------------------
27 // Transforms (Paragraph 14.4)
28 
Transform(const int16_t * in,uint8_t * dst,int do_two)29 static void Transform(const int16_t* in, uint8_t* dst, int do_two) {
30   // This implementation makes use of 16-bit fixed point versions of two
31   // multiply constants:
32   //    K1 = sqrt(2) * cos (pi/8) ~= 85627 / 2^16
33   //    K2 = sqrt(2) * sin (pi/8) ~= 35468 / 2^16
34   //
35   // To be able to use signed 16-bit integers, we use the following trick to
36   // have constants within range:
37   // - Associated constants are obtained by subtracting the 16-bit fixed point
38   //   version of one:
39   //      k = K - (1 << 16)  =>  K = k + (1 << 16)
40   //      K1 = 85267  =>  k1 =  20091
41   //      K2 = 35468  =>  k2 = -30068
42   // - The multiplication of a variable by a constant become the sum of the
43   //   variable and the multiplication of that variable by the associated
44   //   constant:
45   //      (x * K) >> 16 = (x * (k + (1 << 16))) >> 16 = ((x * k ) >> 16) + x
46   const __m128i k1 = _mm_set1_epi16(20091);
47   const __m128i k2 = _mm_set1_epi16(-30068);
48   __m128i T0, T1, T2, T3;
49 
50   // Load and concatenate the transform coefficients (we'll do two transforms
51   // in parallel). In the case of only one transform, the second half of the
52   // vectors will just contain random value we'll never use nor store.
53   __m128i in0, in1, in2, in3;
54   {
55     in0 = _mm_loadl_epi64((const __m128i*)&in[0]);
56     in1 = _mm_loadl_epi64((const __m128i*)&in[4]);
57     in2 = _mm_loadl_epi64((const __m128i*)&in[8]);
58     in3 = _mm_loadl_epi64((const __m128i*)&in[12]);
59     // a00 a10 a20 a30   x x x x
60     // a01 a11 a21 a31   x x x x
61     // a02 a12 a22 a32   x x x x
62     // a03 a13 a23 a33   x x x x
63     if (do_two) {
64       const __m128i inB0 = _mm_loadl_epi64((const __m128i*)&in[16]);
65       const __m128i inB1 = _mm_loadl_epi64((const __m128i*)&in[20]);
66       const __m128i inB2 = _mm_loadl_epi64((const __m128i*)&in[24]);
67       const __m128i inB3 = _mm_loadl_epi64((const __m128i*)&in[28]);
68       in0 = _mm_unpacklo_epi64(in0, inB0);
69       in1 = _mm_unpacklo_epi64(in1, inB1);
70       in2 = _mm_unpacklo_epi64(in2, inB2);
71       in3 = _mm_unpacklo_epi64(in3, inB3);
72       // a00 a10 a20 a30   b00 b10 b20 b30
73       // a01 a11 a21 a31   b01 b11 b21 b31
74       // a02 a12 a22 a32   b02 b12 b22 b32
75       // a03 a13 a23 a33   b03 b13 b23 b33
76     }
77   }
78 
79   // Vertical pass and subsequent transpose.
80   {
81     // First pass, c and d calculations are longer because of the "trick"
82     // multiplications.
83     const __m128i a = _mm_add_epi16(in0, in2);
84     const __m128i b = _mm_sub_epi16(in0, in2);
85     // c = MUL(in1, K2) - MUL(in3, K1) = MUL(in1, k2) - MUL(in3, k1) + in1 - in3
86     const __m128i c1 = _mm_mulhi_epi16(in1, k2);
87     const __m128i c2 = _mm_mulhi_epi16(in3, k1);
88     const __m128i c3 = _mm_sub_epi16(in1, in3);
89     const __m128i c4 = _mm_sub_epi16(c1, c2);
90     const __m128i c = _mm_add_epi16(c3, c4);
91     // d = MUL(in1, K1) + MUL(in3, K2) = MUL(in1, k1) + MUL(in3, k2) + in1 + in3
92     const __m128i d1 = _mm_mulhi_epi16(in1, k1);
93     const __m128i d2 = _mm_mulhi_epi16(in3, k2);
94     const __m128i d3 = _mm_add_epi16(in1, in3);
95     const __m128i d4 = _mm_add_epi16(d1, d2);
96     const __m128i d = _mm_add_epi16(d3, d4);
97 
98     // Second pass.
99     const __m128i tmp0 = _mm_add_epi16(a, d);
100     const __m128i tmp1 = _mm_add_epi16(b, c);
101     const __m128i tmp2 = _mm_sub_epi16(b, c);
102     const __m128i tmp3 = _mm_sub_epi16(a, d);
103 
104     // Transpose the two 4x4.
105     // a00 a01 a02 a03   b00 b01 b02 b03
106     // a10 a11 a12 a13   b10 b11 b12 b13
107     // a20 a21 a22 a23   b20 b21 b22 b23
108     // a30 a31 a32 a33   b30 b31 b32 b33
109     const __m128i transpose0_0 = _mm_unpacklo_epi16(tmp0, tmp1);
110     const __m128i transpose0_1 = _mm_unpacklo_epi16(tmp2, tmp3);
111     const __m128i transpose0_2 = _mm_unpackhi_epi16(tmp0, tmp1);
112     const __m128i transpose0_3 = _mm_unpackhi_epi16(tmp2, tmp3);
113     // a00 a10 a01 a11   a02 a12 a03 a13
114     // a20 a30 a21 a31   a22 a32 a23 a33
115     // b00 b10 b01 b11   b02 b12 b03 b13
116     // b20 b30 b21 b31   b22 b32 b23 b33
117     const __m128i transpose1_0 = _mm_unpacklo_epi32(transpose0_0, transpose0_1);
118     const __m128i transpose1_1 = _mm_unpacklo_epi32(transpose0_2, transpose0_3);
119     const __m128i transpose1_2 = _mm_unpackhi_epi32(transpose0_0, transpose0_1);
120     const __m128i transpose1_3 = _mm_unpackhi_epi32(transpose0_2, transpose0_3);
121     // a00 a10 a20 a30 a01 a11 a21 a31
122     // b00 b10 b20 b30 b01 b11 b21 b31
123     // a02 a12 a22 a32 a03 a13 a23 a33
124     // b02 b12 a22 b32 b03 b13 b23 b33
125     T0 = _mm_unpacklo_epi64(transpose1_0, transpose1_1);
126     T1 = _mm_unpackhi_epi64(transpose1_0, transpose1_1);
127     T2 = _mm_unpacklo_epi64(transpose1_2, transpose1_3);
128     T3 = _mm_unpackhi_epi64(transpose1_2, transpose1_3);
129     // a00 a10 a20 a30   b00 b10 b20 b30
130     // a01 a11 a21 a31   b01 b11 b21 b31
131     // a02 a12 a22 a32   b02 b12 b22 b32
132     // a03 a13 a23 a33   b03 b13 b23 b33
133   }
134 
135   // Horizontal pass and subsequent transpose.
136   {
137     // First pass, c and d calculations are longer because of the "trick"
138     // multiplications.
139     const __m128i four = _mm_set1_epi16(4);
140     const __m128i dc = _mm_add_epi16(T0, four);
141     const __m128i a =  _mm_add_epi16(dc, T2);
142     const __m128i b =  _mm_sub_epi16(dc, T2);
143     // c = MUL(T1, K2) - MUL(T3, K1) = MUL(T1, k2) - MUL(T3, k1) + T1 - T3
144     const __m128i c1 = _mm_mulhi_epi16(T1, k2);
145     const __m128i c2 = _mm_mulhi_epi16(T3, k1);
146     const __m128i c3 = _mm_sub_epi16(T1, T3);
147     const __m128i c4 = _mm_sub_epi16(c1, c2);
148     const __m128i c = _mm_add_epi16(c3, c4);
149     // d = MUL(T1, K1) + MUL(T3, K2) = MUL(T1, k1) + MUL(T3, k2) + T1 + T3
150     const __m128i d1 = _mm_mulhi_epi16(T1, k1);
151     const __m128i d2 = _mm_mulhi_epi16(T3, k2);
152     const __m128i d3 = _mm_add_epi16(T1, T3);
153     const __m128i d4 = _mm_add_epi16(d1, d2);
154     const __m128i d = _mm_add_epi16(d3, d4);
155 
156     // Second pass.
157     const __m128i tmp0 = _mm_add_epi16(a, d);
158     const __m128i tmp1 = _mm_add_epi16(b, c);
159     const __m128i tmp2 = _mm_sub_epi16(b, c);
160     const __m128i tmp3 = _mm_sub_epi16(a, d);
161     const __m128i shifted0 = _mm_srai_epi16(tmp0, 3);
162     const __m128i shifted1 = _mm_srai_epi16(tmp1, 3);
163     const __m128i shifted2 = _mm_srai_epi16(tmp2, 3);
164     const __m128i shifted3 = _mm_srai_epi16(tmp3, 3);
165 
166     // Transpose the two 4x4.
