• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===--- DeclCXX.cpp - C++ Declaration AST Node Implementation ------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the C++ related Decl classes.
11 //
12 //===----------------------------------------------------------------------===//
13 #include "clang/AST/DeclCXX.h"
14 #include "clang/AST/ASTContext.h"
15 #include "clang/AST/ASTLambda.h"
16 #include "clang/AST/ASTMutationListener.h"
17 #include "clang/AST/CXXInheritance.h"
18 #include "clang/AST/DeclTemplate.h"
19 #include "clang/AST/Expr.h"
20 #include "clang/AST/ExprCXX.h"
21 #include "clang/AST/TypeLoc.h"
22 #include "clang/Basic/IdentifierTable.h"
23 #include "llvm/ADT/STLExtras.h"
24 #include "llvm/ADT/SmallPtrSet.h"
25 using namespace clang;
26 
27 //===----------------------------------------------------------------------===//
28 // Decl Allocation/Deallocation Method Implementations
29 //===----------------------------------------------------------------------===//
30 
anchor()31 void AccessSpecDecl::anchor() { }
32 
CreateDeserialized(ASTContext & C,unsigned ID)33 AccessSpecDecl *AccessSpecDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
34   return new (C, ID) AccessSpecDecl(EmptyShell());
35 }
36 
getFromExternalSource(ASTContext & C) const37 void LazyASTUnresolvedSet::getFromExternalSource(ASTContext &C) const {
38   ExternalASTSource *Source = C.getExternalSource();
39   assert(Impl.Decls.isLazy() && "getFromExternalSource for non-lazy set");
40   assert(Source && "getFromExternalSource with no external source");
41 
42   for (ASTUnresolvedSet::iterator I = Impl.begin(); I != Impl.end(); ++I)
43     I.setDecl(cast<NamedDecl>(Source->GetExternalDecl(
44         reinterpret_cast<uintptr_t>(I.getDecl()) >> 2)));
45   Impl.Decls.setLazy(false);
46 }
47 
DefinitionData(CXXRecordDecl * D)48 CXXRecordDecl::DefinitionData::DefinitionData(CXXRecordDecl *D)
49   : UserDeclaredConstructor(false), UserDeclaredSpecialMembers(0),
50     Aggregate(true), PlainOldData(true), Empty(true), Polymorphic(false),
51     Abstract(false), IsStandardLayout(true), HasNoNonEmptyBases(true),
52     HasPrivateFields(false), HasProtectedFields(false), HasPublicFields(false),
53     HasMutableFields(false), HasVariantMembers(false), HasOnlyCMembers(true),
54     HasInClassInitializer(false), HasUninitializedReferenceMember(false),
55     NeedOverloadResolutionForMoveConstructor(false),
56     NeedOverloadResolutionForMoveAssignment(false),
57     NeedOverloadResolutionForDestructor(false),
58     DefaultedMoveConstructorIsDeleted(false),
59     DefaultedMoveAssignmentIsDeleted(false),
60     DefaultedDestructorIsDeleted(false),
61     HasTrivialSpecialMembers(SMF_All),
62     DeclaredNonTrivialSpecialMembers(0),
63     HasIrrelevantDestructor(true),
64     HasConstexprNonCopyMoveConstructor(false),
65     DefaultedDefaultConstructorIsConstexpr(true),
66     HasConstexprDefaultConstructor(false),
67     HasNonLiteralTypeFieldsOrBases(false), ComputedVisibleConversions(false),
68     UserProvidedDefaultConstructor(false), DeclaredSpecialMembers(0),
69     ImplicitCopyConstructorHasConstParam(true),
70     ImplicitCopyAssignmentHasConstParam(true),
71     HasDeclaredCopyConstructorWithConstParam(false),
72     HasDeclaredCopyAssignmentWithConstParam(false),
73     IsLambda(false), IsParsingBaseSpecifiers(false), NumBases(0), NumVBases(0),
74     Bases(), VBases(),
75     Definition(D), FirstFriend() {
76 }
77 
getBasesSlowCase() const78 CXXBaseSpecifier *CXXRecordDecl::DefinitionData::getBasesSlowCase() const {
