• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Ceres Solver - A fast non-linear least squares minimizer
2 // Copyright 2010, 2011, 2012 Google Inc. All rights reserved.
3 // http://code.google.com/p/ceres-solver/
4 //
5 // Redistribution and use in source and binary forms, with or without
6 // modification, are permitted provided that the following conditions are met:
7 //
8 // * Redistributions of source code must retain the above copyright notice,
9 //   this list of conditions and the following disclaimer.
10 // * Redistributions in binary form must reproduce the above copyright notice,
11 //   this list of conditions and the following disclaimer in the documentation
12 //   and/or other materials provided with the distribution.
13 // * Neither the name of Google Inc. nor the names of its contributors may be
14 //   used to endorse or promote products derived from this software without
15 //   specific prior written permission.
16 //
17 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
18 // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
21 // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22 // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23 // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24 // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25 // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26 // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27 // POSSIBILITY OF SUCH DAMAGE.
28 //
29 // Author: sameeragarwal@google.com (Sameer Agarwal)
30 
31 #include "ceres/schur_eliminator.h"
32 
33 #include "Eigen/Dense"
34 #include "ceres/block_random_access_dense_matrix.h"
35 #include "ceres/block_sparse_matrix.h"
36 #include "ceres/casts.h"
37 #include "ceres/detect_structure.h"
38 #include "ceres/internal/eigen.h"
39 #include "ceres/internal/scoped_ptr.h"
40 #include "ceres/linear_least_squares_problems.h"
41 #include "ceres/test_util.h"
42 #include "ceres/triplet_sparse_matrix.h"
43 #include "ceres/types.h"
44 #include "glog/logging.h"
45 #include "gtest/gtest.h"
46 
47 // TODO(sameeragarwal): Reduce the size of these tests and redo the
48 // parameterization to be more efficient.
49 
50 namespace ceres {
51 namespace internal {
52 
53 class SchurEliminatorTest : public ::testing::Test {
54  protected:
SetUpFromId(int id)55   void SetUpFromId(int id) {
56     scoped_ptr<LinearLeastSquaresProblem>
57         problem(CreateLinearLeastSquaresProblemFromId(id));
58     CHECK_NOTNULL(problem.get());
59     SetupHelper(problem.get());
60   }
61 
SetupHelper(LinearLeastSquaresProblem * problem)62   void SetupHelper(LinearLeastSquaresProblem* problem) {
63     A.reset(down_cast<BlockSparseMatrix*>(problem->A.release()));
64     b.reset(problem->b.release());
65     D.reset(problem->D.release());
66 
67     num_eliminate_blocks = problem->num_eliminate_blocks;
68     num_eliminate_cols = 0;
69     const CompressedRowBlockStructure* bs = A->block_structure();
70 
71     for (int i = 0; i < num_eliminate_blocks; ++i) {
72       num_eliminate_cols += bs->cols[i].size;
73     }
74   }
75 
76   // Compute the golden values for the reduced linear system and the
77   // solution to the linear least squares problem using dense linear
78   // algebra.
ComputeReferenceSolution(const Vector & D)79   void ComputeReferenceSolution(const Vector& D) {
80     Matrix J;
81     A->ToDenseMatrix(&J);
82     VectorRef f(b.get(), J.rows());
83 
84     Matrix H  =  (D.cwiseProduct(D)).asDiagonal();
85     H.noalias() += J.transpose() * J;
86 
87     const Vector g = J.transpose() * f;
88     const int schur_size = J.cols() - num_eliminate_cols;
89 
90     lhs_expected.resize(schur_size, schur_size);
91     lhs_expected.setZero();
92 
93     rhs_expected.resize(schur_size);
94     rhs_expected.setZero();
95 
96     sol_expected.resize(J.cols());
97     sol_expected.setZero();
98 
99     Matrix P = H.block(0, 0, num_eliminate_cols, num_eliminate_cols);
100     Matrix Q = H.block(0,
101                        num_eliminate_cols,
102                        num_eliminate_cols,
103                        schur_size);
104     Matrix R = H.block(num_eliminate_cols,
105                        num_eliminate_cols,
106                        schur_size,
107                        schur_size);