167     // a00 a01 a02 a03   b00 b01 b02 b03
168     // a10 a11 a12 a13   b10 b11 b12 b13
169     // a20 a21 a22 a23   b20 b21 b22 b23
170     // a30 a31 a32 a33   b30 b31 b32 b33
171     const __m128i transpose0_0 = _mm_unpacklo_epi16(shifted0, shifted1);
172     const __m128i transpose0_1 = _mm_unpacklo_epi16(shifted2, shifted3);
173     const __m128i transpose0_2 = _mm_unpackhi_epi16(shifted0, shifted1);
174     const __m128i transpose0_3 = _mm_unpackhi_epi16(shifted2, shifted3);
175     // a00 a10 a01 a11   a02 a12 a03 a13
176     // a20 a30 a21 a31   a22 a32 a23 a33
177     // b00 b10 b01 b11   b02 b12 b03 b13
178     // b20 b30 b21 b31   b22 b32 b23 b33
179     const __m128i transpose1_0 = _mm_unpacklo_epi32(transpose0_0, transpose0_1);
180     const __m128i transpose1_1 = _mm_unpacklo_epi32(transpose0_2, transpose0_3);
181     const __m128i transpose1_2 = _mm_unpackhi_epi32(transpose0_0, transpose0_1);
182     const __m128i transpose1_3 = _mm_unpackhi_epi32(transpose0_2, transpose0_3);
183     // a00 a10 a20 a30 a01 a11 a21 a31
184     // b00 b10 b20 b30 b01 b11 b21 b31
185     // a02 a12 a22 a32 a03 a13 a23 a33
186     // b02 b12 a22 b32 b03 b13 b23 b33
187     T0 = _mm_unpacklo_epi64(transpose1_0, transpose1_1);
188     T1 = _mm_unpackhi_epi64(transpose1_0, transpose1_1);
189     T2 = _mm_unpacklo_epi64(transpose1_2, transpose1_3);
190     T3 = _mm_unpackhi_epi64(transpose1_2, transpose1_3);
191     // a00 a10 a20 a30   b00 b10 b20 b30
192     // a01 a11 a21 a31   b01 b11 b21 b31
193     // a02 a12 a22 a32   b02 b12 b22 b32
194     // a03 a13 a23 a33   b03 b13 b23 b33
195   }
196 
197   // Add inverse transform to 'dst' and store.
198   {
199     const __m128i zero = _mm_setzero_si128();
200     // Load the reference(s).
201     __m128i dst0, dst1, dst2, dst3;
202     if (do_two) {
203       // Load eight bytes/pixels per line.
204       dst0 = _mm_loadl_epi64((__m128i*)(dst + 0 * BPS));
205       dst1 = _mm_loadl_epi64((__m128i*)(dst + 1 * BPS));
206       dst2 = _mm_loadl_epi64((__m128i*)(dst + 2 * BPS));
207       dst3 = _mm_loadl_epi64((__m128i*)(dst + 3 * BPS));
208     } else {
209       // Load four bytes/pixels per line.
210       dst0 = _mm_cvtsi32_si128(WebPMemToUint32(dst + 0 * BPS));
211       dst1 = _mm_cvtsi32_si128(WebPMemToUint32(dst + 1 * BPS));
212       dst2 = _mm_cvtsi32_si128(WebPMemToUint32(dst + 2 * BPS));
213       dst3 = _mm_cvtsi32_si128(WebPMemToUint32(dst + 3 * BPS));
214     }
215     // Convert to 16b.
216     dst0 = _mm_unpacklo_epi8(dst0, zero);
217     dst1 = _mm_unpacklo_epi8(dst1, zero);
218     dst2 = _mm_unpacklo_epi8(dst2, zero);
219     dst3 = _mm_unpacklo_epi8(dst3, zero);
220     // Add the inverse transform(s).
221     dst0 = _mm_add_epi16(dst0, T0);
222     dst1 = _mm_add_epi16(dst1, T1);
223     dst2 = _mm_add_epi16(dst2, T2);
224     dst3 = _mm_add_epi16(dst3, T3);
225     // Unsigned saturate to 8b.
226     dst0 = _mm_packus_epi16(dst0, dst0);
227     dst1 = _mm_packus_epi16(dst1, dst1);
228     dst2 = _mm_packus_epi16(dst2, dst2);
229     dst3 = _mm_packus_epi16(dst3, dst3);
230     // Store the results.
231     if (do_two) {
232       // Store eight bytes/pixels per line.
233       _mm_storel_epi64((__m128i*)(dst + 0 * BPS), dst0);
234       _mm_storel_epi64((__m128i*)(dst + 1 * BPS), dst1);
235       _mm_storel_epi64((__m128i*)(dst + 2 * BPS), dst2);
236       _mm_storel_epi64((__m128i*)(dst + 3 * BPS), dst3);
237     } else {
238       // Store four bytes/pixels per line.
239       WebPUint32ToMem(dst + 0 * BPS, _mm_cvtsi128_si32(dst0));
240       WebPUint32ToMem(dst + 1 * BPS, _mm_cvtsi128_si32(dst1));
241       WebPUint32ToMem(dst + 2 * BPS, _mm_cvtsi128_si32(dst2));
242       WebPUint32ToMem(dst + 3 * BPS, _mm_cvtsi128_si32(dst3));
243     }
244   }
245 }
246 
247 #if defined(USE_TRANSFORM_AC3)
248 #define MUL(a, b) (((a) * (b)) >> 16)
TransformAC3(const int16_t * in,uint8_t * dst)249 static void TransformAC3(const int16_t* in, uint8_t* dst) {
250   static const int kC1 = 20091 + (1 << 16);
251   static const int kC2 = 35468;
252   const __m128i A = _mm_set1_epi16(in[0] + 4);
253   const __m128i c4 = _mm_set1_epi16(MUL(in[4], kC2));
254   const __m128i d4 = _mm_set1_epi16(MUL(in[4], kC1));
255   const int c1 = MUL(in[1], kC2);
256   const int d1 = MUL(in[1], kC1);
257   const __m128i CD = _mm_set_epi16(0, 0, 0, 0, -d1, -c1, c1, d1);
258   const __m128i B = _mm_adds_epi16(A, CD);
259   const __m128i m0 = _mm_adds_epi16(B, d4);
260   const __m128i m1 = _mm_adds_epi16(B, c4);
261   const __m128i m2 = _mm_subs_epi16(B, c4);
262   const __m128i m3 = _mm_subs_epi16(B, d4);
263   const __m128i zero = _mm_setzero_si128();
264   // Load the source pixels.
265   __m128i dst0 = _mm_cvtsi32_si128(WebPMemToUint32(dst + 0 * BPS));
266   __m128i dst1 = _mm_cvtsi32_si128(WebPMemToUint32(dst + 1 * BPS));
267   __m128i dst2 = _mm_cvtsi32_si128(WebPMemToUint32(dst + 2 * BPS));
268   __m128i dst3 = _mm_cvtsi32_si128(WebPMemToUint32(dst + 3 * BPS));
269   // Convert to 16b.
270   dst0 = _mm_unpacklo_epi8(dst0, zero);
271   dst1 = _mm_unpacklo_epi8(dst1, zero);
272   dst2 = _mm_unpacklo_epi8(dst2, zero);
273   dst3 = _mm_unpacklo_epi8(dst3, zero);
274   // Add the inverse transform.
275   dst0 = _mm_adds_epi16(dst0, _mm_srai_epi16(m0, 3));
276   dst1 = _mm_adds_epi16(dst1, _mm_srai_epi16(m1, 3));
277   dst2 = _mm_adds_epi16(dst2, _mm_srai_epi16(m2, 3));
278   dst3 = _mm_adds_epi16(dst3, _mm_srai_epi16(m3, 3));
279   // Unsigned saturate to 8b.
280   dst0 = _mm_packus_epi16(dst0, dst0);
281   dst1 = _mm_packus_epi16(dst1, dst1);
282   dst2 = _mm_packus_epi16(dst2, dst2);
283   dst3 = _mm_packus_epi16(dst3, dst3);
284   // Store the results.
285   WebPUint32ToMem(dst + 0 * BPS, _mm_cvtsi128_si32(dst0));
286   WebPUint32ToMem(dst + 1 * BPS, _mm_cvtsi128_si32(dst1));
287   WebPUint32ToMem(dst + 2 * BPS, _mm_cvtsi128_si32(dst2));
288   WebPUint32ToMem(dst + 3 * BPS, _mm_cvtsi128_si32(dst3));
289 }
290 #undef MUL
291 #endif   // USE_TRANSFORM_AC3
292 
293 //------------------------------------------------------------------------------
294 // Loop Filter (Paragraph 15)
295 
296 // Compute abs(p - q) = subs(p - q) OR subs(q - p)
297 #define MM_ABS(p, q)  _mm_or_si128(                                            \
298     _mm_subs_epu8((q), (p)),                                                   \
299     _mm_subs_epu8((p), (q)))
300 
301 // Shift each byte of "x" by 3 bits while preserving by the sign bit.