79   return Bases.get(Definition->getASTContext().getExternalSource());
80 }
81 
getVBasesSlowCase() const82 CXXBaseSpecifier *CXXRecordDecl::DefinitionData::getVBasesSlowCase() const {
83   return VBases.get(Definition->getASTContext().getExternalSource());
84 }
85 
CXXRecordDecl(Kind K,TagKind TK,const ASTContext & C,DeclContext * DC,SourceLocation StartLoc,SourceLocation IdLoc,IdentifierInfo * Id,CXXRecordDecl * PrevDecl)86 CXXRecordDecl::CXXRecordDecl(Kind K, TagKind TK, const ASTContext &C,
87                              DeclContext *DC, SourceLocation StartLoc,
88                              SourceLocation IdLoc, IdentifierInfo *Id,
89                              CXXRecordDecl *PrevDecl)
90     : RecordDecl(K, TK, C, DC, StartLoc, IdLoc, Id, PrevDecl),
91       DefinitionData(PrevDecl ? PrevDecl->DefinitionData
92                               : DefinitionDataPtr(this)),
93       TemplateOrInstantiation() {}
94 
Create(const ASTContext & C,TagKind TK,DeclContext * DC,SourceLocation StartLoc,SourceLocation IdLoc,IdentifierInfo * Id,CXXRecordDecl * PrevDecl,bool DelayTypeCreation)95 CXXRecordDecl *CXXRecordDecl::Create(const ASTContext &C, TagKind TK,
96                                      DeclContext *DC, SourceLocation StartLoc,
97                                      SourceLocation IdLoc, IdentifierInfo *Id,
98                                      CXXRecordDecl* PrevDecl,
99                                      bool DelayTypeCreation) {
100   CXXRecordDecl *R = new (C, DC) CXXRecordDecl(CXXRecord, TK, C, DC, StartLoc,
101                                                IdLoc, Id, PrevDecl);
102   R->MayHaveOutOfDateDef = C.getLangOpts().Modules;
103 
104   // FIXME: DelayTypeCreation seems like such a hack
105   if (!DelayTypeCreation)
106     C.getTypeDeclType(R, PrevDecl);
107   return R;
108 }
109 
110 CXXRecordDecl *
CreateLambda(const ASTContext & C,DeclContext * DC,TypeSourceInfo * Info,SourceLocation Loc,bool Dependent,bool IsGeneric,LambdaCaptureDefault CaptureDefault)111 CXXRecordDecl::CreateLambda(const ASTContext &C, DeclContext *DC,
112                             TypeSourceInfo *Info, SourceLocation Loc,
113                             bool Dependent, bool IsGeneric,
114                             LambdaCaptureDefault CaptureDefault) {
115   CXXRecordDecl *R =
116       new (C, DC) CXXRecordDecl(CXXRecord, TTK_Class, C, DC, Loc, Loc,
117                                 nullptr, nullptr);
118   R->IsBeingDefined = true;
119   R->DefinitionData =
120       new (C) struct LambdaDefinitionData(R, Info, Dependent, IsGeneric,
121                                           CaptureDefault);
122   R->MayHaveOutOfDateDef = false;
123   R->setImplicit(true);
124   C.getTypeDeclType(R, /*PrevDecl=*/nullptr);
125   return R;
126 }
127 
128 CXXRecordDecl *
CreateDeserialized(const ASTContext & C,unsigned ID)129 CXXRecordDecl::CreateDeserialized(const ASTContext &C, unsigned ID) {
130   CXXRecordDecl *R = new (C, ID) CXXRecordDecl(
131       CXXRecord, TTK_Struct, C, nullptr, SourceLocation(), SourceLocation(),
132       nullptr, nullptr);
133   R->MayHaveOutOfDateDef = false;
134   return R;
135 }
136 
137 void
setBases(CXXBaseSpecifier const * const * Bases,unsigned NumBases)138 CXXRecordDecl::setBases(CXXBaseSpecifier const * const *Bases,
139                         unsigned NumBases) {
140   ASTContext &C = getASTContext();
141 
142   if (!data().Bases.isOffset() && data().NumBases > 0)
143     C.Deallocate(data().getBases());
144 
145   if (NumBases) {
146     // C++ [dcl.init.aggr]p1:
147     //   An aggregate is [...] a class with [...] no base classes [...].
