1 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
2 * All rights reserved.
3 *
4 * This package is an SSL implementation written
5 * by Eric Young (eay@cryptsoft.com).
6 * The implementation was written so as to conform with Netscapes SSL.
7 *
8 * This library is free for commercial and non-commercial use as long as
9 * the following conditions are aheared to. The following conditions
10 * apply to all code found in this distribution, be it the RC4, RSA,
11 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
12 * included with this distribution is covered by the same copyright terms
13 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
14 *
15 * Copyright remains Eric Young's, and as such any Copyright notices in
16 * the code are not to be removed.
17 * If this package is used in a product, Eric Young should be given attribution
18 * as the author of the parts of the library used.
19 * This can be in the form of a textual message at program startup or
20 * in documentation (online or textual) provided with the package.
21 *
22 * Redistribution and use in source and binary forms, with or without
23 * modification, are permitted provided that the following conditions
24 * are met:
25 * 1. Redistributions of source code must retain the copyright
26 * notice, this list of conditions and the following disclaimer.
27 * 2. Redistributions in binary form must reproduce the above copyright
28 * notice, this list of conditions and the following disclaimer in the
29 * documentation and/or other materials provided with the distribution.
30 * 3. All advertising materials mentioning features or use of this software
31 * must display the following acknowledgement:
32 * "This product includes cryptographic software written by
33 * Eric Young (eay@cryptsoft.com)"
34 * The word 'cryptographic' can be left out if the rouines from the library
35 * being used are not cryptographic related :-).
36 * 4. If you include any Windows specific code (or a derivative thereof) from
37 * the apps directory (application code) you must include an acknowledgement:
38 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
39 *
40 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
41 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
42 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
43 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
44 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
45 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
46 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
48 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
49 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
50 * SUCH DAMAGE.
51 *
52 * The licence and distribution terms for any publically available version or
53 * derivative of this code cannot be changed. i.e. this code cannot simply be
54 * copied and put under another distribution licence
55 * [including the GNU Public Licence.] */
56
57 #include <openssl/sha.h>