SignedShift8b(__m128i * const x)302 static WEBP_INLINE void SignedShift8b(__m128i* const x) {
303   const __m128i zero = _mm_setzero_si128();
304   const __m128i lo_0 = _mm_unpacklo_epi8(zero, *x);
305   const __m128i hi_0 = _mm_unpackhi_epi8(zero, *x);
306   const __m128i lo_1 = _mm_srai_epi16(lo_0, 3 + 8);
307   const __m128i hi_1 = _mm_srai_epi16(hi_0, 3 + 8);
308   *x = _mm_packs_epi16(lo_1, hi_1);
309 }
310 
311 #define FLIP_SIGN_BIT2(a, b) {                                                 \
312   a = _mm_xor_si128(a, sign_bit);                                              \
313   b = _mm_xor_si128(b, sign_bit);                                              \
314 }
315 
316 #define FLIP_SIGN_BIT4(a, b, c, d) {                                           \
317   FLIP_SIGN_BIT2(a, b);                                                        \
318   FLIP_SIGN_BIT2(c, d);                                                        \
319 }
320 
321 // input/output is uint8_t
GetNotHEV(const __m128i * const p1,const __m128i * const p0,const __m128i * const q0,const __m128i * const q1,int hev_thresh,__m128i * const not_hev)322 static WEBP_INLINE void GetNotHEV(const __m128i* const p1,
323                                   const __m128i* const p0,
324                                   const __m128i* const q0,
325                                   const __m128i* const q1,
326                                   int hev_thresh, __m128i* const not_hev) {
327   const __m128i zero = _mm_setzero_si128();
328   const __m128i t_1 = MM_ABS(*p1, *p0);
329   const __m128i t_2 = MM_ABS(*q1, *q0);
330 
331   const __m128i h = _mm_set1_epi8(hev_thresh);
332   const __m128i t_max = _mm_max_epu8(t_1, t_2);
333 
334   const __m128i t_max_h = _mm_subs_epu8(t_max, h);
335   *not_hev = _mm_cmpeq_epi8(t_max_h, zero);  // not_hev <= t1 && not_hev <= t2
336 }
337 
338 // input pixels are int8_t
GetBaseDelta(const __m128i * const p1,const __m128i * const p0,const __m128i * const q0,const __m128i * const q1,__m128i * const delta)339 static WEBP_INLINE void GetBaseDelta(const __m128i* const p1,
340                                      const __m128i* const p0,
341                                      const __m128i* const q0,
342                                      const __m128i* const q1,
343                                      __m128i* const delta) {
344   // beware of addition order, for saturation!
345   const __m128i p1_q1 = _mm_subs_epi8(*p1, *q1);   // p1 - q1
346   const __m128i q0_p0 = _mm_subs_epi8(*q0, *p0);   // q0 - p0
347   const __m128i s1 = _mm_adds_epi8(p1_q1, q0_p0);  // p1 - q1 + 1 * (q0 - p0)
348   const __m128i s2 = _mm_adds_epi8(q0_p0, s1);     // p1 - q1 + 2 * (q0 - p0)
349   const __m128i s3 = _mm_adds_epi8(q0_p0, s2);     // p1 - q1 + 3 * (q0 - p0)
350   *delta = s3;
351 }
352 
353 // input and output are int8_t
DoSimpleFilter(__m128i * const p0,__m128i * const q0,const __m128i * const fl)354 static WEBP_INLINE void DoSimpleFilter(__m128i* const p0, __m128i* const q0,
355                                        const __m128i* const fl) {
356   const __m128i k3 = _mm_set1_epi8(3);
357   const __m128i k4 = _mm_set1_epi8(4);
358   __m128i v3 = _mm_adds_epi8(*fl, k3);
359   __m128i v4 = _mm_adds_epi8(*fl, k4);
360 
361   SignedShift8b(&v4);                  // v4 >> 3
362   SignedShift8b(&v3);                  // v3 >> 3
363   *q0 = _mm_subs_epi8(*q0, v4);        // q0 -= v4
364   *p0 = _mm_adds_epi8(*p0, v3);        // p0 += v3
365 }
366 
367 // Updates values of 2 pixels at MB edge during complex filtering.
368 // Update operations:
369 // q = q - delta and p = p + delta; where delta = [(a_hi >> 7), (a_lo >> 7)]
370 // Pixels 'pi' and 'qi' are int8_t on input, uint8_t on output (sign flip).
Update2Pixels(__m128i * const pi,__m128i * const qi,const __m128i * const a0_lo,const __m128i * const a0_hi)371 static WEBP_INLINE void Update2Pixels(__m128i* const pi, __m128i* const qi,
372                                       const __m128i* const a0_lo,
373                                       const __m128i* const a0_hi) {
374   const __m128i a1_lo = _mm_srai_epi16(*a0_lo, 7);
375   const __m128i a1_hi = _mm_srai_epi16(*a0_hi, 7);
376   const __m128i delta = _mm_packs_epi16(a1_lo, a1_hi);
377   const __m128i sign_bit = _mm_set1_epi8(0x80);
378   *pi = _mm_adds_epi8(*pi, delta);
379   *qi = _mm_subs_epi8(*qi, delta);
380   FLIP_SIGN_BIT2(*pi, *qi);
381 }
382 
383 // input pixels are uint8_t
NeedsFilter(const __m128i * const p1,const __m128i * const p0,const __m128i * const q0,const __m128i * const q1,int thresh,__m128i * const mask)384 static WEBP_INLINE void NeedsFilter(const __m128i* const p1,
385                                     const __m128i* const p0,
386                                     const __m128i* const q0,
387                                     const __m128i* const q1,
388                                     int thresh, __m128i* const mask) {
389   const __m128i m_thresh = _mm_set1_epi8(thresh);
390   const __m128i t1 = MM_ABS(*p1, *q1);        // abs(p1 - q1)
391   const __m128i kFE = _mm_set1_epi8(0xFE);
392   const __m128i t2 = _mm_and_si128(t1, kFE);  // set lsb of each byte to zero
393   const __m128i t3 = _mm_srli_epi16(t2, 1);   // abs(p1 - q1) / 2
394 
395   const __m128i t4 = MM_ABS(*p0, *q0);        // abs(p0 - q0)
396   const __m128i t5 = _mm_adds_epu8(t4, t4);   // abs(p0 - q0) * 2
397   const __m128i t6 = _mm_adds_epu8(t5, t3);   // abs(p0-q0)*2 + abs(p1-q1)/2
398 
399   const __m128i t7 = _mm_subs_epu8(t6, m_thresh);  // mask <= m_thresh
400   *mask = _mm_cmpeq_epi8(t7, _mm_setzero_si128());
401 }
402 
403 //------------------------------------------------------------------------------
404 // Edge filtering functions
405 
406 // Applies filter on 2 pixels (p0 and q0)
DoFilter2(__m128i * const p1,__m128i * const p0,__m128i * const q0,__m128i * const q1,int thresh)407 static WEBP_INLINE void DoFilter2(__m128i* const p1, __m128i* const p0,
408                                   __m128i* const q0, __m128i* const q1,
409                                   int thresh) {
410   __m128i a, mask;
411   const __m128i sign_bit = _mm_set1_epi8(0x80);
412   // convert p1/q1 to int8_t (for GetBaseDelta)
413   const __m128i p1s = _mm_xor_si128(*p1, sign_bit);
414   const __m128i q1s = _mm_xor_si128(*q1, sign_bit);
415 
416   NeedsFilter(p1, p0, q0, q1, thresh, &mask);
417 
418   FLIP_SIGN_BIT2(*p0, *q0);
419   GetBaseDelta(&p1s, p0, q0, &q1s, &a);
420   a = _mm_and_si128(a, mask);     // mask filter values we don't care about
421   DoSimpleFilter(p0, q0, &a);
422   FLIP_SIGN_BIT2(*p0, *q0);
423 }
424 
425 // Applies filter on 4 pixels (p1, p0, q0 and q1)
DoFilter4(__m128i * const p1,__m128i * const p0,__m128i * const q0,__m128i * const q1,const __m128i * const mask,int hev_thresh)426 static WEBP_INLINE void DoFilter4(__m128i* const p1, __m128i* const p0,
427                                   __m128i* const q0, __m128i* const q1,
428                                   const __m128i* const mask, int hev_thresh) {
429   const __m128i zero = _mm_setzero_si128();
430   const __m128i sign_bit = _mm_set1_epi8(0x80);
431   const __m128i k64 = _mm_set1_epi8(64);
432   const __m128i k3 = _mm_set1_epi8(3);
433   const __m128i k4 = _mm_set1_epi8(4);
434   __m128i not_hev;
435   __m128i t1, t2, t3;
436 
437   // compute hev mask
438   GetNotHEV(p1, p0, q0, q1, hev_thresh, &not_hev);
439 
440   // convert to signed values
441   FLIP_SIGN_BIT4(*p1, *p0, *q0, *q1);
442 
443   t1 = _mm_subs_epi8(*p1, *q1);        // p1 - q1
444   t1 = _mm_andnot_si128(not_hev, t1);  // hev(p1 - q1)
445   t2 = _mm_subs_epi8(*q0, *p0);        // q0 - p0
446   t1 = _mm_adds_epi8(t1, t2);          // hev(p1 - q1) + 1 * (q0 - p0)
447   t1 = _mm_adds_epi8(t1, t2);          // hev(p1 - q1) + 2 * (q0 - p0)
448   t1 = _mm_adds_epi8(t1, t2);          // hev(p1 - q1) + 3 * (q0 - p0)
449   t1 = _mm_and_si128(t1, *mask);       // mask filter values we don't care about