148     data().Aggregate = false;
149 
150     // C++ [class]p4:
151     //   A POD-struct is an aggregate class...
152     data().PlainOldData = false;
153   }
154 
155   // The set of seen virtual base types.
156   llvm::SmallPtrSet<CanQualType, 8> SeenVBaseTypes;
157 
158   // The virtual bases of this class.
159   SmallVector<const CXXBaseSpecifier *, 8> VBases;
160 
161   data().Bases = new(C) CXXBaseSpecifier [NumBases];
162   data().NumBases = NumBases;
163   for (unsigned i = 0; i < NumBases; ++i) {
164     data().getBases()[i] = *Bases[i];
165     // Keep track of inherited vbases for this base class.
166     const CXXBaseSpecifier *Base = Bases[i];
167     QualType BaseType = Base->getType();
168     // Skip dependent types; we can't do any checking on them now.
169     if (BaseType->isDependentType())
170       continue;
171     CXXRecordDecl *BaseClassDecl
172       = cast<CXXRecordDecl>(BaseType->getAs<RecordType>()->getDecl());
173 
174     // A class with a non-empty base class is not empty.
175     // FIXME: Standard ref?
176     if (!BaseClassDecl->isEmpty()) {
177       if (!data().Empty) {
178         // C++0x [class]p7:
179         //   A standard-layout class is a class that:
180         //    [...]
181         //    -- either has no non-static data members in the most derived
182         //       class and at most one base class with non-static data members,
183         //       or has no base classes with non-static data members, and
184         // If this is the second non-empty base, then neither of these two
185         // clauses can be true.
186         data().IsStandardLayout = false;
187       }
188 
189       data().Empty = false;
190       data().HasNoNonEmptyBases = false;
191     }
192 
193     // C++ [class.virtual]p1:
194     //   A class that declares or inherits a virtual function is called a
195     //   polymorphic class.
196     if (BaseClassDecl->isPolymorphic())
197       data().Polymorphic = true;
198 
199     // C++0x [class]p7:
200     //   A standard-layout class is a class that: [...]
201     //    -- has no non-standard-layout base classes
202     if (!BaseClassDecl->isStandardLayout())
203       data().IsStandardLayout = false;
204 
205     // Record if this base is the first non-literal field or base.
206     if (!hasNonLiteralTypeFieldsOrBases() && !BaseType->isLiteralType(C))
207       data().HasNonLiteralTypeFieldsOrBases = true;
208 
209     // Now go through all virtual bases of this base and add them.
210     for (const auto &VBase : BaseClassDecl->vbases()) {
211       // Add this base if it's not already in the list.
212       if (SeenVBaseTypes.insert(C.getCanonicalType(VBase.getType())).second) {
213         VBases.push_back(&VBase);
214 
215         // C++11 [class.copy]p8:
216         //   The implicitly-declared copy constructor for a class X will have
217         //   the form 'X::X(const X&)' if each [...] virtual base class B of X
218         //   has a copy constructor whose first parameter is of type
219         //   'const B&' or 'const volatile B&' [...]
220         if (CXXRecordDecl *VBaseDecl = VBase.getType()->getAsCXXRecordDecl())
221           if (!VBaseDecl->hasCopyConstructorWithConstParam())
222             data().ImplicitCopyConstructorHasConstParam = false;
223       }
224     }
225 
226     if (Base->isVirtual()) {
227       // Add this base if it's not already in the list.