58
59 #include <string.h>
60
61 #include <openssl/mem.h>
62
63
64 /* IMPLEMENTATION NOTES.
65 *
66 * The 32-bit hash algorithms share a common byte-order neutral collector and
67 * padding function implementations that operate on unaligned data,
68 * ../md32_common.h. This SHA-512 implementation does not. Reasons
69 * [in reverse order] are:
70 *
71 * - It's the only 64-bit hash algorithm for the moment of this writing,
72 * there is no need for common collector/padding implementation [yet];
73 * - By supporting only a transform function that operates on *aligned* data
74 * the collector/padding function is simpler and easier to optimize. */
75
76 #if !defined(OPENSSL_NO_ASM) && \
77 (defined(OPENSSL_X86) || defined(OPENSSL_X86_64) || \
78 defined(OPENSSL_ARM) || defined(OPENSSL_AARCH64))
79 #define SHA512_ASM
80 #endif
81
82 #if defined(OPENSSL_X86) || defined(OPENSSL_X86_64) || \
83 defined(__ARM_FEATURE_UNALIGNED)
84 #define SHA512_BLOCK_CAN_MANAGE_UNALIGNED_DATA
85 #endif
86
SHA384_Init(SHA512_CTX * sha)87 int SHA384_Init(SHA512_CTX *sha) {
88 sha->h[0] = UINT64_C(0xcbbb9d5dc1059ed8);
89 sha->h[1] = UINT64_C(0x629a292a367cd507);
90 sha->h[2] = UINT64_C(0x9159015a3070dd17);
91 sha->h[3] = UINT64_C(0x152fecd8f70e5939);
92 sha->h[4] = UINT64_C(0x67332667ffc00b31);
93 sha->h[5] = UINT64_C(0x8eb44a8768581511);
94 sha->h[6] = UINT64_C(0xdb0c2e0d64f98fa7);
95 sha->h[7] = UINT64_C(0x47b5481dbefa4fa4);
96
97 sha->Nl = 0;
98 sha->Nh = 0;
99 sha->num = 0;
100 sha->md_len = SHA384_DIGEST_LENGTH;
101 return 1;
102 }
103
104
SHA512_Init(SHA512_CTX * sha)105 int SHA512_Init(SHA512_CTX *sha) {
106 sha->h[0] = UINT64_C(0x6a09e667f3bcc908);
107 sha->h[1] = UINT64_C(0xbb67ae8584caa73b);
108 sha->h[2] = UINT64_C(0x3c6ef372fe94f82b);
109 sha->h[3] = UINT64_C(0xa54ff53a5f1d36f1);
110 sha->h[4] = UINT64_C(0x510e527fade682d1);
111 sha->h[5] = UINT64_C(0x9b05688c2b3e6c1f);
112 sha->h[6] = UINT64_C(0x1f83d9abfb41bd6b);
113 sha->h[7] = UINT64_C(0x5be0cd19137e2179);
114
115 sha->Nl = 0;
116 sha->Nh = 0;
117 sha->num = 0;
118 sha->md_len = SHA512_DIGEST_LENGTH;
119 return 1;
120 }
121
SHA384(const uint8_t * data,size_t len,uint8_t * out)122 uint8_t *SHA384(const uint8_t *data, size_t len, uint8_t *out) {
123 SHA512_CTX ctx;
124 static uint8_t buf[SHA384_DIGEST_LENGTH];
125
126 /* TODO(fork): remove this static buffer. */
127 if (out == NULL) {
128 out = buf;
129 }
130
131 SHA384_Init(&ctx);
132 SHA512_Update(&ctx, data, len);
133 SHA512_Final(out, &ctx);
134 OPENSSL_cleanse(&ctx, sizeof(ctx));
135 return out;
136 }
137
SHA512(const uint8_t * data,size_t len,uint8_t * out)138 uint8_t *SHA512(const uint8_t *data, size_t len, uint8_t *out) {
139 SHA512_CTX ctx;
140 static uint8_t buf[SHA512_DIGEST_LENGTH];
141
142 /* TODO(fork): remove this static buffer. */
143 if (out == NULL) {
144 out = buf;
145 }
146 SHA512_Init(&ctx);
147 SHA512_Update(&ctx, data, len);
148 SHA512_Final(out, &ctx);
149 OPENSSL_cleanse(&ctx, sizeof(ctx));
150 return out;
