1 /*
2 * Copyright (C) 2015 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "lambda/closure.h"
18
19 #include "base/logging.h"
20 #include "lambda/art_lambda_method.h"
21 #include "runtime/mirror/object_reference.h"
22
23 static constexpr const bool kClosureSupportsReferences = false;
24 static constexpr const bool kClosureSupportsGarbageCollection = false;
25
26 namespace art {
27 namespace lambda {
28
29 template <typename T>
30 // TODO: can I return T __attribute__((__aligned__(1)))* here instead?
GetUnsafeAtOffset(size_t offset) const31 const uint8_t* Closure::GetUnsafeAtOffset(size_t offset) const {
32 // Do not DCHECK here with existing helpers since most of them will call into this function.
33 return reinterpret_cast<const uint8_t*>(captured_) + offset;
34 }
35
GetCapturedVariableSize(ShortyFieldType variable_type,size_t offset) const36 size_t Closure::GetCapturedVariableSize(ShortyFieldType variable_type, size_t offset) const {
37 switch (variable_type) {
38 case ShortyFieldType::kLambda:
39 {
40 return GetClosureSize(GetUnsafeAtOffset<Closure>(offset));
41 }
42 default:
43 DCHECK(variable_type.IsStaticSize());
44 return variable_type.GetStaticSize();
45 }
46 }
47
48 // Templatize the flags to give the compiler a fighting chance to eliminate
49 // any unnecessary code through different uses of this function.
50 template <Closure::VariableInfo::Flags flags>
ParseTypeDescriptor(const char * type_descriptor,size_t upto_index) const51 inline Closure::VariableInfo Closure::ParseTypeDescriptor(const char* type_descriptor,
52 size_t upto_index) const {
53 DCHECK(type_descriptor != nullptr);
54
55 VariableInfo result;
56
57 ShortyFieldType last_type;
58 size_t offset = (flags & VariableInfo::kOffset) ? GetStartingOffset() : 0;
59 size_t prev_offset = 0;
60 size_t count = 0;
61
62 while ((type_descriptor =
63 ShortyFieldType::ParseFromFieldTypeDescriptor(type_descriptor, &last_type)) != nullptr) {
64 count++;
65
66 if (flags & VariableInfo::kOffset) {
67 // Accumulate the sizes of all preceding captured variables as the current offset only.
68 offset += prev_offset;
69 prev_offset = GetCapturedVariableSize(last_type, offset);
70 }
71
72 if ((count > upto_index)) {
73 break;
74 }
75 }
76
77 if (flags & VariableInfo::kVariableType) {
78 result.variable_type_ = last_type;
79 }
80
81 if (flags & VariableInfo::kIndex) {
82 result.index_ = count;
83 }
84
85 if (flags & VariableInfo::kCount) {
86 result.count_ = count;
87 }
88
89 if (flags & VariableInfo::kOffset) {
90 result.offset_ = offset;
91 }
92
93 // TODO: We should probably store the result of this in the ArtLambdaMethod,
94 // to avoid re-computing the data every single time for static closures.
95 return result;
96 }
97
GetCapturedVariablesSize() const98 size_t Closure::GetCapturedVariablesSize() const {
99 const size_t captured_variable_offset = offsetof(Closure, captured_);
100 DCHECK_GE(GetSize(), captured_variable_offset); // Prevent underflows.
101 return GetSize() - captured_variable_offset;
102 }
103
GetSize() const104 size_t Closure::GetSize() const {
105 const size_t static_closure_size = lambda_info_->GetStaticClosureSize();
106 if (LIKELY(lambda_info_->IsStaticSize())) {
107 return static_closure_size;
108 }
109
110 DCHECK_GE(static_closure_size, sizeof(captured_[0].dynamic_.size_));
111 const size_t dynamic_closure_size = captured_[0].dynamic_.size_;
112 // The dynamic size better be at least as big as the static size.
113 DCHECK_GE(dynamic_closure_size, static_closure_size);
114
115 return dynamic_closure_size;
116 }
117
CopyTo(void * target,size_t target_size) const118 void Closure::CopyTo(void* target, size_t target_size) const {
119 DCHECK_GE(target_size, GetSize());
120
121 // TODO: using memcpy is unsafe with read barriers, fix this once we add reference support
122 static_assert(kClosureSupportsReferences == false,
123 "Do not use memcpy with readbarrier references");
124 memcpy(target, this, GetSize());
125 }
126
GetTargetMethod() const127 ArtMethod* Closure::GetTargetMethod() const {
128 return const_cast<ArtMethod*>(lambda_info_->GetArtMethod());
129 }
130
GetHashCode() const131 uint32_t Closure::GetHashCode() const {
132 // Start with a non-zero constant, a prime number.