108     int row = 0;
109     const CompressedRowBlockStructure* bs = A->block_structure();
110     for (int i = 0; i < num_eliminate_blocks; ++i) {
111       const int block_size =  bs->cols[i].size;
112       P.block(row, row,  block_size, block_size) =
113           P
114           .block(row, row,  block_size, block_size)
115           .llt()
116           .solve(Matrix::Identity(block_size, block_size));
117       row += block_size;
118     }
119 
120     lhs_expected
121         .triangularView<Eigen::Upper>() = R - Q.transpose() * P * Q;
122     rhs_expected =
123         g.tail(schur_size) - Q.transpose() * P * g.head(num_eliminate_cols);
124     sol_expected = H.llt().solve(g);
125   }
126 
EliminateSolveAndCompare(const VectorRef & diagonal,bool use_static_structure,const double relative_tolerance)127   void EliminateSolveAndCompare(const VectorRef& diagonal,
128                                 bool use_static_structure,
129                                 const double relative_tolerance) {
130     const CompressedRowBlockStructure* bs = A->block_structure();
131     const int num_col_blocks = bs->cols.size();
132     vector<int> blocks(num_col_blocks - num_eliminate_blocks, 0);
133     for (int i = num_eliminate_blocks; i < num_col_blocks; ++i) {
134       blocks[i - num_eliminate_blocks] = bs->cols[i].size;
135     }
136 
137     BlockRandomAccessDenseMatrix lhs(blocks);
138 
139     const int num_cols = A->num_cols();
140     const int schur_size = lhs.num_rows();
141 
142     Vector rhs(schur_size);
143 
144     LinearSolver::Options options;
145     options.elimination_groups.push_back(num_eliminate_blocks);
146     if (use_static_structure) {
147       DetectStructure(*bs,
148                       num_eliminate_blocks,
149                       &options.row_block_size,
150                       &options.e_block_size,
151                       &options.f_block_size);
152     }
153 
154     scoped_ptr<SchurEliminatorBase> eliminator;
155     eliminator.reset(SchurEliminatorBase::Create(options));
156     eliminator->Init(num_eliminate_blocks, A->block_structure());
157     eliminator->Eliminate(A.get(), b.get(), diagonal.data(), &lhs, rhs.data());
158 
159     MatrixRef lhs_ref(lhs.mutable_values(), lhs.num_rows(), lhs.num_cols());
160     Vector reduced_sol  =
161         lhs_ref
162         .selfadjointView<Eigen::Upper>()
163         .llt()
164         .solve(rhs);
165 
166     // Solution to the linear least squares problem.
167     Vector sol(num_cols);
168     sol.setZero();
169     sol.tail(schur_size) = reduced_sol;
170     eliminator->BackSubstitute(A.get(),
171                                b.get(),
172                                diagonal.data(),
173                                reduced_sol.data(),
174                                sol.data());
175 
176     Matrix delta = (lhs_ref - lhs_expected).selfadjointView<Eigen::Upper>();
177     double diff = delta.norm();
178     EXPECT_NEAR(diff / lhs_expected.norm(), 0.0, relative_tolerance);
179     EXPECT_NEAR((rhs - rhs_expected).norm() / rhs_expected.norm(), 0.0,
180                 relative_tolerance);
181     EXPECT_NEAR((sol - sol_expected).norm() / sol_expected.norm(), 0.0,
182                 relative_tolerance);
183   }
184 
185   scoped_ptr<BlockSparseMatrix> A;
186   scoped_array<double> b;
187   scoped_array<double> D;
188   int num_eliminate_blocks;
189   int num_eliminate_cols;
190 
191   Matrix lhs_expected;
192   Vector rhs_expected;
193   Vector sol_expected;
194 };
195 
TEST_F(SchurEliminatorTest,ScalarProblem)196 TEST_F(SchurEliminatorTest, ScalarProblem) {
197   SetUpFromId(2);
198   Vector zero(A->num_cols());
199   zero.setZero();
200 
201   ComputeReferenceSolution(VectorRef(zero.data(), A->num_cols()));
202   EliminateSolveAndCompare(VectorRef(zero.data(), A->num_cols()), true, 1e-14);
203   EliminateSolveAndCompare(VectorRef(zero.data(), A->num_cols()), false, 1e-14);
204 
205   ComputeReferenceSolution(VectorRef(D.get(), A->num_cols()));
206   EliminateSolveAndCompare(VectorRef(D.get(), A->num_cols()), true, 1e-14);
207   EliminateSolveAndCompare(VectorRef(D.get(), A->num_cols()), false, 1e-14);
208 }
209 
210 }  // namespace internal
211 }  // namespace ceres
212