151 }
152
153 #if !defined(SHA512_ASM)
154 static
155 #endif
156 void sha512_block_data_order(uint64_t *state, const uint64_t *W, size_t num);
157
158
SHA384_Final(uint8_t * md,SHA512_CTX * sha)159 int SHA384_Final(uint8_t *md, SHA512_CTX *sha) {
160 return SHA512_Final(md, sha);
161 }
162
SHA384_Update(SHA512_CTX * sha,const void * data,size_t len)163 int SHA384_Update(SHA512_CTX *sha, const void *data, size_t len) {
164 return SHA512_Update(sha, data, len);
165 }
166
SHA512_Transform(SHA512_CTX * c,const uint8_t * data)167 void SHA512_Transform(SHA512_CTX *c, const uint8_t *data) {
168 #ifndef SHA512_BLOCK_CAN_MANAGE_UNALIGNED_DATA
169 if ((size_t)data % sizeof(c->u.d[0]) != 0) {
170 memcpy(c->u.p, data, sizeof(c->u.p));
171 data = c->u.p;
172 }
173 #endif
174 sha512_block_data_order(c->h, (uint64_t *)data, 1);
175 }
176
SHA512_Update(SHA512_CTX * c,const void * in_data,size_t len)177 int SHA512_Update(SHA512_CTX *c, const void *in_data, size_t len) {
178 uint64_t l;
179 uint8_t *p = c->u.p;
180 const uint8_t *data = (const uint8_t *)in_data;
181
182 if (len == 0) {
183 return 1;
184 }
185
186 l = (c->Nl + (((uint64_t)len) << 3)) & UINT64_C(0xffffffffffffffff);
187 if (l < c->Nl) {
188 c->Nh++;
189 }
190 if (sizeof(len) >= 8) {
191 c->Nh += (((uint64_t)len) >> 61);
192 }
193 c->Nl = l;
194
195 if (c->num != 0) {
196 size_t n = sizeof(c->u) - c->num;
197
198 if (len < n) {
199 memcpy(p + c->num, data, len);
200 c->num += (unsigned int)len;
201 return 1;
202 } else {
203 memcpy(p + c->num, data, n), c->num = 0;
204 len -= n;
205 data += n;
206 sha512_block_data_order(c->h, (uint64_t *)p, 1);
207 }
208 }
209
210 if (len >= sizeof(c->u)) {
211 #ifndef SHA512_BLOCK_CAN_MANAGE_UNALIGNED_DATA
212 if ((size_t)data % sizeof(c->u.d[0]) != 0) {
213 while (len >= sizeof(c->u)) {
214 memcpy(p, data, sizeof(c->u));
215 sha512_block_data_order(c->h, (uint64_t *)p, 1);
216 len -= sizeof(c->u);
217 data += sizeof(c->u);
218 }
219 } else
220 #endif
221 {
222 sha512_block_data_order(c->h, (uint64_t *)data, len / sizeof(c->u));
223 data += len;
224 len %= sizeof(c->u);
225 data -= len;
226 }
227 }
228
229 if (len != 0) {
230 memcpy(p, data, len);
231 c->num = (int)len;
232 }
233
234 return 1;
235 }
236
SHA512_Final(uint8_t * md,SHA512_CTX * sha)237 int SHA512_Final(uint8_t *md, SHA512_CTX *sha) {
238 uint8_t *p = (uint8_t *)sha->u.p;
239 size_t n = sha->num;
240
241 p[n] = 0x80; /* There always is a room for one */
242 n++;
243 if (n > (sizeof(sha->u) - 16)) {
244 memset(p + n, 0, sizeof(sha->u) - n);
245 n = 0;
246 sha512_block_data_order(sha->h, (uint64_t *)p, 1);
247 }
248
249 memset(p + n, 0, sizeof(sha->u) - 16 - n);
250 p[sizeof(sha->u) - 1] = (uint8_t)(sha->Nl);
251 p[sizeof(sha->u) - 2] = (uint8_t)(sha->Nl >> 8);
252 p[sizeof(sha->u) - 3] = (uint8_t)(sha->Nl >> 16);
253 p[sizeof(sha->u) - 4] = (uint8_t)(sha->Nl >> 24);
254 p[sizeof(sha->u) - 5] = (uint8_t)(sha->Nl >> 32);
255 p[sizeof(sha->u) - 6] = (uint8_t)(sha->Nl >> 40);
