1 // Ceres Solver - A fast non-linear least squares minimizer
2 // Copyright 2014 Google Inc. All rights reserved.
3 // http://code.google.com/p/ceres-solver/
4 //
5 // Redistribution and use in source and binary forms, with or without
6 // modification, are permitted provided that the following conditions are met:
7 //
8 // * Redistributions of source code must retain the above copyright notice,
9 // this list of conditions and the following disclaimer.
10 // * Redistributions in binary form must reproduce the above copyright notice,
11 // this list of conditions and the following disclaimer in the documentation
12 // and/or other materials provided with the distribution.
13 // * Neither the name of Google Inc. nor the names of its contributors may be
14 // used to endorse or promote products derived from this software without
15 // specific prior written permission.
16 //
17 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
18 // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
21 // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22 // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23 // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24 // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25 // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26 // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27 // POSSIBILITY OF SUCH DAMAGE.
28 //
29 // Author: joydeepb@ri.cmu.edu (Joydeep Biswas)
30 //
31 // This example demonstrates how to use the DynamicAutoDiffCostFunction
32 // variant of CostFunction. The DynamicAutoDiffCostFunction is meant to
33 // be used in cases where the number of parameter blocks or the sizes are not
34 // known at compile time.
35 //
36 // This example simulates a robot traversing down a 1-dimension hallway with
37 // noise odometry readings and noisy range readings of the end of the hallway.
38 // By fusing the noisy odometry and sensor readings this example demonstrates
39 // how to compute the maximum likelihood estimate (MLE) of the robot's pose at
40 // each timestep.
41 //
42 // The robot starts at the origin, and it is travels to the end of a corridor of
43 // fixed length specified by the "--corridor_length" flag. It executes a series
44 // of motion commands to move forward a fixed length, specified by the
45 // "--pose_separation" flag, at which pose it receives relative odometry
46 // measurements as well as a range reading of the distance to the end of the
47 // hallway. The odometry readings are drawn with Gaussian noise and standard
48 // deviation specified by the "--odometry_stddev" flag, and the range readings
49 // similarly with standard deviation specified by the "--range-stddev" flag.
50 //
51 // There are two types of residuals in this problem:
52 // 1) The OdometryConstraint residual, that accounts for the odometry readings
53 // between successive pose estimatess of the robot.
54 // 2) The RangeConstraint residual, that accounts for the errors in the observed
55 // range readings from each pose.
56 //
57 // The OdometryConstraint residual is modeled as an AutoDiffCostFunction with
58 // a fixed parameter block size of 1, which is the relative odometry being
59 // solved for, between a pair of successive poses of the robot. Differences
60 // between observed and computed relative odometry values are penalized weighted
61 // by the known standard deviation of the odometry readings.
62 //
63 // The RangeConstraint residual is modeled as a DynamicAutoDiffCostFunction
64 // which sums up the relative odometry estimates to compute the estimated
65 // global pose of the robot, and then computes the expected range reading.
66 // Differences between the observed and expected range readings are then
67 // penalized weighted by the standard deviation of readings of the sensor.
68 // Since the number of poses of the robot is not known at compile time, this
69 // cost function is implemented as a DynamicAutoDiffCostFunction.
70 //
71 // The outputs of the example are the initial values of the odometry and range
72 // readings, and the range and odometry errors for every pose of the robot.
73 // After computing the MLE, the computed poses and corrected odometry values
74 // are printed out, along with the corresponding range and odometry errors. Note
75 // that as an MLE of a noisy system the errors will not be reduced to zero, but
76 // the odometry estimates will be updated to maximize the joint likelihood of
77 // all odometry and range readings of the robot.
78 //
79 // Mathematical Formulation
80 // ======================================================
81 //
82 // Let p_0, .., p_N be (N+1) robot poses, where the robot moves down the
83 // corridor starting from p_0 and ending at p_N. We assume that p_0 is the
84 // origin of the coordinate system.
85 // Odometry u_i is the observed relative odometry between pose p_(i-1) and p_i,
86 // and range reading y_i is the range reading of the end of the corridor from
87 // pose p_i. Both odometry as well as range readings are noisy, but we wish to
88 // compute the maximum likelihood estimate (MLE) of corrected odometry values
89 // u*_0 to u*_(N-1), such that the Belief is optimized:
90 //
91 // Belief(u*_(0:N-1) | u_(0:N-1), y_(0:N-1)) 1.
92 // = P(u*_(0:N-1) | u_(0:N-1), y_(0:N-1)) 2.
93 // \propto P(y_(0:N-1) | u*_(0:N-1), u_(0:N-1)) P(u*_(0:N-1) | u_(0:N-1)) 3.
94 // = \prod_i{ P(y_i | u*_(0:i)) P(u*_i | u_i) } 4.