450 
451   t2 = _mm_adds_epi8(t1, k3);        // 3 * (q0 - p0) + hev(p1 - q1) + 3
452   t3 = _mm_adds_epi8(t1, k4);        // 3 * (q0 - p0) + hev(p1 - q1) + 4
453   SignedShift8b(&t2);                // (3 * (q0 - p0) + hev(p1 - q1) + 3) >> 3
454   SignedShift8b(&t3);                // (3 * (q0 - p0) + hev(p1 - q1) + 4) >> 3
455   *p0 = _mm_adds_epi8(*p0, t2);      // p0 += t2
456   *q0 = _mm_subs_epi8(*q0, t3);      // q0 -= t3
457   FLIP_SIGN_BIT2(*p0, *q0);
458 
459   // this is equivalent to signed (a + 1) >> 1 calculation
460   t2 = _mm_add_epi8(t3, sign_bit);
461   t3 = _mm_avg_epu8(t2, zero);
462   t3 = _mm_sub_epi8(t3, k64);
463 
464   t3 = _mm_and_si128(not_hev, t3);   // if !hev
465   *q1 = _mm_subs_epi8(*q1, t3);      // q1 -= t3
466   *p1 = _mm_adds_epi8(*p1, t3);      // p1 += t3
467   FLIP_SIGN_BIT2(*p1, *q1);
468 }
469 
470 // Applies filter on 6 pixels (p2, p1, p0, q0, q1 and q2)
DoFilter6(__m128i * const p2,__m128i * const p1,__m128i * const p0,__m128i * const q0,__m128i * const q1,__m128i * const q2,const __m128i * const mask,int hev_thresh)471 static WEBP_INLINE void DoFilter6(__m128i* const p2, __m128i* const p1,
472                                   __m128i* const p0, __m128i* const q0,
473                                   __m128i* const q1, __m128i* const q2,
474                                   const __m128i* const mask, int hev_thresh) {
475   const __m128i zero = _mm_setzero_si128();
476   const __m128i sign_bit = _mm_set1_epi8(0x80);
477   __m128i a, not_hev;
478 
479   // compute hev mask
480   GetNotHEV(p1, p0, q0, q1, hev_thresh, &not_hev);
481 
482   FLIP_SIGN_BIT4(*p1, *p0, *q0, *q1);
483   FLIP_SIGN_BIT2(*p2, *q2);
484   GetBaseDelta(p1, p0, q0, q1, &a);
485 
486   { // do simple filter on pixels with hev
487     const __m128i m = _mm_andnot_si128(not_hev, *mask);
488     const __m128i f = _mm_and_si128(a, m);
489     DoSimpleFilter(p0, q0, &f);
490   }
491 
492   { // do strong filter on pixels with not hev
493     const __m128i k9 = _mm_set1_epi16(0x0900);
494     const __m128i k63 = _mm_set1_epi16(63);
495 
496     const __m128i m = _mm_and_si128(not_hev, *mask);
497     const __m128i f = _mm_and_si128(a, m);
498 
499     const __m128i f_lo = _mm_unpacklo_epi8(zero, f);
500     const __m128i f_hi = _mm_unpackhi_epi8(zero, f);
501 
502     const __m128i f9_lo = _mm_mulhi_epi16(f_lo, k9);    // Filter (lo) * 9
503     const __m128i f9_hi = _mm_mulhi_epi16(f_hi, k9);    // Filter (hi) * 9
504 
505     const __m128i a2_lo = _mm_add_epi16(f9_lo, k63);    // Filter * 9 + 63
506     const __m128i a2_hi = _mm_add_epi16(f9_hi, k63);    // Filter * 9 + 63
507 
508     const __m128i a1_lo = _mm_add_epi16(a2_lo, f9_lo);  // Filter * 18 + 63
509     const __m128i a1_hi = _mm_add_epi16(a2_hi, f9_hi);  // Filter * 18 + 63
510 
511     const __m128i a0_lo = _mm_add_epi16(a1_lo, f9_lo);  // Filter * 27 + 63
512     const __m128i a0_hi = _mm_add_epi16(a1_hi, f9_hi);  // Filter * 27 + 63
513 
514     Update2Pixels(p2, q2, &a2_lo, &a2_hi);
515     Update2Pixels(p1, q1, &a1_lo, &a1_hi);
516     Update2Pixels(p0, q0, &a0_lo, &a0_hi);
517   }
518 }
519 
520 // reads 8 rows across a vertical edge.
Load8x4(const uint8_t * const b,int stride,__m128i * const p,__m128i * const q)521 static WEBP_INLINE void Load8x4(const uint8_t* const b, int stride,
522                                 __m128i* const p, __m128i* const q) {
523   // A0 = 63 62 61 60 23 22 21 20 43 42 41 40 03 02 01 00
524   // A1 = 73 72 71 70 33 32 31 30 53 52 51 50 13 12 11 10
525   const __m128i A0 = _mm_set_epi32(
526       WebPMemToUint32(&b[6 * stride]), WebPMemToUint32(&b[2 * stride]),
527       WebPMemToUint32(&b[4 * stride]), WebPMemToUint32(&b[0 * stride]));
528   const __m128i A1 = _mm_set_epi32(
529       WebPMemToUint32(&b[7 * stride]), WebPMemToUint32(&b[3 * stride]),
530       WebPMemToUint32(&b[5 * stride]), WebPMemToUint32(&b[1 * stride]));
531 
532   // B0 = 53 43 52 42 51 41 50 40 13 03 12 02 11 01 10 00
533   // B1 = 73 63 72 62 71 61 70 60 33 23 32 22 31 21 30 20
534   const __m128i B0 = _mm_unpacklo_epi8(A0, A1);
535   const __m128i B1 = _mm_unpackhi_epi8(A0, A1);
536 
537   // C0 = 33 23 13 03 32 22 12 02 31 21 11 01 30 20 10 00
538   // C1 = 73 63 53 43 72 62 52 42 71 61 51 41 70 60 50 40
539   const __m128i C0 = _mm_unpacklo_epi16(B0, B1);
540   const __m128i C1 = _mm_unpackhi_epi16(B0, B1);
541 
542   // *p = 71 61 51 41 31 21 11 01 70 60 50 40 30 20 10 00
543   // *q = 73 63 53 43 33 23 13 03 72 62 52 42 32 22 12 02
544   *p = _mm_unpacklo_epi32(C0, C1);
545   *q = _mm_unpackhi_epi32(C0, C1);
546 }
547 
Load16x4(const uint8_t * const r0,const uint8_t * const r8,int stride,__m128i * const p1,__m128i * const p0,__m128i * const q0,__m128i * const q1)548 static WEBP_INLINE void Load16x4(const uint8_t* const r0,
549                                  const uint8_t* const r8,
550                                  int stride,
551                                  __m128i* const p1, __m128i* const p0,
552                                  __m128i* const q0, __m128i* const q1) {
553   // Assume the pixels around the edge (|) are numbered as follows
554   //                00 01 | 02 03
555   //                10 11 | 12 13
556   //                 ...  |  ...
557   //                e0 e1 | e2 e3
558   //                f0 f1 | f2 f3
559   //
560   // r0 is pointing to the 0th row (00)
561   // r8 is pointing to the 8th row (80)
562 
563   // Load
564   // p1 = 71 61 51 41 31 21 11 01 70 60 50 40 30 20 10 00
565   // q0 = 73 63 53 43 33 23 13 03 72 62 52 42 32 22 12 02
566   // p0 = f1 e1 d1 c1 b1 a1 91 81 f0 e0 d0 c0 b0 a0 90 80
567   // q1 = f3 e3 d3 c3 b3 a3 93 83 f2 e2 d2 c2 b2 a2 92 82
568   Load8x4(r0, stride, p1, q0);
569   Load8x4(r8, stride, p0, q1);
570 
571   {
572     // p1 = f0 e0 d0 c0 b0 a0 90 80 70 60 50 40 30 20 10 00
573     // p0 = f1 e1 d1 c1 b1 a1 91 81 71 61 51 41 31 21 11 01
574     // q0 = f2 e2 d2 c2 b2 a2 92 82 72 62 52 42 32 22 12 02
575     // q1 = f3 e3 d3 c3 b3 a3 93 83 73 63 53 43 33 23 13 03
576     const __m128i t1 = *p1;
577     const __m128i t2 = *q0;
578     *p1 = _mm_unpacklo_epi64(t1, *p0);
579     *p0 = _mm_unpackhi_epi64(t1, *p0);
580     *q0 = _mm_unpacklo_epi64(t2, *q1);
581     *q1 = _mm_unpackhi_epi64(t2, *q1);
582   }
583 }
584 
Store4x4(__m128i * const x,uint8_t * dst,int stride)585 static WEBP_INLINE void Store4x4(__m128i* const x, uint8_t* dst, int stride) {
586   int i;
587   for (i = 0; i < 4; ++i, dst += stride) {
588     WebPUint32ToMem(dst, _mm_cvtsi128_si32(*x));
589     *x = _mm_srli_si128(*x, 4);
590   }
591 }
592 
593 // Transpose back and store
Store16x4(const __m128i * const p1,const __m128i * const p0,const __m128i * const q0,const __m128i * const q1,uint8_t * r0,uint8_t * r8,int stride)594 static WEBP_INLINE void Store16x4(const __m128i* const p1,
595                                   const __m128i* const p0,
596                                   const __m128i* const q0,
597                                   const __m128i* const q1,
598                                   uint8_t* r0, uint8_t* r8,
599                                   int stride) {
600   __m128i t1, p1_s, p0_s, q0_s, q1_s;
601 
602   // p0 = 71 70 61 60 51 50 41 40 31 30 21 20 11 10 01 00
603   // p1 = f1 f0 e1 e0 d1 d0 c1 c0 b1 b0 a1 a0 91 90 81 80
604   t1 = *p0;
605   p0_s = _mm_unpacklo_epi8(*p1, t1);
606   p1_s = _mm_unpackhi_epi8(*p1, t1);
607 
608   // q0 = 73 72 63 62 53 52 43 42 33 32 23 22 13 12 03 02
609   // q1 = f3 f2 e3 e2 d3 d2 c3 c2 b3 b2 a3 a2 93 92 83 82
610   t1 = *q0;
611   q0_s = _mm_unpacklo_epi8(t1, *q1);
612   q1_s = _mm_unpackhi_epi8(t1, *q1);
613 
614   // p0 = 33 32 31 30 23 22 21 20 13 12 11 10 03 02 01 00
615   // q0 = 73 72 71 70 63 62 61 60 53 52 51 50 43 42 41 40
616   t1 = p0_s;
617   p0_s = _mm_unpacklo_epi16(t1, q0_s);
618   q0_s = _mm_unpackhi_epi16(t1, q0_s);
619 
620   // p1 = b3 b2 b1 b0 a3 a2 a1 a0 93 92 91 90 83 82 81 80