256 p[sizeof(sha->u) - 7] = (uint8_t)(sha->Nl >> 48);
257 p[sizeof(sha->u) - 8] = (uint8_t)(sha->Nl >> 56);
258 p[sizeof(sha->u) - 9] = (uint8_t)(sha->Nh);
259 p[sizeof(sha->u) - 10] = (uint8_t)(sha->Nh >> 8);
260 p[sizeof(sha->u) - 11] = (uint8_t)(sha->Nh >> 16);
261 p[sizeof(sha->u) - 12] = (uint8_t)(sha->Nh >> 24);
262 p[sizeof(sha->u) - 13] = (uint8_t)(sha->Nh >> 32);
263 p[sizeof(sha->u) - 14] = (uint8_t)(sha->Nh >> 40);
264 p[sizeof(sha->u) - 15] = (uint8_t)(sha->Nh >> 48);
265 p[sizeof(sha->u) - 16] = (uint8_t)(sha->Nh >> 56);
266
267 sha512_block_data_order(sha->h, (uint64_t *)p, 1);
268
269 if (md == NULL) {
270 /* TODO(davidben): This NULL check is absent in other low-level hash 'final'
271 * functions and is one of the few places one can fail. */
272 return 0;
273 }
274
275 switch (sha->md_len) {
276 /* Let compiler decide if it's appropriate to unroll... */
277 case SHA384_DIGEST_LENGTH:
278 for (n = 0; n < SHA384_DIGEST_LENGTH / 8; n++) {
279 uint64_t t = sha->h[n];
280
281 *(md++) = (uint8_t)(t >> 56);
282 *(md++) = (uint8_t)(t >> 48);
283 *(md++) = (uint8_t)(t >> 40);
284 *(md++) = (uint8_t)(t >> 32);
285 *(md++) = (uint8_t)(t >> 24);
286 *(md++) = (uint8_t)(t >> 16);
287 *(md++) = (uint8_t)(t >> 8);
288 *(md++) = (uint8_t)(t);
289 }
290 break;
291 case SHA512_DIGEST_LENGTH:
292 for (n = 0; n < SHA512_DIGEST_LENGTH / 8; n++) {
293 uint64_t t = sha->h[n];
294
295 *(md++) = (uint8_t)(t >> 56);
296 *(md++) = (uint8_t)(t >> 48);
297 *(md++) = (uint8_t)(t >> 40);
298 *(md++) = (uint8_t)(t >> 32);
299 *(md++) = (uint8_t)(t >> 24);
300 *(md++) = (uint8_t)(t >> 16);
301 *(md++) = (uint8_t)(t >> 8);
302 *(md++) = (uint8_t)(t);
303 }
304 break;
305 /* ... as well as make sure md_len is not abused. */
306 default:
307 /* TODO(davidben): This bad |md_len| case is one of the few places a
308 * low-level hash 'final' function can fail. This should never happen. */
309 return 0;
310 }
311
312 return 1;
313 }
314
315 #ifndef SHA512_ASM
316 static const uint64_t K512[80] = {
317 UINT64_C(0x428a2f98d728ae22), UINT64_C(0x7137449123ef65cd),
318 UINT64_C(0xb5c0fbcfec4d3b2f), UINT64_C(0xe9b5dba58189dbbc),
319 UINT64_C(0x3956c25bf348b538), UINT64_C(0x59f111f1b605d019),
320 UINT64_C(0x923f82a4af194f9b), UINT64_C(0xab1c5ed5da6d8118),
321 UINT64_C(0xd807aa98a3030242), UINT64_C(0x12835b0145706fbe),
322 UINT64_C(0x243185be4ee4b28c), UINT64_C(0x550c7dc3d5ffb4e2),
323 UINT64_C(0x72be5d74f27b896f), UINT64_C(0x80deb1fe3b1696b1),
324 UINT64_C(0x9bdc06a725c71235), UINT64_C(0xc19bf174cf692694),
325 UINT64_C(0xe49b69c19ef14ad2), UINT64_C(0xefbe4786384f25e3),
326 UINT64_C(0x0fc19dc68b8cd5b5), UINT64_C(0x240ca1cc77ac9c65),
327 UINT64_C(0x2de92c6f592b0275), UINT64_C(0x4a7484aa6ea6e483),
328 UINT64_C(0x5cb0a9dcbd41fbd4), UINT64_C(0x76f988da831153b5),
329 UINT64_C(0x983e5152ee66dfab), UINT64_C(0xa831c66d2db43210),
330 UINT64_C(0xb00327c898fb213f), UINT64_C(0xbf597fc7beef0ee4),
331 UINT64_C(0xc6e00bf33da88fc2), UINT64_C(0xd5a79147930aa725),