228       if (SeenVBaseTypes.insert(C.getCanonicalType(BaseType)).second)
229         VBases.push_back(Base);
230 
231       // C++0x [meta.unary.prop] is_empty:
232       //    T is a class type, but not a union type, with ... no virtual base
233       //    classes
234       data().Empty = false;
235 
236       // C++11 [class.ctor]p5, C++11 [class.copy]p12, C++11 [class.copy]p25:
237       //   A [default constructor, copy/move constructor, or copy/move assignment
238       //   operator for a class X] is trivial [...] if:
239       //    -- class X has [...] no virtual base classes
240       data().HasTrivialSpecialMembers &= SMF_Destructor;
241 
242       // C++0x [class]p7:
243       //   A standard-layout class is a class that: [...]
244       //    -- has [...] no virtual base classes
245       data().IsStandardLayout = false;
246 
247       // C++11 [dcl.constexpr]p4:
248       //   In the definition of a constexpr constructor [...]
249       //    -- the class shall not have any virtual base classes
250       data().DefaultedDefaultConstructorIsConstexpr = false;
251     } else {
252       // C++ [class.ctor]p5:
253       //   A default constructor is trivial [...] if:
254       //    -- all the direct base classes of its class have trivial default
255       //       constructors.
256       if (!BaseClassDecl->hasTrivialDefaultConstructor())
257         data().HasTrivialSpecialMembers &= ~SMF_DefaultConstructor;
258 
259       // C++0x [class.copy]p13:
260       //   A copy/move constructor for class X is trivial if [...]
261       //    [...]
262       //    -- the constructor selected to copy/move each direct base class
263       //       subobject is trivial, and
264       if (!BaseClassDecl->hasTrivialCopyConstructor())
265         data().HasTrivialSpecialMembers &= ~SMF_CopyConstructor;
266       // If the base class doesn't have a simple move constructor, we'll eagerly
267       // declare it and perform overload resolution to determine which function
268       // it actually calls. If it does have a simple move constructor, this
269       // check is correct.
270       if (!BaseClassDecl->hasTrivialMoveConstructor())
271         data().HasTrivialSpecialMembers &= ~SMF_MoveConstructor;
272 
273       // C++0x [class.copy]p27:
274       //   A copy/move assignment operator for class X is trivial if [...]
275       //    [...]
276       //    -- the assignment operator selected to copy/move each direct base
277       //       class subobject is trivial, and
278       if (!BaseClassDecl->hasTrivialCopyAssignment())
279         data().HasTrivialSpecialMembers &= ~SMF_CopyAssignment;
280       // If the base class doesn't have a simple move assignment, we'll eagerly
281       // declare it and perform overload resolution to determine which function
282       // it actually calls. If it does have a simple move assignment, this
283       // check is correct.
284       if (!BaseClassDecl->hasTrivialMoveAssignment())
285         data().HasTrivialSpecialMembers &= ~SMF_MoveAssignment;
286 
287       // C++11 [class.ctor]p6:
288       //   If that user-written default constructor would satisfy the
289       //   requirements of a constexpr constructor, the implicitly-defined
290       //   default constructor is constexpr.
291       if (!BaseClassDecl->hasConstexprDefaultConstructor())
292         data().DefaultedDefaultConstructorIsConstexpr = false;
293     }
294 
295     // C++ [class.ctor]p3:
296     //   A destructor is trivial if all the direct base classes of its class
297     //   have trivial destructors.
298     if (!BaseClassDecl->hasTrivialDestructor())
299       data().HasTrivialSpecialMembers &= ~SMF_Destructor;
300 
301     if (!BaseClassDecl->hasIrrelevantDestructor())
302       data().HasIrrelevantDestructor = false;
303 
304     // C++11 [class.copy]p18:
305     //   The implicitly-declared copy assignment oeprator for a class X will
306     //   have the form 'X& X::operator=(const X&)' if each direct base class B
307     //   of X has a copy assignment operator whose parameter is of type 'const
308     //   B&', 'const volatile B&', or 'B' [...]