133 uint32_t result = 17;
134
135 // Include the hash with the ArtMethod.
136 {
137 uintptr_t method = reinterpret_cast<uintptr_t>(GetTargetMethod());
138 result = 31 * result + Low32Bits(method);
139 if (sizeof(method) == sizeof(uint64_t)) {
140 result = 31 * result + High32Bits(method);
141 }
142 }
143
144 // Include a hash for each captured variable.
145 for (size_t i = 0; i < GetCapturedVariablesSize(); ++i) {
146 // TODO: not safe for GC-able values since the address can move and the hash code would change.
147 uint8_t captured_variable_raw_value;
148 CopyUnsafeAtOffset<uint8_t>(i, /*out*/&captured_variable_raw_value); // NOLINT: [whitespace/comma] [3]
149
150 result = 31 * result + captured_variable_raw_value;
151 }
152
153 // TODO: Fix above loop to work for objects and lambdas.
154 static_assert(kClosureSupportsGarbageCollection == false,
155 "Need to update above loop to read the hash code from the "
156 "objects and lambdas recursively");
157
158 return result;
159 }
160
ReferenceEquals(const Closure * other) const161 bool Closure::ReferenceEquals(const Closure* other) const {
162 DCHECK(other != nullptr);
163
164 // TODO: Need rework to use read barriers once closures have references inside of them that can
165 // move. Until then, it's safe to just compare the data inside of it directly.
166 static_assert(kClosureSupportsReferences == false,
167 "Unsafe to use memcmp in read barrier collector");
168
169 if (GetSize() != other->GetSize()) {
170 return false;
171 }
172
173 return memcmp(this, other, GetSize());
174 }
175
GetNumberOfCapturedVariables() const176 size_t Closure::GetNumberOfCapturedVariables() const {
177 // TODO: refactor into art_lambda_method.h. Parsing should only be required here as a DCHECK.
178 VariableInfo variable_info =
179 ParseTypeDescriptor<VariableInfo::kCount>(GetCapturedVariablesTypeDescriptor(),
180 VariableInfo::kUpToIndexMax);
181 size_t count = variable_info.count_;
182 // Assuming each variable was 1 byte, the size should always be greater or equal than the count.
183 DCHECK_LE(count, GetCapturedVariablesSize());
184 return count;
185 }
186
GetCapturedVariablesTypeDescriptor() const187 const char* Closure::GetCapturedVariablesTypeDescriptor() const {
188 return lambda_info_->GetCapturedVariablesTypeDescriptor();
189 }
190
GetCapturedShortyType(size_t index) const191 ShortyFieldType Closure::GetCapturedShortyType(size_t index) const {
192 DCHECK_LT(index, GetNumberOfCapturedVariables());
193
194 VariableInfo variable_info =
195 ParseTypeDescriptor<VariableInfo::kVariableType>(GetCapturedVariablesTypeDescriptor(),
196 index);
197
198 return variable_info.variable_type_;
199 }
200
GetCapturedPrimitiveNarrow(size_t index) const201 uint32_t Closure::GetCapturedPrimitiveNarrow(size_t index) const {
202 DCHECK(GetCapturedShortyType(index).IsPrimitiveNarrow());
203
204 ShortyFieldType variable_type;
205 size_t offset;
206 GetCapturedVariableTypeAndOffset(index, &variable_type, &offset);
207
208 // TODO: Restructure to use template specialization, e.g. GetCapturedPrimitive<T>
209 // so that we can avoid this nonsense regarding memcpy always overflowing.
210 // Plus, this additional switching seems redundant since the interpreter
211 // would've done it already, and knows the exact type.