332 UINT64_C(0x06ca6351e003826f), UINT64_C(0x142929670a0e6e70),
333 UINT64_C(0x27b70a8546d22ffc), UINT64_C(0x2e1b21385c26c926),
334 UINT64_C(0x4d2c6dfc5ac42aed), UINT64_C(0x53380d139d95b3df),
335 UINT64_C(0x650a73548baf63de), UINT64_C(0x766a0abb3c77b2a8),
336 UINT64_C(0x81c2c92e47edaee6), UINT64_C(0x92722c851482353b),
337 UINT64_C(0xa2bfe8a14cf10364), UINT64_C(0xa81a664bbc423001),
338 UINT64_C(0xc24b8b70d0f89791), UINT64_C(0xc76c51a30654be30),
339 UINT64_C(0xd192e819d6ef5218), UINT64_C(0xd69906245565a910),
340 UINT64_C(0xf40e35855771202a), UINT64_C(0x106aa07032bbd1b8),
341 UINT64_C(0x19a4c116b8d2d0c8), UINT64_C(0x1e376c085141ab53),
342 UINT64_C(0x2748774cdf8eeb99), UINT64_C(0x34b0bcb5e19b48a8),
343 UINT64_C(0x391c0cb3c5c95a63), UINT64_C(0x4ed8aa4ae3418acb),
344 UINT64_C(0x5b9cca4f7763e373), UINT64_C(0x682e6ff3d6b2b8a3),
345 UINT64_C(0x748f82ee5defb2fc), UINT64_C(0x78a5636f43172f60),
346 UINT64_C(0x84c87814a1f0ab72), UINT64_C(0x8cc702081a6439ec),
347 UINT64_C(0x90befffa23631e28), UINT64_C(0xa4506cebde82bde9),
348 UINT64_C(0xbef9a3f7b2c67915), UINT64_C(0xc67178f2e372532b),
349 UINT64_C(0xca273eceea26619c), UINT64_C(0xd186b8c721c0c207),
350 UINT64_C(0xeada7dd6cde0eb1e), UINT64_C(0xf57d4f7fee6ed178),
351 UINT64_C(0x06f067aa72176fba), UINT64_C(0x0a637dc5a2c898a6),
352 UINT64_C(0x113f9804bef90dae), UINT64_C(0x1b710b35131c471b),
353 UINT64_C(0x28db77f523047d84), UINT64_C(0x32caab7b40c72493),
354 UINT64_C(0x3c9ebe0a15c9bebc), UINT64_C(0x431d67c49c100d4c),
355 UINT64_C(0x4cc5d4becb3e42b6), UINT64_C(0x597f299cfc657e2a),
356 UINT64_C(0x5fcb6fab3ad6faec), UINT64_C(0x6c44198c4a475817),
357 };
358
359 #if defined(__GNUC__) && __GNUC__ >= 2 && !defined(OPENSSL_NO_ASM)
360 #if defined(__x86_64) || defined(__x86_64__)
361 #define ROTR(a, n) \
362 ({ \
363 uint64_t ret; \
364 __asm__("rorq %1, %0" : "=r"(ret) : "J"(n), "0"(a) : "cc"); \
365 ret; \
366 })
367 #define PULL64(x) \
368 ({ \
369 uint64_t ret = *((const uint64_t *)(&(x))); \
370 __asm__("bswapq %0" : "=r"(ret) : "0"(ret)); \
371 ret; \
372 })
373 #elif(defined(__i386) || defined(__i386__))
374 #define PULL64(x) \
375 ({ \
376 const unsigned int *p = (const unsigned int *)(&(x)); \
377 unsigned int hi = p[0], lo = p[1]; \
378 __asm__("bswapl %0; bswapl %1;" : "=r"(lo), "=r"(hi) : "0"(lo), "1"(hi)); \
379 ((uint64_t)hi) << 32 | lo; \
380 })
381 #elif(defined(_ARCH_PPC) && defined(__64BIT__)) || defined(_ARCH_PPC64)
382 #define ROTR(a, n) \
383 ({ \
384 uint64_t ret; \
385 __asm__("rotrdi %0, %1, %2" : "=r"(ret) : "r"(a), "K"(n)); \
386 ret; \
387 })
388 #elif defined(__aarch64__)
389 #define ROTR(a, n) \
390 ({ \
391 uint64_t ret; \
392 __asm__("ror %0, %1, %2" : "=r"(ret) : "r"(a), "I"(n)); \
393 ret; \
394 })
395 #if defined(__BYTE_ORDER__) && defined(__ORDER_LITTLE_ENDIAN__) && \
396 __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
397 #define PULL64(x) \
398 ({ \
399 uint64_t ret; \
400 __asm__("rev %0, %1" : "=r"(ret) : "r"(*((const uint64_t *)(&(x))))); \
