1 #include <binder/Binder.h>
2 #include <binder/IBinder.h>
3 #include <binder/IPCThreadState.h>
4 #include <binder/IServiceManager.h>
5 #include <string>
6 #include <cstring>
7 #include <cstdlib>
8 #include <cstdio>
9
10 #include <iostream>
11 #include <vector>
12 #include <tuple>
13
14 #include <unistd.h>
15 #include <sys/wait.h>
16
17 using namespace std;
18 using namespace android;
19
20 enum BinderWorkerServiceCode {
21 BINDER_NOP = IBinder::FIRST_CALL_TRANSACTION,
22 };
23
24 #define ASSERT_TRUE(cond) \
25 do { \
26 if (!(cond)) {\
27 cerr << __func__ << ":" << __LINE__ << " condition:" << #cond << " failed\n" << endl; \
28 exit(EXIT_FAILURE); \
29 } \
30 } while (0)
31
32 class BinderWorkerService : public BBinder
33 {
34 public:
BinderWorkerService()35 BinderWorkerService() {}
~BinderWorkerService()36 ~BinderWorkerService() {}
onTransact(uint32_t code,const Parcel & data,Parcel * reply,uint32_t flags=0)37 virtual status_t onTransact(uint32_t code,
38 const Parcel& data, Parcel* reply,
39 uint32_t flags = 0) {
40 (void)flags;
41 (void)data;
42 (void)reply;
43 switch (code) {
44 case BINDER_NOP:
45 return NO_ERROR;
46 default:
47 return UNKNOWN_TRANSACTION;
48 };
49 }
50 };
51
52 class Pipe {
53 int m_readFd;
54 int m_writeFd;
Pipe(int readFd,int writeFd)55 Pipe(int readFd, int writeFd) : m_readFd{readFd}, m_writeFd{writeFd} {}
56 Pipe(const Pipe &) = delete;
57 Pipe& operator=(const Pipe &) = delete;
58 Pipe& operator=(const Pipe &&) = delete;
59 public:
Pipe(Pipe && rval)60 Pipe(Pipe&& rval) noexcept {
61 m_readFd = rval.m_readFd;
62 m_writeFd = rval.m_writeFd;
63 rval.m_readFd = 0;
64 rval.m_writeFd = 0;
65 }
~Pipe()66 ~Pipe() {
67 if (m_readFd)
68 close(m_readFd);
69 if (m_writeFd)
70 close(m_writeFd);
71 }
signal()72 void signal() {
73 bool val = true;
74 int error = write(m_writeFd, &val, sizeof(val));
75 ASSERT_TRUE(error >= 0);
76 };
wait()77 void wait() {
78 bool val = false;
79 int error = read(m_readFd, &val, sizeof(val));
80 ASSERT_TRUE(error >= 0);
81 }
send(const T & v)82 template <typename T> void send(const T& v) {
83 int error = write(m_writeFd, &v, sizeof(T));
84 ASSERT_TRUE(error >= 0);
85 }
recv(T & v)86 template <typename T> void recv(T& v) {
87 int error = read(m_readFd, &v, sizeof(T));
88 ASSERT_TRUE(error >= 0);
89 }
createPipePair()90 static tuple<Pipe, Pipe> createPipePair() {
91 int a[2];
92 int b[2];
93
94 int error1 = pipe(a);
95 int error2 = pipe(b);
96 ASSERT_TRUE(error1 >= 0);
97 ASSERT_TRUE(error2 >= 0);
98
99 return make_tuple(Pipe(a[0], b[1]), Pipe(b[0], a[1]));
100 }
101 };
102
103 static const uint32_t num_buckets = 128;
104 static const uint64_t max_time_bucket = 50ull * 1000000;
105 static const uint64_t time_per_bucket = max_time_bucket / num_buckets;
106 static constexpr float time_per_bucket_ms = time_per_bucket / 1.0E6;
107
108 struct ProcResults {
109 uint64_t m_best = max_time_bucket;
110 uint64_t m_worst = 0;
111 uint32_t m_buckets[num_buckets] = {0};
