• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2008 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 package android.net;
18 
19 import android.os.SystemClock;
20 import android.util.Log;
21 
22 import java.net.DatagramPacket;
23 import java.net.DatagramSocket;
24 import java.net.InetAddress;
25 import java.util.Arrays;
26 
27 /**
28  * {@hide}
29  *
30  * Simple SNTP client class for retrieving network time.
31  *
32  * Sample usage:
33  * <pre>SntpClient client = new SntpClient();
34  * if (client.requestTime("time.foo.com")) {
35  *     long now = client.getNtpTime() + SystemClock.elapsedRealtime() - client.getNtpTimeReference();
36  * }
37  * </pre>
38  */
39 public class SntpClient
40 {
41     private static final String TAG = "SntpClient";
42     private static final boolean DBG = true;
43 
44     private static final int REFERENCE_TIME_OFFSET = 16;
45     private static final int ORIGINATE_TIME_OFFSET = 24;
46     private static final int RECEIVE_TIME_OFFSET = 32;
47     private static final int TRANSMIT_TIME_OFFSET = 40;
48     private static final int NTP_PACKET_SIZE = 48;
49 
50     private static final int NTP_PORT = 123;
51     private static final int NTP_MODE_CLIENT = 3;
52     private static final int NTP_MODE_SERVER = 4;
53     private static final int NTP_MODE_BROADCAST = 5;
54     private static final int NTP_VERSION = 3;
55 
56     private static final int NTP_LEAP_NOSYNC = 3;
57     private static final int NTP_STRATUM_DEATH = 0;
58     private static final int NTP_STRATUM_MAX = 15;
59 
60     // Number of seconds between Jan 1, 1900 and Jan 1, 1970
61     // 70 years plus 17 leap days
62     private static final long OFFSET_1900_TO_1970 = ((365L * 70L) + 17L) * 24L * 60L * 60L;
63 
64     // system time computed from NTP server response
65     private long mNtpTime;
66 
67     // value of SystemClock.elapsedRealtime() corresponding to mNtpTime
68     private long mNtpTimeReference;
69 
70     // round trip time in milliseconds
71     private long mRoundTripTime;
72 
73     private static class InvalidServerReplyException extends Exception {
InvalidServerReplyException(String message)74         public InvalidServerReplyException(String message) {
75             super(message);
76         }
77     }
78 
79     /**
80      * Sends an SNTP request to the given host and processes the response.
81      *
82      * @param host host name of the server.
83      * @param timeout network timeout in milliseconds.
84      * @return true if the transaction was successful.
85      */
requestTime(String host, int timeout)86     public boolean requestTime(String host, int timeout) {
87         InetAddress address = null;
88         try {
89             address = InetAddress.getByName(host);
90         } catch (Exception e) {
91             if (DBG) Log.d(TAG, "request time failed: " + e);
92             return false;
93         }
94         return requestTime(address, NTP_PORT, timeout);
95     }
96 
requestTime(InetAddress address, int port, int timeout)97     public boolean requestTime(InetAddress address, int port, int timeout) {
98         DatagramSocket socket = null;
99         try {
100             socket = new DatagramSocket();
101             socket.setSoTimeout(timeout);
102             byte[] buffer = new byte[NTP_PACKET_SIZE];
103             DatagramPacket request = new DatagramPacket(buffer, buffer.length, address, port);
104 
105             // set mode = 3 (client) and version = 3
106             // mode is in low 3 bits of first byte
107             // version is in bits 3-5 of first byte
108             buffer[0] = NTP_MODE_CLIENT | (NTP_VERSION << 3);
109 
110             // get current time and write it to the request packet
111             final long requestTime = System.currentTimeMillis();
112             final long requestTicks = SystemClock.elapsedRealtime();
113             writeTimeStamp(buffer, TRANSMIT_TIME_OFFSET, requestTime);
114 
115             socket.send(request);
116 
117             // read the response
118             DatagramPacket response = new DatagramPacket(buffer, buffer.length);
119             socket.receive(response);
120             final long responseTicks = SystemClock.elapsedRealtime();
121             final long responseTime = requestTime + (responseTicks - requestTicks);
122 
123             // extract the results
124             final byte leap = (byte) ((buffer[0] >> 6) & 0x3);
125             final byte mode = (byte) (buffer[0] & 0x7);
126             final int stratum = (int) (buffer[1] & 0xff);
127             final long originateTime = readTimeStamp(buffer, ORIGINATE_TIME_OFFSET);
128             final long receiveTime = readTimeStamp(buffer, RECEIVE_TIME_OFFSET);
129             final long transmitTime = readTimeStamp(buffer, TRANSMIT_TIME_OFFSET);
130 
131             /* do sanity check according to RFC */
132             // TODO: validate originateTime == requestTime.