309     if (!BaseClassDecl->hasCopyAssignmentWithConstParam())
310       data().ImplicitCopyAssignmentHasConstParam = false;
311 
312     // C++11 [class.copy]p8:
313     //   The implicitly-declared copy constructor for a class X will have
314     //   the form 'X::X(const X&)' if each direct [...] base class B of X
315     //   has a copy constructor whose first parameter is of type
316     //   'const B&' or 'const volatile B&' [...]
317     if (!BaseClassDecl->hasCopyConstructorWithConstParam())
318       data().ImplicitCopyConstructorHasConstParam = false;
319 
320     // A class has an Objective-C object member if... or any of its bases
321     // has an Objective-C object member.
322     if (BaseClassDecl->hasObjectMember())
323       setHasObjectMember(true);
324 
325     if (BaseClassDecl->hasVolatileMember())
326       setHasVolatileMember(true);
327 
328     // Keep track of the presence of mutable fields.
329     if (BaseClassDecl->hasMutableFields())
330       data().HasMutableFields = true;
331 
332     if (BaseClassDecl->hasUninitializedReferenceMember())
333       data().HasUninitializedReferenceMember = true;
334 
335     addedClassSubobject(BaseClassDecl);
336   }
337 
338   if (VBases.empty()) {
339     data().IsParsingBaseSpecifiers = false;
340     return;
341   }
342 
343   // Create base specifier for any direct or indirect virtual bases.
344   data().VBases = new (C) CXXBaseSpecifier[VBases.size()];
345   data().NumVBases = VBases.size();
346   for (int I = 0, E = VBases.size(); I != E; ++I) {
347     QualType Type = VBases[I]->getType();
348     if (!Type->isDependentType())
349       addedClassSubobject(Type->getAsCXXRecordDecl());
350     data().getVBases()[I] = *VBases[I];
351   }
352 
353   data().IsParsingBaseSpecifiers = false;
354 }
355 
addedClassSubobject(CXXRecordDecl * Subobj)356 void CXXRecordDecl::addedClassSubobject(CXXRecordDecl *Subobj) {
357   // C++11 [class.copy]p11:
358   //   A defaulted copy/move constructor for a class X is defined as
359   //   deleted if X has:
360   //    -- a direct or virtual base class B that cannot be copied/moved [...]
361   //    -- a non-static data member of class type M (or array thereof)
362   //       that cannot be copied or moved [...]
363   if (!Subobj->hasSimpleMoveConstructor())
364     data().NeedOverloadResolutionForMoveConstructor = true;
365 
366   // C++11 [class.copy]p23:
367   //   A defaulted copy/move assignment operator for a class X is defined as
368   //   deleted if X has:
369   //    -- a direct or virtual base class B that cannot be copied/moved [...]
370   //    -- a non-static data member of class type M (or array thereof)
371   //        that cannot be copied or moved [...]
372   if (!Subobj->hasSimpleMoveAssignment())
373     data().NeedOverloadResolutionForMoveAssignment = true;
374 
375   // C++11 [class.ctor]p5, C++11 [class.copy]p11, C++11 [class.dtor]p5:
376   //   A defaulted [ctor or dtor] for a class X is defined as
377   //   deleted if X has:
378   //    -- any direct or virtual base class [...] has a type with a destructor
379   //       that is deleted or inaccessible from the defaulted [ctor or dtor].
380   //    -- any non-static data member has a type with a destructor
381   //       that is deleted or inaccessible from the defaulted [ctor or dtor].