212 uint32_t result = 0;
213 static_assert(ShortyFieldTypeTraits::IsPrimitiveNarrowType<decltype(result)>(),
214 "result must be a primitive narrow type");
215 switch (variable_type) {
216 case ShortyFieldType::kBoolean:
217 CopyUnsafeAtOffset<bool>(offset, &result);
218 break;
219 case ShortyFieldType::kByte:
220 CopyUnsafeAtOffset<uint8_t>(offset, &result);
221 break;
222 case ShortyFieldType::kChar:
223 CopyUnsafeAtOffset<uint16_t>(offset, &result);
224 break;
225 case ShortyFieldType::kShort:
226 CopyUnsafeAtOffset<int16_t>(offset, &result);
227 break;
228 case ShortyFieldType::kInt:
229 CopyUnsafeAtOffset<int32_t>(offset, &result);
230 break;
231 case ShortyFieldType::kFloat:
232 // XX: Maybe there should just be a GetCapturedPrimitive<T> to avoid this shuffle?
233 // The interpreter's invoke seems to only special case references and wides,
234 // everything else is treated as a generic 32-bit pattern.
235 CopyUnsafeAtOffset<float>(offset, &result);
236 break;
237 default:
238 LOG(FATAL)
239 << "expected a valid narrow primitive shorty type but got "
240 << static_cast<char>(variable_type);
241 UNREACHABLE();
242 }
243
244 return result;
245 }
246
GetCapturedPrimitiveWide(size_t index) const247 uint64_t Closure::GetCapturedPrimitiveWide(size_t index) const {
248 DCHECK(GetCapturedShortyType(index).IsPrimitiveWide());
249
250 ShortyFieldType variable_type;
251 size_t offset;
252 GetCapturedVariableTypeAndOffset(index, &variable_type, &offset);
253
254 // TODO: Restructure to use template specialization, e.g. GetCapturedPrimitive<T>
255 // so that we can avoid this nonsense regarding memcpy always overflowing.
256 // Plus, this additional switching seems redundant since the interpreter
257 // would've done it already, and knows the exact type.
258 uint64_t result = 0;
259 static_assert(ShortyFieldTypeTraits::IsPrimitiveWideType<decltype(result)>(),
260 "result must be a primitive wide type");
261 switch (variable_type) {
262 case ShortyFieldType::kLong:
263 CopyUnsafeAtOffset<int64_t>(offset, &result);
264 break;
265 case ShortyFieldType::kDouble:
266 CopyUnsafeAtOffset<double>(offset, &result);
267 break;
268 default:
269 LOG(FATAL)
270 << "expected a valid primitive wide shorty type but got "
271 << static_cast<char>(variable_type);
272 UNREACHABLE();
273 }
274
275 return result;
276 }
277
GetCapturedObject(size_t index) const278 mirror::Object* Closure::GetCapturedObject(size_t index) const {
279 DCHECK(GetCapturedShortyType(index).IsObject());
280
281 ShortyFieldType variable_type;
282 size_t offset;
283 GetCapturedVariableTypeAndOffset(index, &variable_type, &offset);
284
285 // TODO: Restructure to use template specialization, e.g. GetCapturedPrimitive<T>
286 // so that we can avoid this nonsense regarding memcpy always overflowing.
287 // Plus, this additional switching seems redundant since the interpreter
288 // would've done it already, and knows the exact type.
289 mirror::Object* result = nullptr;
290 static_assert(ShortyFieldTypeTraits::IsObjectType<decltype(result)>(),
291 "result must be an object type");
292 switch (variable_type) {
293 case ShortyFieldType::kObject:
294 // TODO: This seems unsafe. This may need to use gcroots.