401 ret; \
402 })
403 #endif
404 #endif
405 #elif defined(_MSC_VER)
406 #if defined(_WIN64) /* applies to both IA-64 and AMD64 */
407 #pragma intrinsic(_rotr64)
408 #define ROTR(a, n) _rotr64((a), n)
409 #endif
410 #if defined(_M_IX86) && !defined(OPENSSL_NO_ASM)
__pull64be(const void * x)411 static uint64_t __fastcall __pull64be(const void *x) {
412 _asm mov edx, [ecx + 0]
413 _asm mov eax, [ecx + 4]
414 _asm bswap edx
415 _asm bswap eax
416 }
417 #define PULL64(x) __pull64be(&(x))
418 #if _MSC_VER <= 1200
419 #pragma inline_depth(0)
420 #endif
421 #endif
422 #endif
423
424 #ifndef PULL64
425 #define B(x, j) \
426 (((uint64_t)(*(((const uint8_t *)(&x)) + j))) << ((7 - j) * 8))
427 #define PULL64(x) \
428 (B(x, 0) | B(x, 1) | B(x, 2) | B(x, 3) | B(x, 4) | B(x, 5) | B(x, 6) | \
429 B(x, 7))
430 #endif
431
432 #ifndef ROTR
433 #define ROTR(x, s) (((x) >> s) | (x) << (64 - s))
434 #endif
435
436 #define Sigma0(x) (ROTR((x), 28) ^ ROTR((x), 34) ^ ROTR((x), 39))
437 #define Sigma1(x) (ROTR((x), 14) ^ ROTR((x), 18) ^ ROTR((x), 41))
438 #define sigma0(x) (ROTR((x), 1) ^ ROTR((x), 8) ^ ((x) >> 7))
439 #define sigma1(x) (ROTR((x), 19) ^ ROTR((x), 61) ^ ((x) >> 6))
440
441 #define Ch(x, y, z) (((x) & (y)) ^ ((~(x)) & (z)))
442 #define Maj(x, y, z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
443
444
445 #if defined(__i386) || defined(__i386__) || defined(_M_IX86)
446 /*
447 * This code should give better results on 32-bit CPU with less than
448 * ~24 registers, both size and performance wise...
449 */
sha512_block_data_order(uint64_t * state,const uint64_t * W,size_t num)450 static void sha512_block_data_order(uint64_t *state, const uint64_t *W,
451 size_t num) {
452 uint64_t A, E, T;
453 uint64_t X[9 + 80], *F;
454 int i;
455
456 while (num--) {
457 F = X + 80;
458 A = state[0];
459 F[1] = state[1];
460 F[2] = state[2];
461 F[3] = state[3];
462 E = state[4];
463 F[5] = state[5];
464 F[6] = state[6];
465 F[7] = state[7];
466
467 for (i = 0; i < 16; i++, F--) {
468 T = PULL64(W[i]);
469 F[0] = A;
470 F[4] = E;
471 F[8] = T;
472 T += F[7] + Sigma1(E) + Ch(E, F[5], F[6]) + K512[i];
473 E = F[3] + T;
474 A = T + Sigma0(A) + Maj(A, F[1], F[2]);
475 }
476
477 for (; i < 80; i++, F--) {
478 T = sigma0(F[8 + 16 - 1]);
479 T += sigma1(F[8 + 16 - 14]);
480 T += F[8 + 16] + F[8 + 16 - 9];
481
482 F[0] = A;
483 F[4] = E;
484 F[8] = T;
485 T += F[7] + Sigma1(E) + Ch(E, F[5], F[6]) + K512[i];
486 E = F[3] + T;
487 A = T + Sigma0(A) + Maj(A, F[1], F[2]);
488 }
489
490 state[0] += A;
491 state[1] += F[1];
492 state[2] += F[2];
493 state[3] += F[3];
494 state[4] += E;
495 state[5] += F[5];
496 state[6] += F[6];
497 state[7] += F[7];
498
499 W += 16;
500 }
501 }
502
503 #else
504
505 #define ROUND_00_15(i, a, b, c, d, e, f, g, h) \
506 do { \
507 T1 += h + Sigma1(e) + Ch(e, f, g) + K512[i]; \
508 h = Sigma0(a) + Maj(a, b, c); \
509 d += T1; \
510 h += T1; \
511 } while (0)
512
513 #define ROUND_16_80(i, j, a, b, c, d, e, f, g, h, X) \