621   // q1 = f3 f2 f1 f0 e3 e2 e1 e0 d3 d2 d1 d0 c3 c2 c1 c0
622   t1 = p1_s;
623   p1_s = _mm_unpacklo_epi16(t1, q1_s);
624   q1_s = _mm_unpackhi_epi16(t1, q1_s);
625 
626   Store4x4(&p0_s, r0, stride);
627   r0 += 4 * stride;
628   Store4x4(&q0_s, r0, stride);
629 
630   Store4x4(&p1_s, r8, stride);
631   r8 += 4 * stride;
632   Store4x4(&q1_s, r8, stride);
633 }
634 
635 //------------------------------------------------------------------------------
636 // Simple In-loop filtering (Paragraph 15.2)
637 
SimpleVFilter16(uint8_t * p,int stride,int thresh)638 static void SimpleVFilter16(uint8_t* p, int stride, int thresh) {
639   // Load
640   __m128i p1 = _mm_loadu_si128((__m128i*)&p[-2 * stride]);
641   __m128i p0 = _mm_loadu_si128((__m128i*)&p[-stride]);
642   __m128i q0 = _mm_loadu_si128((__m128i*)&p[0]);
643   __m128i q1 = _mm_loadu_si128((__m128i*)&p[stride]);
644 
645   DoFilter2(&p1, &p0, &q0, &q1, thresh);
646 
647   // Store
648   _mm_storeu_si128((__m128i*)&p[-stride], p0);
649   _mm_storeu_si128((__m128i*)&p[0], q0);
650 }
651 
SimpleHFilter16(uint8_t * p,int stride,int thresh)652 static void SimpleHFilter16(uint8_t* p, int stride, int thresh) {
653   __m128i p1, p0, q0, q1;
654 
655   p -= 2;  // beginning of p1
656 
657   Load16x4(p, p + 8 * stride, stride, &p1, &p0, &q0, &q1);
658   DoFilter2(&p1, &p0, &q0, &q1, thresh);
659   Store16x4(&p1, &p0, &q0, &q1, p, p + 8 * stride, stride);
660 }
661 
SimpleVFilter16i(uint8_t * p,int stride,int thresh)662 static void SimpleVFilter16i(uint8_t* p, int stride, int thresh) {
663   int k;
664   for (k = 3; k > 0; --k) {
665     p += 4 * stride;
666     SimpleVFilter16(p, stride, thresh);
667   }
668 }
669 
SimpleHFilter16i(uint8_t * p,int stride,int thresh)670 static void SimpleHFilter16i(uint8_t* p, int stride, int thresh) {
671   int k;
672   for (k = 3; k > 0; --k) {
673     p += 4;
674     SimpleHFilter16(p, stride, thresh);
675   }
676 }
677 
678 //------------------------------------------------------------------------------
679 // Complex In-loop filtering (Paragraph 15.3)
680 
681 #define MAX_DIFF1(p3, p2, p1, p0, m) do {                                      \
682   m = MM_ABS(p1, p0);                                                          \
683   m = _mm_max_epu8(m, MM_ABS(p3, p2));                                         \
684   m = _mm_max_epu8(m, MM_ABS(p2, p1));                                         \
685 } while (0)
686 
687 #define MAX_DIFF2(p3, p2, p1, p0, m) do {                                      \
688   m = _mm_max_epu8(m, MM_ABS(p1, p0));                                         \
689   m = _mm_max_epu8(m, MM_ABS(p3, p2));                                         \
690   m = _mm_max_epu8(m, MM_ABS(p2, p1));                                         \
691 } while (0)
692 
693 #define LOAD_H_EDGES4(p, stride, e1, e2, e3, e4) {                             \
694   e1 = _mm_loadu_si128((__m128i*)&(p)[0 * stride]);                            \
695   e2 = _mm_loadu_si128((__m128i*)&(p)[1 * stride]);                            \
696   e3 = _mm_loadu_si128((__m128i*)&(p)[2 * stride]);                            \
697   e4 = _mm_loadu_si128((__m128i*)&(p)[3 * stride]);                            \
698 }
699 
700 #define LOADUV_H_EDGE(p, u, v, stride) do {                                    \
701   const __m128i U = _mm_loadl_epi64((__m128i*)&(u)[(stride)]);                 \
702   const __m128i V = _mm_loadl_epi64((__m128i*)&(v)[(stride)]);                 \
703   p = _mm_unpacklo_epi64(U, V);                                                \
704 } while (0)
705 
706 #define LOADUV_H_EDGES4(u, v, stride, e1, e2, e3, e4) {                        \
707   LOADUV_H_EDGE(e1, u, v, 0 * stride);                                         \
708   LOADUV_H_EDGE(e2, u, v, 1 * stride);                                         \
709   LOADUV_H_EDGE(e3, u, v, 2 * stride);                                         \
710   LOADUV_H_EDGE(e4, u, v, 3 * stride);                                         \
711 }
712 
713 #define STOREUV(p, u, v, stride) {                                             \
714   _mm_storel_epi64((__m128i*)&u[(stride)], p);                                 \
715   p = _mm_srli_si128(p, 8);                                                    \
716   _mm_storel_epi64((__m128i*)&v[(stride)], p);                                 \
717 }
718 
ComplexMask(const __m128i * const p1,const __m128i * const p0,const __m128i * const q0,const __m128i * const q1,int thresh,int ithresh,__m128i * const mask)719 static WEBP_INLINE void ComplexMask(const __m128i* const p1,
720                                     const __m128i* const p0,
721                                     const __m128i* const q0,
722                                     const __m128i* const q1,
723                                     int thresh, int ithresh,
724                                     __m128i* const mask) {
725   const __m128i it = _mm_set1_epi8(ithresh);
726   const __m128i diff = _mm_subs_epu8(*mask, it);
727   const __m128i thresh_mask = _mm_cmpeq_epi8(diff, _mm_setzero_si128());
728   __m128i filter_mask;
729   NeedsFilter(p1, p0, q0, q1, thresh, &filter_mask);
730   *mask = _mm_and_si128(thresh_mask, filter_mask);
731 }
732 
733 // on macroblock edges
VFilter16(uint8_t * p,int stride,int thresh,int ithresh,int hev_thresh)734 static void VFilter16(uint8_t* p, int stride,
735                       int thresh, int ithresh, int hev_thresh) {
736   __m128i t1;
737   __m128i mask;
738   __m128i p2, p1, p0, q0, q1, q2;
739 
740   // Load p3, p2, p1, p0
741   LOAD_H_EDGES4(p - 4 * stride, stride, t1, p2, p1, p0);
742   MAX_DIFF1(t1, p2, p1, p0, mask);
743 
744   // Load q0, q1, q2, q3
745   LOAD_H_EDGES4(p, stride, q0, q1, q2, t1);
746   MAX_DIFF2(t1, q2, q1, q0, mask);
747 
748   ComplexMask(&p1, &p0, &q0, &q1, thresh, ithresh, &mask);
749   DoFilter6(&p2, &p1, &p0, &q0, &q1, &q2, &mask, hev_thresh);
750 
751   // Store
752   _mm_storeu_si128((__m128i*)&p[-3 * stride], p2);
753   _mm_storeu_si128((__m128i*)&p[-2 * stride], p1);
754   _mm_storeu_si128((__m128i*)&p[-1 * stride], p0);
755   _mm_storeu_si128((__m128i*)&p[+0 * stride], q0);
756   _mm_storeu_si128((__m128i*)&p[+1 * stride], q1);
757   _mm_storeu_si128((__m128i*)&p[+2 * stride], q2);
758 }
759 
HFilter16(uint8_t * p,int stride,int thresh,int ithresh,int hev_thresh)760 static void HFilter16(uint8_t* p, int stride,
761                       int thresh, int ithresh, int hev_thresh) {
762   __m128i mask;
763   __m128i p3, p2, p1, p0, q0, q1, q2, q3;
764 
765   uint8_t* const b = p - 4;
766   Load16x4(b, b + 8 * stride, stride, &p3, &p2, &p1, &p0);  // p3, p2, p1, p0
767   MAX_DIFF1(p3, p2, p1, p0, mask);
768 
769   Load16x4(p, p + 8 * stride, stride, &q0, &q1, &q2, &q3);  // q0, q1, q2, q3
770   MAX_DIFF2(q3, q2, q1, q0, mask);
771 
772   ComplexMask(&p1, &p0, &q0, &q1, thresh, ithresh, &mask);
773   DoFilter6(&p2, &p1, &p0, &q0, &q1, &q2, &mask, hev_thresh);
774 
775   Store16x4(&p3, &p2, &p1, &p0, b, b + 8 * stride, stride);
776   Store16x4(&q0, &q1, &q2, &q3, p, p + 8 * stride, stride);
777 }
778 
779 // on three inner edges
VFilter16i(uint8_t * p,int stride,int thresh,int ithresh,int hev_thresh)780 static void VFilter16i(uint8_t* p, int stride,
781                        int thresh, int ithresh, int hev_thresh) {
782   int k;
783   __m128i p3, p2, p1, p0;   // loop invariants
784 
785   LOAD_H_EDGES4(p, stride, p3, p2, p1, p0);  // prologue
786 
787   for (k = 3; k > 0; --k) {
788     __m128i mask, tmp1, tmp2;
789     uint8_t* const b = p + 2 * stride;   // beginning of p1
790     p += 4 * stride;
791 
792     MAX_DIFF1(p3, p2, p1, p0, mask);   // compute partial mask
793     LOAD_H_EDGES4(p, stride, p3, p2, tmp1, tmp2);
794     MAX_DIFF2(p3, p2, tmp1, tmp2, mask);
795 
796     // p3 and p2 are not just temporary variables here: they will be
797     // re-used for next span. And q2/q3 will become p1/p0 accordingly.