382   if (!Subobj->hasSimpleDestructor()) {
383     data().NeedOverloadResolutionForMoveConstructor = true;
384     data().NeedOverloadResolutionForDestructor = true;
385   }
386 }
387 
hasAnyDependentBases() const388 bool CXXRecordDecl::hasAnyDependentBases() const {
389   if (!isDependentContext())
390     return false;
391 
392   return !forallBases([](const CXXRecordDecl *) { return true; });
393 }
394 
isTriviallyCopyable() const395 bool CXXRecordDecl::isTriviallyCopyable() const {
396   // C++0x [class]p5:
397   //   A trivially copyable class is a class that:
398   //   -- has no non-trivial copy constructors,
399   if (hasNonTrivialCopyConstructor()) return false;
400   //   -- has no non-trivial move constructors,
401   if (hasNonTrivialMoveConstructor()) return false;
402   //   -- has no non-trivial copy assignment operators,
403   if (hasNonTrivialCopyAssignment()) return false;
404   //   -- has no non-trivial move assignment operators, and
405   if (hasNonTrivialMoveAssignment()) return false;
406   //   -- has a trivial destructor.
407   if (!hasTrivialDestructor()) return false;
408 
409   return true;
410 }
411 
markedVirtualFunctionPure()412 void CXXRecordDecl::markedVirtualFunctionPure() {
413   // C++ [class.abstract]p2:
414   //   A class is abstract if it has at least one pure virtual function.
415   data().Abstract = true;
416 }
417 
addedMember(Decl * D)418 void CXXRecordDecl::addedMember(Decl *D) {
419   if (!D->isImplicit() &&
420       !isa<FieldDecl>(D) &&
421       !isa<IndirectFieldDecl>(D) &&
422       (!isa<TagDecl>(D) || cast<TagDecl>(D)->getTagKind() == TTK_Class ||
423         cast<TagDecl>(D)->getTagKind() == TTK_Interface))
424     data().HasOnlyCMembers = false;
425 
426   // Ignore friends and invalid declarations.
427   if (D->getFriendObjectKind() || D->isInvalidDecl())
428     return;
429 
430   FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D);
431   if (FunTmpl)
432     D = FunTmpl->getTemplatedDecl();
433 
434   if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
435     if (Method->isVirtual()) {
436       // C++ [dcl.init.aggr]p1:
437       //   An aggregate is an array or a class with [...] no virtual functions.
438       data().Aggregate = false;
439 
440       // C++ [class]p4:
441       //   A POD-struct is an aggregate class...
442       data().PlainOldData = false;
443 
444       // Virtual functions make the class non-empty.
445       // FIXME: Standard ref?
446       data().Empty = false;
447 
448       // C++ [class.virtual]p1:
449       //   A class that declares or inherits a virtual function is called a
450       //   polymorphic class.
451       data().Polymorphic = true;
452 
453       // C++11 [class.ctor]p5, C++11 [class.copy]p12, C++11 [class.copy]p25:
454       //   A [default constructor, copy/move constructor, or copy/move
455       //   assignment operator for a class X] is trivial [...] if:
456       //    -- class X has no virtual functions [...]
457       data().HasTrivialSpecialMembers &= SMF_Destructor;
458 
459       // C++0x [class]p7:
460       //   A standard-layout class is a class that: [...]
461       //    -- has no virtual functions
462       data().IsStandardLayout = false;
463     }
464   }
465 
466   // Notify the listener if an implicit member was added after the definition
467   // was completed.
468   if (!isBeingDefined() && D->isImplicit())
469     if (ASTMutationListener *L = getASTMutationListener())
470       L->AddedCXXImplicitMember(data().Definition, D);
471 
472   // The kind of special member this declaration is, if any.
473   unsigned SMKind = 0;
474 
475   // Handle constructors.
476   if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(D)) {
477     if (!Constructor->isImplicit()) {
478       // Note that we have a user-declared constructor.
479       data().UserDeclaredConstructor = true;
480 
481       // C++ [class]p4:
482       //   A POD-struct is an aggregate class [...]
483       // Since the POD bit is meant to be C++03 POD-ness, clear it even if the
484       // type is technically an aggregate in C++0x since it wouldn't be in 03.