514 do { \
515 s0 = X[(j + 1) & 0x0f]; \
516 s0 = sigma0(s0); \
517 s1 = X[(j + 14) & 0x0f]; \
518 s1 = sigma1(s1); \
519 T1 = X[(j) & 0x0f] += s0 + s1 + X[(j + 9) & 0x0f]; \
520 ROUND_00_15(i + j, a, b, c, d, e, f, g, h); \
521 } while (0)
522
sha512_block_data_order(uint64_t * state,const uint64_t * W,size_t num)523 static void sha512_block_data_order(uint64_t *state, const uint64_t *W,
524 size_t num) {
525 uint64_t a, b, c, d, e, f, g, h, s0, s1, T1;
526 uint64_t X[16];
527 int i;
528
529 while (num--) {
530
531 a = state[0];
532 b = state[1];
533 c = state[2];
534 d = state[3];
535 e = state[4];
536 f = state[5];
537 g = state[6];
538 h = state[7];
539
540 T1 = X[0] = PULL64(W[0]);
541 ROUND_00_15(0, a, b, c, d, e, f, g, h);
542 T1 = X[1] = PULL64(W[1]);
543 ROUND_00_15(1, h, a, b, c, d, e, f, g);
544 T1 = X[2] = PULL64(W[2]);
545 ROUND_00_15(2, g, h, a, b, c, d, e, f);
546 T1 = X[3] = PULL64(W[3]);
547 ROUND_00_15(3, f, g, h, a, b, c, d, e);
548 T1 = X[4] = PULL64(W[4]);
549 ROUND_00_15(4, e, f, g, h, a, b, c, d);
550 T1 = X[5] = PULL64(W[5]);
551 ROUND_00_15(5, d, e, f, g, h, a, b, c);
552 T1 = X[6] = PULL64(W[6]);
553 ROUND_00_15(6, c, d, e, f, g, h, a, b);
554 T1 = X[7] = PULL64(W[7]);
555 ROUND_00_15(7, b, c, d, e, f, g, h, a);
556 T1 = X[8] = PULL64(W[8]);
557 ROUND_00_15(8, a, b, c, d, e, f, g, h);
558 T1 = X[9] = PULL64(W[9]);
559 ROUND_00_15(9, h, a, b, c, d, e, f, g);
560 T1 = X[10] = PULL64(W[10]);
561 ROUND_00_15(10, g, h, a, b, c, d, e, f);
562 T1 = X[11] = PULL64(W[11]);
563 ROUND_00_15(11, f, g, h, a, b, c, d, e);
564 T1 = X[12] = PULL64(W[12]);
565 ROUND_00_15(12, e, f, g, h, a, b, c, d);
566 T1 = X[13] = PULL64(W[13]);
567 ROUND_00_15(13, d, e, f, g, h, a, b, c);
568 T1 = X[14] = PULL64(W[14]);
569 ROUND_00_15(14, c, d, e, f, g, h, a, b);
570 T1 = X[15] = PULL64(W[15]);
571 ROUND_00_15(15, b, c, d, e, f, g, h, a);
572
573 for (i = 16; i < 80; i += 16) {
574 ROUND_16_80(i, 0, a, b, c, d, e, f, g, h, X);
575 ROUND_16_80(i, 1, h, a, b, c, d, e, f, g, X);
576 ROUND_16_80(i, 2, g, h, a, b, c, d, e, f, X);
577 ROUND_16_80(i, 3, f, g, h, a, b, c, d, e, X);
578 ROUND_16_80(i, 4, e, f, g, h, a, b, c, d, X);
579 ROUND_16_80(i, 5, d, e, f, g, h, a, b, c, X);
580 ROUND_16_80(i, 6, c, d, e, f, g, h, a, b, X);
581 ROUND_16_80(i, 7, b, c, d, e, f, g, h, a, X);
582 ROUND_16_80(i, 8, a, b, c, d, e, f, g, h, X);
583 ROUND_16_80(i, 9, h, a, b, c, d, e, f, g, X);
584 ROUND_16_80(i, 10, g, h, a, b, c, d, e, f, X);
585 ROUND_16_80(i, 11, f, g, h, a, b, c, d, e, X);
586 ROUND_16_80(i, 12, e, f, g, h, a, b, c, d, X);
587 ROUND_16_80(i, 13, d, e, f, g, h, a, b, c, X);
588 ROUND_16_80(i, 14, c, d, e, f, g, h, a, b, X);
589 ROUND_16_80(i, 15, b, c, d, e, f, g, h, a, X);
590 }
591
592 state[0] += a;
593 state[1] += b;
594 state[2] += c;
595 state[3] += d;
596 state[4] += e;
597 state[5] += f;
598 state[6] += g;
599 state[7] += h;
600
601 W += 16;
602 }
603 }
604
605 #endif
606
607 #endif /* SHA512_ASM */
608