798     ComplexMask(&p1, &p0, &p3, &p2, thresh, ithresh, &mask);
799     DoFilter4(&p1, &p0, &p3, &p2, &mask, hev_thresh);
800 
801     // Store
802     _mm_storeu_si128((__m128i*)&b[0 * stride], p1);
803     _mm_storeu_si128((__m128i*)&b[1 * stride], p0);
804     _mm_storeu_si128((__m128i*)&b[2 * stride], p3);
805     _mm_storeu_si128((__m128i*)&b[3 * stride], p2);
806 
807     // rotate samples
808     p1 = tmp1;
809     p0 = tmp2;
810   }
811 }
812 
HFilter16i(uint8_t * p,int stride,int thresh,int ithresh,int hev_thresh)813 static void HFilter16i(uint8_t* p, int stride,
814                        int thresh, int ithresh, int hev_thresh) {
815   int k;
816   __m128i p3, p2, p1, p0;   // loop invariants
817 
818   Load16x4(p, p + 8 * stride, stride, &p3, &p2, &p1, &p0);  // prologue
819 
820   for (k = 3; k > 0; --k) {
821     __m128i mask, tmp1, tmp2;
822     uint8_t* const b = p + 2;   // beginning of p1
823 
824     p += 4;  // beginning of q0 (and next span)
825 
826     MAX_DIFF1(p3, p2, p1, p0, mask);   // compute partial mask
827     Load16x4(p, p + 8 * stride, stride, &p3, &p2, &tmp1, &tmp2);
828     MAX_DIFF2(p3, p2, tmp1, tmp2, mask);
829 
830     ComplexMask(&p1, &p0, &p3, &p2, thresh, ithresh, &mask);
831     DoFilter4(&p1, &p0, &p3, &p2, &mask, hev_thresh);
832 
833     Store16x4(&p1, &p0, &p3, &p2, b, b + 8 * stride, stride);
834 
835     // rotate samples
836     p1 = tmp1;
837     p0 = tmp2;
838   }
839 }
840 
841 // 8-pixels wide variant, for chroma filtering
VFilter8(uint8_t * u,uint8_t * v,int stride,int thresh,int ithresh,int hev_thresh)842 static void VFilter8(uint8_t* u, uint8_t* v, int stride,
843                      int thresh, int ithresh, int hev_thresh) {
844   __m128i mask;
845   __m128i t1, p2, p1, p0, q0, q1, q2;
846 
847   // Load p3, p2, p1, p0
848   LOADUV_H_EDGES4(u - 4 * stride, v - 4 * stride, stride, t1, p2, p1, p0);
849   MAX_DIFF1(t1, p2, p1, p0, mask);
850 
851   // Load q0, q1, q2, q3
852   LOADUV_H_EDGES4(u, v, stride, q0, q1, q2, t1);
853   MAX_DIFF2(t1, q2, q1, q0, mask);
854 
855   ComplexMask(&p1, &p0, &q0, &q1, thresh, ithresh, &mask);
856   DoFilter6(&p2, &p1, &p0, &q0, &q1, &q2, &mask, hev_thresh);
857 
858   // Store
859   STOREUV(p2, u, v, -3 * stride);
860   STOREUV(p1, u, v, -2 * stride);
861   STOREUV(p0, u, v, -1 * stride);
862   STOREUV(q0, u, v, 0 * stride);
863   STOREUV(q1, u, v, 1 * stride);
864   STOREUV(q2, u, v, 2 * stride);
865 }
866 
HFilter8(uint8_t * u,uint8_t * v,int stride,int thresh,int ithresh,int hev_thresh)867 static void HFilter8(uint8_t* u, uint8_t* v, int stride,
868                      int thresh, int ithresh, int hev_thresh) {
869   __m128i mask;
870   __m128i p3, p2, p1, p0, q0, q1, q2, q3;
871 
872   uint8_t* const tu = u - 4;
873   uint8_t* const tv = v - 4;
874   Load16x4(tu, tv, stride, &p3, &p2, &p1, &p0);  // p3, p2, p1, p0
875   MAX_DIFF1(p3, p2, p1, p0, mask);
876 
877   Load16x4(u, v, stride, &q0, &q1, &q2, &q3);    // q0, q1, q2, q3
878   MAX_DIFF2(q3, q2, q1, q0, mask);
879 
880   ComplexMask(&p1, &p0, &q0, &q1, thresh, ithresh, &mask);
881   DoFilter6(&p2, &p1, &p0, &q0, &q1, &q2, &mask, hev_thresh);
882 
883   Store16x4(&p3, &p2, &p1, &p0, tu, tv, stride);
884   Store16x4(&q0, &q1, &q2, &q3, u, v, stride);
885 }
886 
VFilter8i(uint8_t * u,uint8_t * v,int stride,int thresh,int ithresh,int hev_thresh)887 static void VFilter8i(uint8_t* u, uint8_t* v, int stride,
888                       int thresh, int ithresh, int hev_thresh) {
889   __m128i mask;
890   __m128i t1, t2, p1, p0, q0, q1;
891 
892   // Load p3, p2, p1, p0
893   LOADUV_H_EDGES4(u, v, stride, t2, t1, p1, p0);
894   MAX_DIFF1(t2, t1, p1, p0, mask);
895 
896   u += 4 * stride;
897   v += 4 * stride;
898 
899   // Load q0, q1, q2, q3
900   LOADUV_H_EDGES4(u, v, stride, q0, q1, t1, t2);
901   MAX_DIFF2(t2, t1, q1, q0, mask);
902 
903   ComplexMask(&p1, &p0, &q0, &q1, thresh, ithresh, &mask);
904   DoFilter4(&p1, &p0, &q0, &q1, &mask, hev_thresh);
905 
906   // Store
907   STOREUV(p1, u, v, -2 * stride);
908   STOREUV(p0, u, v, -1 * stride);
909   STOREUV(q0, u, v, 0 * stride);
910   STOREUV(q1, u, v, 1 * stride);
911 }
912 
HFilter8i(uint8_t * u,uint8_t * v,int stride,int thresh,int ithresh,int hev_thresh)913 static void HFilter8i(uint8_t* u, uint8_t* v, int stride,
914                       int thresh, int ithresh, int hev_thresh) {
915   __m128i mask;
916   __m128i t1, t2, p1, p0, q0, q1;
917   Load16x4(u, v, stride, &t2, &t1, &p1, &p0);   // p3, p2, p1, p0
918   MAX_DIFF1(t2, t1, p1, p0, mask);
919 
920   u += 4;  // beginning of q0
921   v += 4;
922   Load16x4(u, v, stride, &q0, &q1, &t1, &t2);  // q0, q1, q2, q3
923   MAX_DIFF2(t2, t1, q1, q0, mask);
924 
925   ComplexMask(&p1, &p0, &q0, &q1, thresh, ithresh, &mask);
926   DoFilter4(&p1, &p0, &q0, &q1, &mask, hev_thresh);
927 
928   u -= 2;  // beginning of p1
929   v -= 2;
930   Store16x4(&p1, &p0, &q0, &q1, u, v, stride);
931 }
932 
933 //------------------------------------------------------------------------------
934 // 4x4 predictions
935 
936 #define DST(x, y) dst[(x) + (y) * BPS]
937 #define AVG3(a, b, c) (((a) + 2 * (b) + (c) + 2) >> 2)
938 
939 // We use the following 8b-arithmetic tricks:
940 //     (a + 2 * b + c + 2) >> 2 = (AC + b + 1) >> 1
941 //   where: AC = (a + c) >> 1 = [(a + c + 1) >> 1] - [(a^c) & 1]
942 // and:
943 //     (a + 2 * b + c + 2) >> 2 = (AB + BC + 1) >> 1 - (ab|bc)&lsb
944 //   where: AC = (a + b + 1) >> 1,   BC = (b + c + 1) >> 1
945 //   and ab = a ^ b, bc = b ^ c, lsb = (AC^BC)&1
946 
VE4(uint8_t * dst)947 static void VE4(uint8_t* dst) {    // vertical
948   const __m128i one = _mm_set1_epi8(1);
949   const __m128i ABCDEFGH = _mm_loadl_epi64((__m128i*)(dst - BPS - 1));
950   const __m128i BCDEFGH0 = _mm_srli_si128(ABCDEFGH, 1);
951   const __m128i CDEFGH00 = _mm_srli_si128(ABCDEFGH, 2);
952   const __m128i a = _mm_avg_epu8(ABCDEFGH, CDEFGH00);
953   const __m128i lsb = _mm_and_si128(_mm_xor_si128(ABCDEFGH, CDEFGH00), one);
954   const __m128i b = _mm_subs_epu8(a, lsb);
955   const __m128i avg = _mm_avg_epu8(b, BCDEFGH0);
956   const uint32_t vals = _mm_cvtsi128_si32(avg);
957   int i;
958   for (i = 0; i < 4; ++i) {
959     WebPUint32ToMem(dst + i * BPS, vals);
960   }
961 }
962 
LD4(uint8_t * dst)963 static void LD4(uint8_t* dst) {   // Down-Left
964   const __m128i one = _mm_set1_epi8(1);
965   const __m128i ABCDEFGH = _mm_loadl_epi64((__m128i*)(dst - BPS));
966   const __m128i BCDEFGH0 = _mm_srli_si128(ABCDEFGH, 1);
967   const __m128i CDEFGH00 = _mm_srli_si128(ABCDEFGH, 2);
968   const __m128i CDEFGHH0 = _mm_insert_epi16(CDEFGH00, dst[-BPS + 7], 3);
