• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Ceres Solver - A fast non-linear least squares minimizer
2 // Copyright 2014 Google Inc. All rights reserved.
3 // http://code.google.com/p/ceres-solver/
4 //
5 // Redistribution and use in source and binary forms, with or without
6 // modification, are permitted provided that the following conditions are met:
7 //
8 // * Redistributions of source code must retain the above copyright notice,
9 //   this list of conditions and the following disclaimer.
10 // * Redistributions in binary form must reproduce the above copyright notice,
11 //   this list of conditions and the following disclaimer in the documentation
12 //   and/or other materials provided with the distribution.
13 // * Neither the name of Google Inc. nor the names of its contributors may be
14 //   used to endorse or promote products derived from this software without
15 //   specific prior written permission.
16 //
17 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
18 // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
21 // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22 // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23 // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24 // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25 // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26 // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27 // POSSIBILITY OF SUCH DAMAGE.
28 //
29 // Author: sameeragarwal@google.com (Sameer Agarwal)
30 //
31 // Bounds constrained test problems from the paper
32 //
33 // Testing Unconstrained Optimization Software
34 // Jorge J. More, Burton S. Garbow and Kenneth E. Hillstrom
35 // ACM Transactions on Mathematical Software, 7(1), pp. 17-41, 1981
36 //
37 // A subset of these problems were augmented with bounds and used for
38 // testing bounds constrained optimization algorithms by
39 //
40 // A Trust Region Approach to Linearly Constrained Optimization
41 // David M. Gay
42 // Numerical Analysis (Griffiths, D.F., ed.), pp. 72-105
43 // Lecture Notes in Mathematics 1066, Springer Verlag, 1984.
44 //
45 // The latter paper is behind a paywall. We obtained the bounds on the
46 // variables and the function values at the global minimums from
47 //
48 // http://www.mat.univie.ac.at/~neum/glopt/bounds.html
49 //
50 // A problem is considered solved if of the log relative error of its
51 // objective function is at least 5.
52 
53 
54 #include <cmath>
55 #include <iostream>  // NOLINT
56 #include "ceres/ceres.h"
57 #include "gflags/gflags.h"
58 #include "glog/logging.h"
59 
60 namespace ceres {
61 namespace examples {
62 
63 const double kDoubleMax = std::numeric_limits<double>::max();
64 
65 #define BEGIN_MGH_PROBLEM(name, num_parameters, num_residuals)          \
66   struct name {                                                         \
67     static const int kNumParameters = num_parameters;                   \
68     static const double initial_x[kNumParameters];                      \
69     static const double lower_bounds[kNumParameters];                   \
70     static const double upper_bounds[kNumParameters];                   \
71     static const double constrained_optimal_cost;                       \
72     static const double unconstrained_optimal_cost;                     \
73     static CostFunction* Create() {                                     \
74       return new AutoDiffCostFunction<name,                             \
75                                       num_residuals,                    \
76                                       num_parameters>(new name);        \
77     }                                                                   \
78     template <typename T>                                               \
79     bool operator()(const T* const x, T* residual) const {
80 
81 #define END_MGH_PROBLEM return true; } };  // NOLINT
82 
83 // Rosenbrock function.
84 BEGIN_MGH_PROBLEM(TestProblem1, 2, 2)
85   const T x1 = x[0];
86   const T x2 = x[1];
87   residual[0] = T(10.0) * (x2 - x1 * x1);
88   residual[1] = T(1.0) - x1;
89 END_MGH_PROBLEM;
90 
91 const double TestProblem1::initial_x[] = {-1.2, 1.0};
92 const double TestProblem1::lower_bounds[] = {-kDoubleMax, -kDoubleMax};
93 const double TestProblem1::upper_bounds[] = {kDoubleMax, kDoubleMax};
94 const double TestProblem1::constrained_optimal_cost =
95     std::numeric_limits<double>::quiet_NaN();
96 const double TestProblem1::unconstrained_optimal_cost = 0.0;
97 
98 // Freudenstein and Roth function.