112 uint64_t m_transactions = 0;
113 uint64_t m_total_time = 0;
114
add_timeProcResults115 void add_time(uint64_t time) {
116 m_buckets[min(time, max_time_bucket-1) / time_per_bucket] += 1;
117 m_best = min(time, m_best);
118 m_worst = max(time, m_worst);
119 m_transactions += 1;
120 m_total_time += time;
121 }
combineProcResults122 static ProcResults combine(const ProcResults& a, const ProcResults& b) {
123 ProcResults ret;
124 for (int i = 0; i < num_buckets; i++) {
125 ret.m_buckets[i] = a.m_buckets[i] + b.m_buckets[i];
126 }
127 ret.m_worst = max(a.m_worst, b.m_worst);
128 ret.m_best = min(a.m_best, b.m_best);
129 ret.m_transactions = a.m_transactions + b.m_transactions;
130 ret.m_total_time = a.m_total_time + b.m_total_time;
131 return ret;
132 }
dumpProcResults133 void dump() {
134 double best = (double)m_best / 1.0E6;
135 double worst = (double)m_worst / 1.0E6;
136 double average = (double)m_total_time / m_transactions / 1.0E6;
137 cout << "average:" << average << "ms worst:" << worst << "ms best:" << best << "ms" << endl;
138
139 uint64_t cur_total = 0;
140 for (int i = 0; i < num_buckets; i++) {
141 float cur_time = time_per_bucket_ms * i + 0.5f * time_per_bucket_ms;
142 if ((cur_total < 0.5f * m_transactions) && (cur_total + m_buckets[i] >= 0.5f * m_transactions)) {
143 cout << "50%: " << cur_time << " ";
144 }
145 if ((cur_total < 0.9f * m_transactions) && (cur_total + m_buckets[i] >= 0.9f * m_transactions)) {
146 cout << "90%: " << cur_time << " ";
147 }
148 if ((cur_total < 0.95f * m_transactions) && (cur_total + m_buckets[i] >= 0.95f * m_transactions)) {
149 cout << "95%: " << cur_time << " ";
150 }
151 if ((cur_total < 0.99f * m_transactions) && (cur_total + m_buckets[i] >= 0.99f * m_transactions)) {
152 cout << "99%: " << cur_time << " ";
153 }
154 cur_total += m_buckets[i];
155 }
156 cout << endl;
157
158 }
159 };
160
generateServiceName(int num)161 String16 generateServiceName(int num)
162 {
163 char num_str[32];
164 snprintf(num_str, sizeof(num_str), "%d", num);
165 String16 serviceName = String16("binderWorker") + String16(num_str);
166 return serviceName;
167 }
168
worker_fx(int num,int worker_count,int iterations,Pipe p)169 void worker_fx(
170 int num,
171 int worker_count,
172 int iterations,
173 Pipe p)
174 {
175 // Create BinderWorkerService and for go.
176 ProcessState::self()->startThreadPool();
177 sp<IServiceManager> serviceMgr = defaultServiceManager();
178 sp<BinderWorkerService> service = new BinderWorkerService;
179 serviceMgr->addService(generateServiceName(num), service);
180
181 srand(num);
182 p.signal();
183 p.wait();
184
185 // Get references to other binder services.
186 cout << "Created BinderWorker" << num << endl;
187 (void)worker_count;
188 vector<sp<IBinder> > workers;
189 for (int i = 0; i < worker_count; i++) {
190 if (num == i)
191 continue;
192 workers.push_back(serviceMgr->getService(generateServiceName(i)));
193 }
194
195 // Run the benchmark.