485       data().PlainOldData = false;
486     }
487 
488     // Technically, "user-provided" is only defined for special member
489     // functions, but the intent of the standard is clearly that it should apply
490     // to all functions.
491     bool UserProvided = Constructor->isUserProvided();
492 
493     if (Constructor->isDefaultConstructor()) {
494       SMKind |= SMF_DefaultConstructor;
495 
496       if (UserProvided)
497         data().UserProvidedDefaultConstructor = true;
498       if (Constructor->isConstexpr())
499         data().HasConstexprDefaultConstructor = true;
500     }
501 
502     if (!FunTmpl) {
503       unsigned Quals;
504       if (Constructor->isCopyConstructor(Quals)) {
505         SMKind |= SMF_CopyConstructor;
506 
507         if (Quals & Qualifiers::Const)
508           data().HasDeclaredCopyConstructorWithConstParam = true;
509       } else if (Constructor->isMoveConstructor())
510         SMKind |= SMF_MoveConstructor;
511     }
512 
513     // Record if we see any constexpr constructors which are neither copy
514     // nor move constructors.
515     if (Constructor->isConstexpr() && !Constructor->isCopyOrMoveConstructor())
516       data().HasConstexprNonCopyMoveConstructor = true;
517 
518     // C++ [dcl.init.aggr]p1:
519     //   An aggregate is an array or a class with no user-declared
520     //   constructors [...].
521     // C++11 [dcl.init.aggr]p1:
522     //   An aggregate is an array or a class with no user-provided
523     //   constructors [...].
524     if (getASTContext().getLangOpts().CPlusPlus11
525           ? UserProvided : !Constructor->isImplicit())
526       data().Aggregate = false;
527   }
528 
529   // Handle destructors.
530   if (CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D)) {
531     SMKind |= SMF_Destructor;
532 
533     if (DD->isUserProvided())
534       data().HasIrrelevantDestructor = false;
535     // If the destructor is explicitly defaulted and not trivial or not public
536     // or if the destructor is deleted, we clear HasIrrelevantDestructor in
537     // finishedDefaultedOrDeletedMember.
538 
539     // C++11 [class.dtor]p5:
540     //   A destructor is trivial if [...] the destructor is not virtual.
541     if (DD->isVirtual())
542       data().HasTrivialSpecialMembers &= ~SMF_Destructor;
543   }
544 
545   // Handle member functions.
546   if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
547     if (Method->isCopyAssignmentOperator()) {
548       SMKind |= SMF_CopyAssignment;
549 
550       const ReferenceType *ParamTy =
551         Method->getParamDecl(0)->getType()->getAs<ReferenceType>();
552       if (!ParamTy || ParamTy->getPointeeType().isConstQualified())
553         data().HasDeclaredCopyAssignmentWithConstParam = true;
554     }
555 
556     if (Method->isMoveAssignmentOperator())
557       SMKind |= SMF_MoveAssignment;
558 
559     // Keep the list of conversion functions up-to-date.
560     if (CXXConversionDecl *Conversion = dyn_cast<CXXConversionDecl>(D)) {
561       // FIXME: We use the 'unsafe' accessor for the access specifier here,
562       // because Sema may not have set it yet. That's really just a misdesign
563       // in Sema. However, LLDB *will* have set the access specifier correctly,
564       // and adds declarations after the class is technically completed,
565       // so completeDefinition()'s overriding of the access specifiers doesn't
566       // work.
567       AccessSpecifier AS = Conversion->getAccessUnsafe();
568 
569       if (Conversion->getPrimaryTemplate()) {
570         // We don't record specializations.
571       } else {
572         ASTContext &Ctx = getASTContext();
573         ASTUnresolvedSet &Conversions = data().Conversions.get(Ctx);
574         NamedDecl *Primary =
575             FunTmpl ? cast<NamedDecl>(FunTmpl) : cast<NamedDecl>(Conversion);
576         if (Primary->getPreviousDecl())
577           Conversions.replace(cast<NamedDecl>(Primary->getPreviousDecl()),
578                               Primary, AS);
579         else
580           Conversions.addDecl(Ctx, Primary, AS);
581       }
582     }
583 
584     if (SMKind) {
585       // If this is the first declaration of a special member, we no longer have
586       // an implicit trivial special member.