133             checkValidServerReply(leap, mode, stratum, transmitTime);
134 
135             long roundTripTime = responseTicks - requestTicks - (transmitTime - receiveTime);
136             // receiveTime = originateTime + transit + skew
137             // responseTime = transmitTime + transit - skew
138             // clockOffset = ((receiveTime - originateTime) + (transmitTime - responseTime))/2
139             //             = ((originateTime + transit + skew - originateTime) +
140             //                (transmitTime - (transmitTime + transit - skew)))/2
141             //             = ((transit + skew) + (transmitTime - transmitTime - transit + skew))/2
142             //             = (transit + skew - transit + skew)/2
143             //             = (2 * skew)/2 = skew
144             long clockOffset = ((receiveTime - originateTime) + (transmitTime - responseTime))/2;
145             if (DBG) {
146                 Log.d(TAG, "round trip: " + roundTripTime + "ms, " +
147                         "clock offset: " + clockOffset + "ms");
148             }
149 
150             // save our results - use the times on this side of the network latency
151             // (response rather than request time)
152             mNtpTime = responseTime + clockOffset;
153             mNtpTimeReference = responseTicks;
154             mRoundTripTime = roundTripTime;
155         } catch (Exception e) {
156             if (DBG) Log.d(TAG, "request time failed: " + e);
157             return false;
158         } finally {
159             if (socket != null) {
160                 socket.close();
161             }
162         }
163 
164         return true;
165     }
166 
167     /**
168      * Returns the time computed from the NTP transaction.
169      *
170      * @return time value computed from NTP server response.
171      */
getNtpTime()172     public long getNtpTime() {
173         return mNtpTime;
174     }
175 
176     /**
177      * Returns the reference clock value (value of SystemClock.elapsedRealtime())
178      * corresponding to the NTP time.
179      *
180      * @return reference clock corresponding to the NTP time.
181      */
getNtpTimeReference()182     public long getNtpTimeReference() {
183         return mNtpTimeReference;
184     }
185 
186     /**
187      * Returns the round trip time of the NTP transaction
188      *
189      * @return round trip time in milliseconds.
190      */
getRoundTripTime()191     public long getRoundTripTime() {
192         return mRoundTripTime;
193     }
194 
checkValidServerReply( byte leap, byte mode, int stratum, long transmitTime)195     private static void checkValidServerReply(
196             byte leap, byte mode, int stratum, long transmitTime)
197             throws InvalidServerReplyException {
198         if (leap == NTP_LEAP_NOSYNC) {
199             throw new InvalidServerReplyException("unsynchronized server");
200         }
201         if ((mode != NTP_MODE_SERVER) && (mode != NTP_MODE_BROADCAST)) {
202             throw new InvalidServerReplyException("untrusted mode: " + mode);
203         }
204         if ((stratum == NTP_STRATUM_DEATH) || (stratum > NTP_STRATUM_MAX)) {
205             throw new InvalidServerReplyException("untrusted stratum: " + stratum);
206         }
207         if (transmitTime == 0) {
208             throw new InvalidServerReplyException("zero transmitTime");
209         }
210     }
211 
212     /**
213      * Reads an unsigned 32 bit big endian number from the given offset in the buffer.
214      */
read32(byte[] buffer, int offset)215     private long read32(byte[] buffer, int offset) {
216         byte b0 = buffer[offset];
217         byte b1 = buffer[offset+1];
218         byte b2 = buffer[offset+2];
219         byte b3 = buffer[offset+3];
220 
221         // convert signed bytes to unsigned values
222         int i0 = ((b0 & 0x80) == 0x80 ? (b0 & 0x7F) + 0x80 : b0);
223         int i1 = ((b1 & 0x80) == 0x80 ? (b1 & 0x7F) + 0x80 : b1);
224         int i2 = ((b2 & 0x80) == 0x80 ? (b2 & 0x7F) + 0x80 : b2);
225         int i3 = ((b3 & 0x80) == 0x80 ? (b3 & 0x7F) + 0x80 : b3);
226 
227         return ((long)i0 << 24) + ((long)i1 << 16) + ((long)i2 << 8) + (long)i3;
228     }
229 
230     /**
231      * Reads the NTP time stamp at the given offset in the buffer and returns
232      * it as a system time (milliseconds since January 1, 1970).
233      */
readTimeStamp(byte[] buffer, int offset)234     private long readTimeStamp(byte[] buffer, int offset) {
235         long seconds = read32(buffer, offset);
236         long fraction = read32(buffer, offset + 4);
237         // Special case: zero means zero.
238         if (seconds == 0 && fraction == 0) {
239             return 0;
240         }
241         return ((seconds - OFFSET_1900_TO_1970) * 1000) + ((fraction * 1000L) / 0x100000000L);
242     }
243 
244     /**
245      * Writes system time (milliseconds since January 1, 1970) as an NTP time stamp
246      * at the given offset in the buffer.
247      */
writeTimeStamp(byte[] buffer, int offset, long time)248     private void writeTimeStamp(byte[] buffer, int offset, long time) {
249         // Special case: zero means zero.
250         if (time == 0) {
251             Arrays.fill(buffer, offset, offset + 8, (byte) 0x00);
252             return;
253         }
254 
255         long seconds = time / 1000L;
256         long milliseconds = time - seconds * 1000L;
257         seconds += OFFSET_1900_TO_1970;
258 
259         // write seconds in big endian format
260         buffer[offset++] = (byte)(seconds >> 24);
261         buffer[offset++] = (byte)(seconds >> 16);
262         buffer[offset++] = (byte)(seconds >> 8);
263         buffer[offset++] = (byte)(seconds >> 0);
264 
265         long fraction = milliseconds * 0x100000000L / 1000L;
266         // write fraction in big endian format
267         buffer[offset++] = (byte)(fraction >> 24);
268         buffer[offset++] = (byte)(fraction >> 16);
269         buffer[offset++] = (byte)(fraction >> 8);
270         // low order bits should be random data
271         buffer[offset++] = (byte)(Math.random() * 255.0);
272     }
273 }
274