969   const __m128i avg1 = _mm_avg_epu8(ABCDEFGH, CDEFGHH0);
970   const __m128i lsb = _mm_and_si128(_mm_xor_si128(ABCDEFGH, CDEFGHH0), one);
971   const __m128i avg2 = _mm_subs_epu8(avg1, lsb);
972   const __m128i abcdefg = _mm_avg_epu8(avg2, BCDEFGH0);
973   WebPUint32ToMem(dst + 0 * BPS, _mm_cvtsi128_si32(               abcdefg    ));
974   WebPUint32ToMem(dst + 1 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(abcdefg, 1)));
975   WebPUint32ToMem(dst + 2 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(abcdefg, 2)));
976   WebPUint32ToMem(dst + 3 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(abcdefg, 3)));
977 }
978 
VR4(uint8_t * dst)979 static void VR4(uint8_t* dst) {   // Vertical-Right
980   const __m128i one = _mm_set1_epi8(1);
981   const int I = dst[-1 + 0 * BPS];
982   const int J = dst[-1 + 1 * BPS];
983   const int K = dst[-1 + 2 * BPS];
984   const int X = dst[-1 - BPS];
985   const __m128i XABCD = _mm_loadl_epi64((__m128i*)(dst - BPS - 1));
986   const __m128i ABCD0 = _mm_srli_si128(XABCD, 1);
987   const __m128i abcd = _mm_avg_epu8(XABCD, ABCD0);
988   const __m128i _XABCD = _mm_slli_si128(XABCD, 1);
989   const __m128i IXABCD = _mm_insert_epi16(_XABCD, I | (X << 8), 0);
990   const __m128i avg1 = _mm_avg_epu8(IXABCD, ABCD0);
991   const __m128i lsb = _mm_and_si128(_mm_xor_si128(IXABCD, ABCD0), one);
992   const __m128i avg2 = _mm_subs_epu8(avg1, lsb);
993   const __m128i efgh = _mm_avg_epu8(avg2, XABCD);
994   WebPUint32ToMem(dst + 0 * BPS, _mm_cvtsi128_si32(               abcd    ));
995   WebPUint32ToMem(dst + 1 * BPS, _mm_cvtsi128_si32(               efgh    ));
996   WebPUint32ToMem(dst + 2 * BPS, _mm_cvtsi128_si32(_mm_slli_si128(abcd, 1)));
997   WebPUint32ToMem(dst + 3 * BPS, _mm_cvtsi128_si32(_mm_slli_si128(efgh, 1)));
998 
999   // these two are hard to implement in SSE2, so we keep the C-version:
1000   DST(0, 2) = AVG3(J, I, X);
1001   DST(0, 3) = AVG3(K, J, I);
1002 }
1003 
VL4(uint8_t * dst)1004 static void VL4(uint8_t* dst) {   // Vertical-Left
1005   const __m128i one = _mm_set1_epi8(1);
1006   const __m128i ABCDEFGH = _mm_loadl_epi64((__m128i*)(dst - BPS));
1007   const __m128i BCDEFGH_ = _mm_srli_si128(ABCDEFGH, 1);
1008   const __m128i CDEFGH__ = _mm_srli_si128(ABCDEFGH, 2);
1009   const __m128i avg1 = _mm_avg_epu8(ABCDEFGH, BCDEFGH_);
1010   const __m128i avg2 = _mm_avg_epu8(CDEFGH__, BCDEFGH_);
1011   const __m128i avg3 = _mm_avg_epu8(avg1, avg2);
1012   const __m128i lsb1 = _mm_and_si128(_mm_xor_si128(avg1, avg2), one);
1013   const __m128i ab = _mm_xor_si128(ABCDEFGH, BCDEFGH_);
1014   const __m128i bc = _mm_xor_si128(CDEFGH__, BCDEFGH_);
1015   const __m128i abbc = _mm_or_si128(ab, bc);
1016   const __m128i lsb2 = _mm_and_si128(abbc, lsb1);
1017   const __m128i avg4 = _mm_subs_epu8(avg3, lsb2);
1018   const uint32_t extra_out = _mm_cvtsi128_si32(_mm_srli_si128(avg4, 4));
1019   WebPUint32ToMem(dst + 0 * BPS, _mm_cvtsi128_si32(               avg1    ));
1020   WebPUint32ToMem(dst + 1 * BPS, _mm_cvtsi128_si32(               avg4    ));
1021   WebPUint32ToMem(dst + 2 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(avg1, 1)));
1022   WebPUint32ToMem(dst + 3 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(avg4, 1)));
1023 
1024   // these two are hard to get and irregular
1025   DST(3, 2) = (extra_out >> 0) & 0xff;
1026   DST(3, 3) = (extra_out >> 8) & 0xff;
1027 }
1028 
RD4(uint8_t * dst)1029 static void RD4(uint8_t* dst) {   // Down-right
1030   const __m128i one = _mm_set1_epi8(1);
1031   const __m128i XABCD = _mm_loadl_epi64((__m128i*)(dst - BPS - 1));
1032   const __m128i ____XABCD = _mm_slli_si128(XABCD, 4);
1033   const uint32_t I = dst[-1 + 0 * BPS];
1034   const uint32_t J = dst[-1 + 1 * BPS];
1035   const uint32_t K = dst[-1 + 2 * BPS];
1036   const uint32_t L = dst[-1 + 3 * BPS];
1037   const __m128i LKJI_____ =
1038       _mm_cvtsi32_si128(L | (K << 8) | (J << 16) | (I << 24));
1039   const __m128i LKJIXABCD = _mm_or_si128(LKJI_____, ____XABCD);
1040   const __m128i KJIXABCD_ = _mm_srli_si128(LKJIXABCD, 1);
1041   const __m128i JIXABCD__ = _mm_srli_si128(LKJIXABCD, 2);
1042   const __m128i avg1 = _mm_avg_epu8(JIXABCD__, LKJIXABCD);
1043   const __m128i lsb = _mm_and_si128(_mm_xor_si128(JIXABCD__, LKJIXABCD), one);
1044   const __m128i avg2 = _mm_subs_epu8(avg1, lsb);
1045   const __m128i abcdefg = _mm_avg_epu8(avg2, KJIXABCD_);
1046   WebPUint32ToMem(dst + 3 * BPS, _mm_cvtsi128_si32(               abcdefg    ));
1047   WebPUint32ToMem(dst + 2 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(abcdefg, 1)));
1048   WebPUint32ToMem(dst + 1 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(abcdefg, 2)));
1049   WebPUint32ToMem(dst + 0 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(abcdefg, 3)));
1050 }
1051 
1052 #undef DST
1053 #undef AVG3
1054 
1055 //------------------------------------------------------------------------------
1056 // Luma 16x16
1057 
TrueMotion(uint8_t * dst,int size)1058 static WEBP_INLINE void TrueMotion(uint8_t* dst, int size) {
1059   const uint8_t* top = dst - BPS;
1060   const __m128i zero = _mm_setzero_si128();
1061   int y;
1062   if (size == 4) {
1063     const __m128i top_values = _mm_cvtsi32_si128(WebPMemToUint32(top));
1064     const __m128i top_base = _mm_unpacklo_epi8(top_values, zero);
1065     for (y = 0; y < 4; ++y, dst += BPS) {
1066       const int val = dst[-1] - top[-1];
1067       const __m128i base = _mm_set1_epi16(val);
1068       const __m128i out = _mm_packus_epi16(_mm_add_epi16(base, top_base), zero);
1069       WebPUint32ToMem(dst, _mm_cvtsi128_si32(out));
1070     }
1071   } else if (size == 8) {
1072     const __m128i top_values = _mm_loadl_epi64((const __m128i*)top);
1073     const __m128i top_base = _mm_unpacklo_epi8(top_values, zero);
1074     for (y = 0; y < 8; ++y, dst += BPS) {
1075       const int val = dst[-1] - top[-1];
1076       const __m128i base = _mm_set1_epi16(val);
1077       const __m128i out = _mm_packus_epi16(_mm_add_epi16(base, top_base), zero);
1078       _mm_storel_epi64((__m128i*)dst, out);
1079     }
1080   } else {
1081     const __m128i top_values = _mm_loadu_si128((const __m128i*)top);
1082     const __m128i top_base_0 = _mm_unpacklo_epi8(top_values, zero);
1083     const __m128i top_base_1 = _mm_unpackhi_epi8(top_values, zero);
1084     for (y = 0; y < 16; ++y, dst += BPS) {
1085       const int val = dst[-1] - top[-1];
1086       const __m128i base = _mm_set1_epi16(val);
1087       const __m128i out_0 = _mm_add_epi16(base, top_base_0);
1088       const __m128i out_1 = _mm_add_epi16(base, top_base_1);
