1# Copyright 2013 The Android Open Source Project 2# 3# Licensed under the Apache License, Version 2.0 (the "License"); 4# you may not use this file except in compliance with the License. 5# You may obtain a copy of the License at 6# 7# http://www.apache.org/licenses/LICENSE-2.0 8# 9# Unless required by applicable law or agreed to in writing, software 10# distributed under the License is distributed on an "AS IS" BASIS, 11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 12# See the License for the specific language governing permissions and 13# limitations under the License. 14 15import its.image 16import its.caps 17import its.device 18import its.objects 19import its.target 20import pylab 21import os.path 22import matplotlib 23import matplotlib.pyplot 24 25def main(): 26 """Test that the android.sensor.sensitivity parameter is applied. 27 """ 28 NAME = os.path.basename(__file__).split(".")[0] 29 30 NUM_STEPS = 5 31 32 sensitivities = None 33 r_means = [] 34 g_means = [] 35 b_means = [] 36 37 with its.device.ItsSession() as cam: 38 props = cam.get_camera_properties() 39 its.caps.skip_unless(its.caps.compute_target_exposure(props) and 40 its.caps.per_frame_control(props)) 41 42 debug = its.caps.debug_mode() 43 if debug: 44 fmt = its.objects.get_largest_yuv_format(props) 45 else: 46 fmt = its.objects.get_smallest_yuv_format(props) 47 48 expt,_ = its.target.get_target_exposure_combos(cam)["midSensitivity"] 49 sens_range = props['android.sensor.info.sensitivityRange'] 50 sens_step = (sens_range[1] - sens_range[0]) / float(NUM_STEPS-1) 51 sensitivities = [sens_range[0] + i * sens_step for i in range(NUM_STEPS)] 52 53 for s in sensitivities: 54 req = its.objects.manual_capture_request(s, expt) 55 cap = cam.do_capture(req, fmt) 56 img = its.image.convert_capture_to_rgb_image(cap) 57 its.image.write_image( 58 img, "%s_iso=%04d.jpg" % (NAME, s)) 59 tile = its.image.get_image_patch(img, 0.45, 0.45, 0.1, 0.1) 60 rgb_means = its.image.compute_image_means(tile) 61 r_means.append(rgb_means[0]) 62 g_means.append(rgb_means[1]) 63 b_means.append(rgb_means[2]) 64 65 # Draw a plot. 66 pylab.plot(sensitivities, r_means, 'r') 67 pylab.plot(sensitivities, g_means, 'g') 68 pylab.plot(sensitivities, b_means, 'b') 69 pylab.ylim([0,1]) 70 matplotlib.pyplot.savefig("%s_plot_means.png" % (NAME)) 71 72 # Test for pass/fail: check that each shot is brighter than the previous. 73 for means in [r_means, g_means, b_means]: 74 for i in range(len(means)-1): 75 assert(means[i+1] > means[i]) 76 77if __name__ == '__main__': 78 main() 79 80