99 BEGIN_MGH_PROBLEM(TestProblem2, 2, 2)
100   const T x1 = x[0];
101   const T x2 = x[1];
102   residual[0] = T(-13.0) + x1 + ((T(5.0) - x2) * x2 - T(2.0)) * x2;
103   residual[1] = T(-29.0) + x1 + ((x2 + T(1.0)) * x2 - T(14.0)) * x2;
104 END_MGH_PROBLEM;
105 
106 const double TestProblem2::initial_x[] = {0.5, -2.0};
107 const double TestProblem2::lower_bounds[] = {-kDoubleMax, -kDoubleMax};
108 const double TestProblem2::upper_bounds[] = {kDoubleMax, kDoubleMax};
109 const double TestProblem2::constrained_optimal_cost =
110     std::numeric_limits<double>::quiet_NaN();
111 const double TestProblem2::unconstrained_optimal_cost = 0.0;
112 
113 // Powell badly scaled function.
114 BEGIN_MGH_PROBLEM(TestProblem3, 2, 2)
115   const T x1 = x[0];
116   const T x2 = x[1];
117   residual[0] = T(10000.0) * x1 * x2 - T(1.0);
118   residual[1] = exp(-x1) + exp(-x2) - T(1.0001);
119 END_MGH_PROBLEM;
120 
121 const double TestProblem3::initial_x[] = {0.0, 1.0};
122 const double TestProblem3::lower_bounds[] = {0.0, 1.0};
123 const double TestProblem3::upper_bounds[] = {1.0, 9.0};
124 const double TestProblem3::constrained_optimal_cost = 0.15125900e-9;
125 const double TestProblem3::unconstrained_optimal_cost = 0.0;
126 
127 // Brown badly scaled function.
128 BEGIN_MGH_PROBLEM(TestProblem4, 2, 3)
129   const T x1 = x[0];
130   const T x2 = x[1];
131   residual[0] = x1  - T(1000000.0);
132   residual[1] = x2 - T(0.000002);
133   residual[2] = x1 * x2 - T(2.0);
134 END_MGH_PROBLEM;
135 
136 const double TestProblem4::initial_x[] = {1.0, 1.0};
137 const double TestProblem4::lower_bounds[] = {0.0, 0.00003};
138 const double TestProblem4::upper_bounds[] = {1000000.0, 100.0};
139 const double TestProblem4::constrained_optimal_cost = 0.78400000e3;
140 const double TestProblem4::unconstrained_optimal_cost = 0.0;
141 
142 // Beale function.
143 BEGIN_MGH_PROBLEM(TestProblem5, 2, 3)
144   const T x1 = x[0];
145   const T x2 = x[1];
146   residual[0] = T(1.5) - x1 * (T(1.0) - x2);
147   residual[1] = T(2.25) - x1 * (T(1.0) - x2 * x2);
148   residual[2] = T(2.625) - x1 * (T(1.0) - x2 * x2 * x2);
149 END_MGH_PROBLEM;
150 
151 const double TestProblem5::initial_x[] = {1.0, 1.0};
152 const double TestProblem5::lower_bounds[] = {0.6, 0.5};
153 const double TestProblem5::upper_bounds[] = {10.0, 100.0};
154 const double TestProblem5::constrained_optimal_cost = 0.0;
155 const double TestProblem5::unconstrained_optimal_cost = 0.0;
156 
157 // Jennrich and Sampson function.
158 BEGIN_MGH_PROBLEM(TestProblem6, 2, 10)
159   const T x1 = x[0];
160   const T x2 = x[1];
161   for (int i = 1; i <= 10; ++i) {
162     residual[i - 1] = T(2.0) + T(2.0 * i) -
163         exp(T(static_cast<double>(i)) * x1) -
164         exp(T(static_cast<double>(i) * x2));
165   }
166 END_MGH_PROBLEM;
167 
168 const double TestProblem6::initial_x[] = {1.0, 1.0};
169 const double TestProblem6::lower_bounds[] = {-kDoubleMax, -kDoubleMax};
170 const double TestProblem6::upper_bounds[] = {kDoubleMax, kDoubleMax};
171 const double TestProblem6::constrained_optimal_cost =
172     std::numeric_limits<double>::quiet_NaN();
173 const double TestProblem6::unconstrained_optimal_cost = 124.362;
174 
175 // Helical valley function.