95 //
96 // Here, the subscript "(0:i)" is used as shorthand to indicate entries from all
97 // timesteps 0 to i for that variable, both inclusive.
98 //
99 // Bayes' rule is used to derive eq. 3 from 2, and the independence of
100 // odometry observations and range readings is expolited to derive 4 from 3.
101 //
102 // Thus, the Belief, up to scale, is factored as a product of a number of
103 // terms, two for each pose, where for each pose term there is one term for the
104 // range reading, P(y_i | u*_(0:i) and one term for the odometry reading,
105 // P(u*_i | u_i) . Note that the term for the range reading is dependent on all
106 // odometry values u*_(0:i), while the odometry term, P(u*_i | u_i) depends only
107 // on a single value, u_i. Both the range reading as well as odoemtry
108 // probability terms are modeled as the Normal distribution, and have the form:
109 //
110 // p(x) \propto \exp{-((x - x_mean) / x_stddev)^2}
111 //
112 // where x refers to either the MLE odometry u* or range reading y, and x_mean
113 // is the corresponding mean value, u for the odometry terms, and y_expected,
114 // the expected range reading based on all the previous odometry terms.
115 // The MLE is thus found by finding those values x* which minimize:
116 //
117 // x* = \arg\min{((x - x_mean) / x_stddev)^2}
118 //
119 // which is in the nonlinear least-square form, suited to being solved by Ceres.
120 // The non-linear component arise from the computation of x_mean. The residuals
121 // ((x - x_mean) / x_stddev) for the residuals that Ceres will optimize. As
122 // mentioned earlier, the odometry term for each pose depends only on one
123 // variable, and will be computed by an AutoDiffCostFunction, while the term
124 // for the range reading will depend on all previous odometry observations, and
125 // will be computed by a DynamicAutoDiffCostFunction since the number of
126 // odoemtry observations will only be known at run time.
127
128 #include <cstdio>
129 #include <math.h>
130 #include <vector>
131
132 #include "ceres/ceres.h"
133 #include "ceres/dynamic_autodiff_cost_function.h"
134 #include "gflags/gflags.h"
135 #include "glog/logging.h"
136 #include "random.h"
137
138 using ceres::AutoDiffCostFunction;
139 using ceres::DynamicAutoDiffCostFunction;
140 using ceres::CauchyLoss;
141 using ceres::CostFunction;
142 using ceres::LossFunction;
143 using ceres::Problem;
144 using ceres::Solve;
145 using ceres::Solver;
146 using ceres::examples::RandNormal;
147 using std::min;
148 using std::vector;
149
150 DEFINE_double(corridor_length, 30.0, "Length of the corridor that the robot is "
151 "travelling down.");
152
153 DEFINE_double(pose_separation, 0.5, "The distance that the robot traverses "
154 "between successive odometry updates.");
155
156 DEFINE_double(odometry_stddev, 0.1, "The standard deviation of "
157 "odometry error of the robot.");
158
159 DEFINE_double(range_stddev, 0.01, "The standard deviation of range readings of "
160 "the robot.");
161
162 // The stride length of the dynamic_autodiff_cost_function evaluator.
163 static const int kStride = 10;
164
165 struct OdometryConstraint {
166 typedef AutoDiffCostFunction<OdometryConstraint, 1, 1> OdometryCostFunction;
167
OdometryConstraintOdometryConstraint168 OdometryConstraint(double odometry_mean, double odometry_stddev) :
169 odometry_mean(odometry_mean), odometry_stddev(odometry_stddev) {}
170
171 template <typename T>
operator ()OdometryConstraint172 bool operator()(const T* const odometry, T* residual) const {
173 *residual = (*odometry - T(odometry_mean)) / T(odometry_stddev);
174 return true;
175 }
176
CreateOdometryConstraint177 static OdometryCostFunction* Create(const double odometry_value) {
178 return new OdometryCostFunction(
179 new OdometryConstraint(odometry_value, FLAGS_odometry_stddev));
180 }
181
182 const double odometry_mean;
183 const double odometry_stddev;
184 };
185
186 struct RangeConstraint {
187 typedef DynamicAutoDiffCostFunction<RangeConstraint, kStride>
188 RangeCostFunction;
189
RangeConstraintRangeConstraint190 RangeConstraint(
191 int pose_index,
192 double range_reading,
193 double range_stddev,
194 double corridor_length) :
195 pose_index(pose_index), range_reading(range_reading),
196 range_stddev(range_stddev), corridor_length(corridor_length) {}
197
198 template <typename T>
operator ()RangeConstraint199 bool operator()(T const* const* relative_poses, T* residuals) const {
200 T global_pose(0);
201 for (int i = 0; i <= pose_index; ++i) {
202 global_pose += relative_poses[i][0];
203 }
204 residuals[0] = (global_pose + T(range_reading) - T(corridor_length)) /
205 T(range_stddev);
206 return true;
207 }
208
209 // Factory method to create a CostFunction from a RangeConstraint to
210 // conveniently add to a ceres problem.