295 static_assert(kClosureSupportsGarbageCollection == false,
296 "May need GcRoots and definitely need mutator locks");
297 {
298 mirror::CompressedReference<mirror::Object> compressed_result;
299 CopyUnsafeAtOffset<uint32_t>(offset, &compressed_result);
300 result = compressed_result.AsMirrorPtr();
301 }
302 break;
303 default:
304 CHECK(false)
305 << "expected a valid shorty type but got " << static_cast<char>(variable_type);
306 UNREACHABLE();
307 }
308
309 return result;
310 }
311
GetCapturedClosureSize(size_t index) const312 size_t Closure::GetCapturedClosureSize(size_t index) const {
313 DCHECK(GetCapturedShortyType(index).IsLambda());
314 size_t offset = GetCapturedVariableOffset(index);
315
316 auto* captured_ptr = reinterpret_cast<const uint8_t*>(&captured_);
317 size_t closure_size = GetClosureSize(captured_ptr + offset);
318
319 return closure_size;
320 }
321
CopyCapturedClosure(size_t index,void * destination,size_t destination_room) const322 void Closure::CopyCapturedClosure(size_t index, void* destination, size_t destination_room) const {
323 DCHECK(GetCapturedShortyType(index).IsLambda());
324 size_t offset = GetCapturedVariableOffset(index);
325
326 auto* captured_ptr = reinterpret_cast<const uint8_t*>(&captured_);
327 size_t closure_size = GetClosureSize(captured_ptr + offset);
328
329 static_assert(ShortyFieldTypeTraits::IsLambdaType<Closure*>(),
330 "result must be a lambda type");
331
332 CopyUnsafeAtOffset<Closure>(offset, destination, closure_size, destination_room);
333 }
334
GetCapturedVariableOffset(size_t index) const335 size_t Closure::GetCapturedVariableOffset(size_t index) const {
336 VariableInfo variable_info =
337 ParseTypeDescriptor<VariableInfo::kOffset>(GetCapturedVariablesTypeDescriptor(),
338 index);
339
340 size_t offset = variable_info.offset_;
341
342 return offset;
343 }
344
GetCapturedVariableTypeAndOffset(size_t index,ShortyFieldType * out_type,size_t * out_offset) const345 void Closure::GetCapturedVariableTypeAndOffset(size_t index,
346 ShortyFieldType* out_type,
347 size_t* out_offset) const {
348 DCHECK(out_type != nullptr);
349 DCHECK(out_offset != nullptr);
350
351 static constexpr const VariableInfo::Flags kVariableTypeAndOffset =
352 static_cast<VariableInfo::Flags>(VariableInfo::kVariableType | VariableInfo::kOffset);
353 VariableInfo variable_info =
354 ParseTypeDescriptor<kVariableTypeAndOffset>(GetCapturedVariablesTypeDescriptor(),
355 index);
356
357 ShortyFieldType variable_type = variable_info.variable_type_;
358 size_t offset = variable_info.offset_;
359
360 *out_type = variable_type;
361 *out_offset = offset;
362 }
363
364 template <typename T>
CopyUnsafeAtOffset(size_t offset,void * destination,size_t src_size,size_t destination_room) const365 void Closure::CopyUnsafeAtOffset(size_t offset,
366 void* destination,
367 size_t src_size,
368 size_t destination_room) const {
369 DCHECK_GE(destination_room, src_size);
370 const uint8_t* data_ptr = GetUnsafeAtOffset<T>(offset);
371 memcpy(destination, data_ptr, sizeof(T));
372 }
373
374 // TODO: This is kind of ugly. I would prefer an unaligned_ptr<Closure> here.
375 // Unfortunately C++ doesn't let you lower the alignment (i.e. alignas(1) Closure*) is not legal.
GetClosureSize(const uint8_t * closure)376 size_t Closure::GetClosureSize(const uint8_t* closure) {
377 DCHECK(closure != nullptr);
378
379 static_assert(!std::is_base_of<mirror::Object, Closure>::value,
380 "It might be unsafe to call memcpy on a managed object");
381
382 // Safe as long as it's not a mirror Object.
383 // TODO: Should probably wrap this in like MemCpyNative or some such which statically asserts
384 // we aren't trying to copy mirror::Object data around.
385 ArtLambdaMethod* closure_info;
386 memcpy(&closure_info, closure + offsetof(Closure, lambda_info_), sizeof(closure_info));
387
388 if (LIKELY(closure_info->IsStaticSize())) {
389 return closure_info->GetStaticClosureSize();
390 }
391
392 // The size is dynamic, so we need to read it from captured_variables_ portion.
393 size_t dynamic_size;
394 memcpy(&dynamic_size,
395 closure + offsetof(Closure, captured_[0].dynamic_.size_),
396 sizeof(dynamic_size));
397 static_assert(sizeof(dynamic_size) == sizeof(captured_[0].dynamic_.size_),
398 "Dynamic size type must match the structural type of the size");
399
400 DCHECK_GE(dynamic_size, closure_info->GetStaticClosureSize());
401 return dynamic_size;
402 }
403
GetStartingOffset() const404 size_t Closure::GetStartingOffset() const {
405 static constexpr const size_t captured_offset = offsetof(Closure, captured_);
406 if (LIKELY(lambda_info_->IsStaticSize())) {
407 return offsetof(Closure, captured_[0].static_variables_) - captured_offset;
408 } else {
409 return offsetof(Closure, captured_[0].dynamic_.variables_) - captured_offset;
410 }
411 }
412
413 } // namespace lambda
414 } // namespace art
415