176 BEGIN_MGH_PROBLEM(TestProblem7, 3, 3)
177   const T x1 = x[0];
178   const T x2 = x[1];
179   const T x3 = x[2];
180   const T theta = T(0.5 / M_PI)  * atan(x2 / x1) + (x1 > 0.0 ? T(0.0) : T(0.5));
181 
182   residual[0] = T(10.0) * (x3 - T(10.0) * theta);
183   residual[1] = T(10.0) * (sqrt(x1 * x1 + x2 * x2) - T(1.0));
184   residual[2] = x3;
185 END_MGH_PROBLEM;
186 
187 const double TestProblem7::initial_x[] = {-1.0, 0.0, 0.0};
188 const double TestProblem7::lower_bounds[] = {-100.0, -1.0, -1.0};
189 const double TestProblem7::upper_bounds[] = {0.8, 1.0, 1.0};
190 const double TestProblem7::constrained_optimal_cost = 0.99042212;
191 const double TestProblem7::unconstrained_optimal_cost = 0.0;
192 
193 // Bard function
194 BEGIN_MGH_PROBLEM(TestProblem8, 3, 15)
195   const T x1 = x[0];
196   const T x2 = x[1];
197   const T x3 = x[2];
198 
199   double y[] = {0.14, 0.18, 0.22, 0.25,
200                 0.29, 0.32, 0.35, 0.39, 0.37, 0.58,
201                 0.73, 0.96, 1.34, 2.10, 4.39};
202 
203   for (int i = 1; i <=15; ++i) {
204     const T u = T(static_cast<double>(i));
205     const T v = T(static_cast<double>(16 - i));
206     const T w = T(static_cast<double>(std::min(i, 16 - i)));
207     residual[i - 1] = T(y[i - 1]) - x1 + u / (v * x2 + w * x3);
208   }
209 END_MGH_PROBLEM;
210 
211 const double TestProblem8::initial_x[] = {1.0, 1.0, 1.0};
212 const double TestProblem8::lower_bounds[] = {
213   -kDoubleMax, -kDoubleMax, -kDoubleMax};
214 const double TestProblem8::upper_bounds[] = {
215   kDoubleMax, kDoubleMax, kDoubleMax};
216 const double TestProblem8::constrained_optimal_cost =
217     std::numeric_limits<double>::quiet_NaN();
218 const double TestProblem8::unconstrained_optimal_cost = 8.21487e-3;
219 
220 // Gaussian function.
221 BEGIN_MGH_PROBLEM(TestProblem9, 3, 15)
222   const T x1 = x[0];
223   const T x2 = x[1];
224   const T x3 = x[2];
225 
226   const double y[] = {0.0009, 0.0044, 0.0175, 0.0540, 0.1295, 0.2420, 0.3521,
227                       0.3989,
228                       0.3521, 0.2420, 0.1295, 0.0540, 0.0175, 0.0044, 0.0009};
229   for (int i = 0; i < 15; ++i) {
230     const T t_i = T((8.0 - i - 1.0) / 2.0);
231     const T y_i = T(y[i]);
232     residual[i] = x1 * exp(-x2 * (t_i - x3) * (t_i - x3) / T(2.0)) - y_i;
233   }
234 END_MGH_PROBLEM;
235 
236 const double TestProblem9::initial_x[] = {0.4, 1.0, 0.0};
237 const double TestProblem9::lower_bounds[] = {0.398, 1.0, -0.5};
238 const double TestProblem9::upper_bounds[] = {4.2, 2.0, 0.1};
239 const double TestProblem9::constrained_optimal_cost = 0.11279300e-7;
240 const double TestProblem9::unconstrained_optimal_cost = 0.112793e-7;
241 
242 // Meyer function.