CreateRangeConstraint211 static RangeCostFunction* Create(const int pose_index,
212 const double range_reading,
213 vector<double>* odometry_values,
214 vector<double*>* parameter_blocks) {
215 RangeConstraint* constraint = new RangeConstraint(
216 pose_index, range_reading, FLAGS_range_stddev, FLAGS_corridor_length);
217 RangeCostFunction* cost_function = new RangeCostFunction(constraint);
218 // Add all the parameter blocks that affect this constraint.
219 parameter_blocks->clear();
220 for (int i = 0; i <= pose_index; ++i) {
221 parameter_blocks->push_back(&((*odometry_values)[i]));
222 cost_function->AddParameterBlock(1);
223 }
224 cost_function->SetNumResiduals(1);
225 return (cost_function);
226 }
227
228 const int pose_index;
229 const double range_reading;
230 const double range_stddev;
231 const double corridor_length;
232 };
233
SimulateRobot(vector<double> * odometry_values,vector<double> * range_readings)234 void SimulateRobot(vector<double>* odometry_values,
235 vector<double>* range_readings) {
236 const int num_steps = static_cast<int>(
237 ceil(FLAGS_corridor_length / FLAGS_pose_separation));
238
239 // The robot starts out at the origin.
240 double robot_location = 0.0;
241 for (int i = 0; i < num_steps; ++i) {
242 const double actual_odometry_value = min(
243 FLAGS_pose_separation, FLAGS_corridor_length - robot_location);
244 robot_location += actual_odometry_value;
245 const double actual_range = FLAGS_corridor_length - robot_location;
246 const double observed_odometry =
247 RandNormal() * FLAGS_odometry_stddev + actual_odometry_value;
248 const double observed_range =
249 RandNormal() * FLAGS_range_stddev + actual_range;
250 odometry_values->push_back(observed_odometry);
251 range_readings->push_back(observed_range);
252 }
253 }
254
PrintState(const vector<double> & odometry_readings,const vector<double> & range_readings)255 void PrintState(const vector<double>& odometry_readings,
256 const vector<double>& range_readings) {
257 CHECK_EQ(odometry_readings.size(), range_readings.size());
258 double robot_location = 0.0;
259 printf("pose: location odom range r.error o.error\n");
260 for (int i = 0; i < odometry_readings.size(); ++i) {
261 robot_location += odometry_readings[i];
262 const double range_error =
263 robot_location + range_readings[i] - FLAGS_corridor_length;
264 const double odometry_error =
265 FLAGS_pose_separation - odometry_readings[i];
266 printf("%4d: %8.3f %8.3f %8.3f %8.3f %8.3f\n",
267 static_cast<int>(i), robot_location, odometry_readings[i],
268 range_readings[i], range_error, odometry_error);
269 }
270 }
271
main(int argc,char ** argv)272 int main(int argc, char** argv) {
273 google::InitGoogleLogging(argv[0]);
274 google::ParseCommandLineFlags(&argc, &argv, true);
275 // Make sure that the arguments parsed are all positive.
276 CHECK_GT(FLAGS_corridor_length, 0.0);
277 CHECK_GT(FLAGS_pose_separation, 0.0);
278 CHECK_GT(FLAGS_odometry_stddev, 0.0);
279 CHECK_GT(FLAGS_range_stddev, 0.0);
280
281 vector<double> odometry_values;
282 vector<double> range_readings;
283 SimulateRobot(&odometry_values, &range_readings);
284
285 printf("Initial values:\n");
286 PrintState(odometry_values, range_readings);
287 ceres::Problem problem;
288
289 for (int i = 0; i < odometry_values.size(); ++i) {
290 // Create and add a DynamicAutoDiffCostFunction for the RangeConstraint from
291 // pose i.
292 vector<double*> parameter_blocks;
293 RangeConstraint::RangeCostFunction* range_cost_function =
294 RangeConstraint::Create(
295 i, range_readings[i], &odometry_values, ¶meter_blocks);
296 problem.AddResidualBlock(range_cost_function, NULL, parameter_blocks);
297
298 // Create and add an AutoDiffCostFunction for the OdometryConstraint for
299 // pose i.
300 problem.AddResidualBlock(OdometryConstraint::Create(odometry_values[i]),
301 NULL,
302 &(odometry_values[i]));
303 }
304
305 ceres::Solver::Options solver_options;
306 solver_options.minimizer_progress_to_stdout = true;
307
308 Solver::Summary summary;
309 printf("Solving...\n");
310 Solve(solver_options, &problem, &summary);
311 printf("Done.\n");
312 std::cout << summary.FullReport() << "\n";
313 printf("Final values:\n");
314 PrintState(odometry_values, range_readings);
315 return 0;
316 }
317