196 ProcResults results;
197 chrono::time_point<chrono::high_resolution_clock> start, end;
198 for (int i = 0; i < iterations; i++) {
199 int target = rand() % workers.size();
200 Parcel data, reply;
201 start = chrono::high_resolution_clock::now();
202 status_t ret = workers[target]->transact(BINDER_NOP, data, &reply);
203 end = chrono::high_resolution_clock::now();
204
205 uint64_t cur_time = uint64_t(chrono::duration_cast<chrono::nanoseconds>(end - start).count());
206 results.add_time(cur_time);
207
208 if (ret != NO_ERROR) {
209 cout << "thread " << num << " failed " << ret << "i : " << i << endl;
210 exit(EXIT_FAILURE);
211 }
212 }
213 // Signal completion to master and wait.
214 p.signal();
215 p.wait();
216
217 // Send results to master and wait for go to exit.
218 p.send(results);
219 p.wait();
220
221 exit(EXIT_SUCCESS);
222 }
223
make_worker(int num,int iterations,int worker_count)224 Pipe make_worker(int num, int iterations, int worker_count)
225 {
226 auto pipe_pair = Pipe::createPipePair();
227 pid_t pid = fork();
228 if (pid) {
229 /* parent */
230 return move(get<0>(pipe_pair));
231 } else {
232 /* child */
233 worker_fx(num, worker_count, iterations, move(get<1>(pipe_pair)));
234 /* never get here */
235 return move(get<0>(pipe_pair));
236 }
237
238 }
239
wait_all(vector<Pipe> & v)240 void wait_all(vector<Pipe>& v)
241 {
242 for (int i = 0; i < v.size(); i++) {
243 v[i].wait();
244 }
245 }
246
signal_all(vector<Pipe> & v)247 void signal_all(vector<Pipe>& v)
248 {
249 for (int i = 0; i < v.size(); i++) {
250 v[i].signal();
251 }
252 }
253
main(int argc,char * argv[])254 int main(int argc, char *argv[])
255 {
256 int workers = 2;
257 int iterations = 10000;
258 (void)argc;
259 (void)argv;
260 vector<Pipe> pipes;
261
262 // Parse arguments.
263 for (int i = 1; i < argc; i++) {
264 if (string(argv[i]) == "-w") {
265 workers = atoi(argv[i+1]);
266 i++;
267 continue;
268 }
269 if (string(argv[i]) == "-i") {
270 iterations = atoi(argv[i+1]);
271 i++;
272 continue;
273 }
274 }
275
276 // Create all the workers and wait for them to spawn.
277 for (int i = 0; i < workers; i++) {
278 pipes.push_back(make_worker(i, iterations, workers));
279 }
280 wait_all(pipes);
281
282
283 // Run the workers and wait for completion.
284 chrono::time_point<chrono::high_resolution_clock> start, end;
285 cout << "waiting for workers to complete" << endl;
286 start = chrono::high_resolution_clock::now();
287 signal_all(pipes);
288 wait_all(pipes);
289 end = chrono::high_resolution_clock::now();
290
291 // Calculate overall throughput.
292 double iterations_per_sec = double(iterations * workers) / (chrono::duration_cast<chrono::nanoseconds>(end - start).count() / 1.0E9);
293 cout << "iterations per sec: " << iterations_per_sec << endl;
294
295 // Collect all results from the workers.
296 cout << "collecting results" << endl;
297 signal_all(pipes);
298 ProcResults tot_results;
299 for (int i = 0; i < workers; i++) {
300 ProcResults tmp_results;
301 pipes[i].recv(tmp_results);
302 tot_results = ProcResults::combine(tot_results, tmp_results);
303 }
304 tot_results.dump();
305
306 // Kill all the workers.
307 cout << "killing workers" << endl;
308 signal_all(pipes);
309 for (int i = 0; i < workers; i++) {
310 int status;
311 wait(&status);
312 if (status != 0) {
313 cout << "nonzero child status" << status << endl;
314 }
315 }
316 return 0;
317 }
318