243 BEGIN_MGH_PROBLEM(TestProblem10, 3, 16)
244   const T x1 = x[0];
245   const T x2 = x[1];
246   const T x3 = x[2];
247 
248   const double y[] = {34780, 28610, 23650, 19630, 16370, 13720, 11540, 9744,
249                       8261, 7030, 6005, 5147, 4427, 3820, 3307, 2872};
250 
251   for (int i = 0; i < 16; ++i) {
252     T t = T(45 + 5.0 * (i + 1));
253     residual[i] = x1 * exp(x2 / (t + x3)) - y[i];
254   }
255 END_MGH_PROBLEM
256 
257 
258 const double TestProblem10::initial_x[] = {0.02, 4000, 250};
259 const double TestProblem10::lower_bounds[] ={
260   -kDoubleMax, -kDoubleMax, -kDoubleMax};
261 const double TestProblem10::upper_bounds[] ={
262   kDoubleMax, kDoubleMax, kDoubleMax};
263 const double TestProblem10::constrained_optimal_cost =
264     std::numeric_limits<double>::quiet_NaN();
265 const double TestProblem10::unconstrained_optimal_cost = 87.9458;
266 
267 #undef BEGIN_MGH_PROBLEM
268 #undef END_MGH_PROBLEM
269 
ConstrainedSolve()270 template<typename TestProblem> string ConstrainedSolve() {
271   double x[TestProblem::kNumParameters];
272   std::copy(TestProblem::initial_x,
273             TestProblem::initial_x + TestProblem::kNumParameters,
274             x);
275 
276   Problem problem;
277   problem.AddResidualBlock(TestProblem::Create(), NULL, x);
278   for (int i = 0; i < TestProblem::kNumParameters; ++i) {
279     problem.SetParameterLowerBound(x, i, TestProblem::lower_bounds[i]);
280     problem.SetParameterUpperBound(x, i, TestProblem::upper_bounds[i]);
281   }
282 
283   Solver::Options options;
284   options.parameter_tolerance = 1e-18;
285   options.function_tolerance = 1e-18;
286   options.gradient_tolerance = 1e-18;
287   options.max_num_iterations = 1000;
288   options.linear_solver_type = DENSE_QR;
289   Solver::Summary summary;
290   Solve(options, &problem, &summary);
291 
292   const double kMinLogRelativeError = 5.0;
293   const double log_relative_error = -std::log10(
294       std::abs(2.0 * summary.final_cost -
295                TestProblem::constrained_optimal_cost) /
296       (TestProblem::constrained_optimal_cost > 0.0
297        ? TestProblem::constrained_optimal_cost
298        : 1.0));
299 
300   return (log_relative_error >= kMinLogRelativeError
301           ? "Success\n"
302           : "Failure\n");
303 }
304 
UnconstrainedSolve()305 template<typename TestProblem> string UnconstrainedSolve() {
306   double x[TestProblem::kNumParameters];
307   std::copy(TestProblem::initial_x,
308             TestProblem::initial_x + TestProblem::kNumParameters,
309             x);
310 
311   Problem problem;
312   problem.AddResidualBlock(TestProblem::Create(), NULL, x);
313 
314   Solver::Options options;
315   options.parameter_tolerance = 1e-18;
316   options.function_tolerance = 0.0;
317   options.gradient_tolerance = 1e-18;
318   options.max_num_iterations = 1000;
319   options.linear_solver_type = DENSE_QR;
320   Solver::Summary summary;
321   Solve(options, &problem, &summary);
322 
323   const double kMinLogRelativeError = 5.0;
324   const double log_relative_error = -std::log10(
325       std::abs(2.0 * summary.final_cost -
326                TestProblem::unconstrained_optimal_cost) /
327       (TestProblem::unconstrained_optimal_cost > 0.0
328        ? TestProblem::unconstrained_optimal_cost
329        : 1.0));
330 
331   return (log_relative_error >= kMinLogRelativeError
332           ? "Success\n"
333           : "Failure\n");
334 }
335 
336 }  // namespace examples
337 }  // namespace ceres
338 
main(int argc,char ** argv)339 int main(int argc, char** argv) {
340   google::ParseCommandLineFlags(&argc, &argv, true);
341   google::InitGoogleLogging(argv[0]);
342 
343   using ceres::examples::UnconstrainedSolve;
344   using ceres::examples::ConstrainedSolve;
345 
346 #define UNCONSTRAINED_SOLVE(n)                                          \
347   std::cout << "Problem " << n << " : "                                 \
348             << UnconstrainedSolve<ceres::examples::TestProblem##n>();
349 
350 #define CONSTRAINED_SOLVE(n)                                            \
351   std::cout << "Problem " << n << " : "                                 \
352             << ConstrainedSolve<ceres::examples::TestProblem##n>();
353 
354   std::cout << "Unconstrained problems\n";
355   UNCONSTRAINED_SOLVE(1);
356   UNCONSTRAINED_SOLVE(2);
357   UNCONSTRAINED_SOLVE(3);
358   UNCONSTRAINED_SOLVE(4);
359   UNCONSTRAINED_SOLVE(5);
360   UNCONSTRAINED_SOLVE(6);
361   UNCONSTRAINED_SOLVE(7);
362   UNCONSTRAINED_SOLVE(8);
363   UNCONSTRAINED_SOLVE(9);
364   UNCONSTRAINED_SOLVE(10);
365 
366   std::cout << "\nConstrained problems\n";
367   CONSTRAINED_SOLVE(3);
368   CONSTRAINED_SOLVE(4);
369   CONSTRAINED_SOLVE(5);
370   CONSTRAINED_SOLVE(7);
371   CONSTRAINED_SOLVE(9);
372 
373   return 0;
374 }
375