1089       const __m128i out = _mm_packus_epi16(out_0, out_1);
1090       _mm_storeu_si128((__m128i*)dst, out);
1091     }
1092   }
1093 }
1094 
TM4(uint8_t * dst)1095 static void TM4(uint8_t* dst)   { TrueMotion(dst, 4); }
TM8uv(uint8_t * dst)1096 static void TM8uv(uint8_t* dst) { TrueMotion(dst, 8); }
TM16(uint8_t * dst)1097 static void TM16(uint8_t* dst)  { TrueMotion(dst, 16); }
1098 
VE16(uint8_t * dst)1099 static void VE16(uint8_t* dst) {
1100   const __m128i top = _mm_loadu_si128((const __m128i*)(dst - BPS));
1101   int j;
1102   for (j = 0; j < 16; ++j) {
1103     _mm_storeu_si128((__m128i*)(dst + j * BPS), top);
1104   }
1105 }
1106 
HE16(uint8_t * dst)1107 static void HE16(uint8_t* dst) {     // horizontal
1108   int j;
1109   for (j = 16; j > 0; --j) {
1110     const __m128i values = _mm_set1_epi8(dst[-1]);
1111     _mm_storeu_si128((__m128i*)dst, values);
1112     dst += BPS;
1113   }
1114 }
1115 
Put16(uint8_t v,uint8_t * dst)1116 static WEBP_INLINE void Put16(uint8_t v, uint8_t* dst) {
1117   int j;
1118   const __m128i values = _mm_set1_epi8(v);
1119   for (j = 0; j < 16; ++j) {
1120     _mm_storeu_si128((__m128i*)(dst + j * BPS), values);
1121   }
1122 }
1123 
DC16(uint8_t * dst)1124 static void DC16(uint8_t* dst) {    // DC
1125   const __m128i zero = _mm_setzero_si128();
1126   const __m128i top = _mm_loadu_si128((const __m128i*)(dst - BPS));
1127   const __m128i sad8x2 = _mm_sad_epu8(top, zero);
1128   // sum the two sads: sad8x2[0:1] + sad8x2[8:9]
1129   const __m128i sum = _mm_add_epi16(sad8x2, _mm_shuffle_epi32(sad8x2, 2));
1130   int left = 0;
1131   int j;
1132   for (j = 0; j < 16; ++j) {
1133     left += dst[-1 + j * BPS];
1134   }
1135   {
1136     const int DC = _mm_cvtsi128_si32(sum) + left + 16;
1137     Put16(DC >> 5, dst);
1138   }
1139 }
1140 
DC16NoTop(uint8_t * dst)1141 static void DC16NoTop(uint8_t* dst) {   // DC with top samples not available
1142   int DC = 8;
1143   int j;
1144   for (j = 0; j < 16; ++j) {
1145     DC += dst[-1 + j * BPS];
1146   }
1147   Put16(DC >> 4, dst);
1148 }
1149 
DC16NoLeft(uint8_t * dst)1150 static void DC16NoLeft(uint8_t* dst) {  // DC with left samples not available
1151   const __m128i zero = _mm_setzero_si128();
1152   const __m128i top = _mm_loadu_si128((const __m128i*)(dst - BPS));
1153   const __m128i sad8x2 = _mm_sad_epu8(top, zero);
1154   // sum the two sads: sad8x2[0:1] + sad8x2[8:9]
1155   const __m128i sum = _mm_add_epi16(sad8x2, _mm_shuffle_epi32(sad8x2, 2));
1156   const int DC = _mm_cvtsi128_si32(sum) + 8;
1157   Put16(DC >> 4, dst);
1158 }
1159 
DC16NoTopLeft(uint8_t * dst)1160 static void DC16NoTopLeft(uint8_t* dst) {  // DC with no top and left samples
1161   Put16(0x80, dst);
1162 }
1163 
1164 //------------------------------------------------------------------------------
1165 // Chroma
1166 
VE8uv(uint8_t * dst)1167 static void VE8uv(uint8_t* dst) {    // vertical
1168   int j;
1169   const __m128i top = _mm_loadl_epi64((const __m128i*)(dst - BPS));
1170   for (j = 0; j < 8; ++j) {
1171     _mm_storel_epi64((__m128i*)(dst + j * BPS), top);
1172   }
1173 }
1174 
HE8uv(uint8_t * dst)1175 static void HE8uv(uint8_t* dst) {    // horizontal
1176   int j;
1177   for (j = 0; j < 8; ++j) {
1178     const __m128i values = _mm_set1_epi8(dst[-1]);
1179     _mm_storel_epi64((__m128i*)dst, values);
1180     dst += BPS;
1181   }
1182 }
1183 
1184 // helper for chroma-DC predictions
Put8x8uv(uint8_t v,uint8_t * dst)1185 static WEBP_INLINE void Put8x8uv(uint8_t v, uint8_t* dst) {
1186   int j;
1187   const __m128i values = _mm_set1_epi8(v);
1188   for (j = 0; j < 8; ++j) {
1189     _mm_storel_epi64((__m128i*)(dst + j * BPS), values);
1190   }
1191 }
1192 
DC8uv(uint8_t * dst)1193 static void DC8uv(uint8_t* dst) {     // DC
1194   const __m128i zero = _mm_setzero_si128();
1195   const __m128i top = _mm_loadl_epi64((const __m128i*)(dst - BPS));
1196   const __m128i sum = _mm_sad_epu8(top, zero);
1197   int left = 0;
1198   int j;
1199   for (j = 0; j < 8; ++j) {
1200     left += dst[-1 + j * BPS];
1201   }
1202   {
1203     const int DC = _mm_cvtsi128_si32(sum) + left + 8;
1204     Put8x8uv(DC >> 4, dst);
1205   }
1206 }
1207 
DC8uvNoLeft(uint8_t * dst)1208 static void DC8uvNoLeft(uint8_t* dst) {   // DC with no left samples
1209   const __m128i zero = _mm_setzero_si128();
1210   const __m128i top = _mm_loadl_epi64((const __m128i*)(dst - BPS));
1211   const __m128i sum = _mm_sad_epu8(top, zero);
1212   const int DC = _mm_cvtsi128_si32(sum) + 4;
1213   Put8x8uv(DC >> 3, dst);
1214 }
1215 
DC8uvNoTop(uint8_t * dst)1216 static void DC8uvNoTop(uint8_t* dst) {  // DC with no top samples
1217   int dc0 = 4;
1218   int i;
1219   for (i = 0; i < 8; ++i) {
1220     dc0 += dst[-1 + i * BPS];
1221   }
1222   Put8x8uv(dc0 >> 3, dst);
1223 }
1224 
DC8uvNoTopLeft(uint8_t * dst)1225 static void DC8uvNoTopLeft(uint8_t* dst) {    // DC with nothing
1226   Put8x8uv(0x80, dst);
1227 }
1228 
1229 //------------------------------------------------------------------------------
1230 // Entry point
1231 
1232 extern void VP8DspInitSSE2(void);
1233 
VP8DspInitSSE2(void)1234 WEBP_TSAN_IGNORE_FUNCTION void VP8DspInitSSE2(void) {
1235   VP8Transform = Transform;
1236 #if defined(USE_TRANSFORM_AC3)
1237   VP8TransformAC3 = TransformAC3;
1238 #endif
1239 
1240   VP8VFilter16 = VFilter16;
1241   VP8HFilter16 = HFilter16;
1242   VP8VFilter8 = VFilter8;
1243   VP8HFilter8 = HFilter8;
1244   VP8VFilter16i = VFilter16i;
1245   VP8HFilter16i = HFilter16i;
1246   VP8VFilter8i = VFilter8i;
1247   VP8HFilter8i = HFilter8i;
1248 
1249   VP8SimpleVFilter16 = SimpleVFilter16;
1250   VP8SimpleHFilter16 = SimpleHFilter16;
1251   VP8SimpleVFilter16i = SimpleVFilter16i;
1252   VP8SimpleHFilter16i = SimpleHFilter16i;
1253 
1254   VP8PredLuma4[1] = TM4;
1255   VP8PredLuma4[2] = VE4;
1256   VP8PredLuma4[4] = RD4;
1257   VP8PredLuma4[5] = VR4;
1258   VP8PredLuma4[6] = LD4;
1259   VP8PredLuma4[7] = VL4;
1260 
1261   VP8PredLuma16[0] = DC16;
1262   VP8PredLuma16[1] = TM16;
1263   VP8PredLuma16[2] = VE16;
1264   VP8PredLuma16[3] = HE16;
1265   VP8PredLuma16[4] = DC16NoTop;
1266   VP8PredLuma16[5] = DC16NoLeft;
1267   VP8PredLuma16[6] = DC16NoTopLeft;
1268 
1269   VP8PredChroma8[0] = DC8uv;
1270   VP8PredChroma8[1] = TM8uv;
1271   VP8PredChroma8[2] = VE8uv;
1272   VP8PredChroma8[3] = HE8uv;
1273   VP8PredChroma8[4] = DC8uvNoTop;
1274   VP8PredChroma8[5] = DC8uvNoLeft;
1275   VP8PredChroma8[6] = DC8uvNoTopLeft;
1276 }
1277 
1278 #else  // !WEBP_USE_SSE2
1279 
1280 WEBP_DSP_INIT_STUB(VP8DspInitSSE2)
1281 
1282 #endif  // WEBP_USE_SSE2
1283