587       data().HasTrivialSpecialMembers &=
588         data().DeclaredSpecialMembers | ~SMKind;
589 
590       if (!Method->isImplicit() && !Method->isUserProvided()) {
591         // This method is user-declared but not user-provided. We can't work out
592         // whether it's trivial yet (not until we get to the end of the class).
593         // We'll handle this method in finishedDefaultedOrDeletedMember.
594       } else if (Method->isTrivial())
595         data().HasTrivialSpecialMembers |= SMKind;
596       else
597         data().DeclaredNonTrivialSpecialMembers |= SMKind;
598 
599       // Note when we have declared a declared special member, and suppress the
600       // implicit declaration of this special member.
601       data().DeclaredSpecialMembers |= SMKind;
602 
603       if (!Method->isImplicit()) {
604         data().UserDeclaredSpecialMembers |= SMKind;
605 
606         // C++03 [class]p4:
607         //   A POD-struct is an aggregate class that has [...] no user-defined
608         //   copy assignment operator and no user-defined destructor.
609         //
610         // Since the POD bit is meant to be C++03 POD-ness, and in C++03,
611         // aggregates could not have any constructors, clear it even for an
612         // explicitly defaulted or deleted constructor.
613         // type is technically an aggregate in C++0x since it wouldn't be in 03.
614         //
615         // Also, a user-declared move assignment operator makes a class non-POD.
616         // This is an extension in C++03.
617         data().PlainOldData = false;
618       }
619     }
620 
621     return;
622   }
623 
624   // Handle non-static data members.
625   if (FieldDecl *Field = dyn_cast<FieldDecl>(D)) {
626     // C++ [class.bit]p2:
627     //   A declaration for a bit-field that omits the identifier declares an
628     //   unnamed bit-field. Unnamed bit-fields are not members and cannot be
629     //   initialized.
630     if (Field->isUnnamedBitfield())
631       return;
632 
633     // C++ [dcl.init.aggr]p1:
634     //   An aggregate is an array or a class (clause 9) with [...] no
635     //   private or protected non-static data members (clause 11).
636     //
637     // A POD must be an aggregate.
638     if (D->getAccess() == AS_private || D->getAccess() == AS_protected) {
639       data().Aggregate = false;
640       data().PlainOldData = false;
641     }
642 
643     // C++0x [class]p7:
644     //   A standard-layout class is a class that:
645     //    [...]
646     //    -- has the same access control for all non-static data members,
647     switch (D->getAccess()) {
648     case AS_private:    data().HasPrivateFields = true;   break;
649     case AS_protected:  data().HasProtectedFields = true; break;
650     case AS_public:     data().HasPublicFields = true;    break;
651     case AS_none:       llvm_unreachable("Invalid access specifier");
652     };
653     if ((data().HasPrivateFields + data().HasProtectedFields +
654          data().HasPublicFields) > 1)
655       data().IsStandardLayout = false;
656 
657     // Keep track of the presence of mutable fields.
658     if (Field->isMutable())
659       data().HasMutableFields = true;
660 
661     // C++11 [class.union]p8, DR1460:
662     //   If X is a union, a non-static data member of X that is not an anonymous
663     //   union is a variant member of X.
664     if (isUnion() && !Field->isAnonymousStructOrUnion())
665       data().HasVariantMembers = true;
666 
667     // C++0x [class]p9:
668     //   A POD struct is a class that is both a trivial class and a
669     //   standard-layout class, and has no non-static data members of type
670     //   non-POD struct, non-POD union (or array of such types).
671     //
672     // Automatic Reference Counting: the presence of a member of Objective-C pointer type
673     // that does not explicitly have no lifetime makes the class a non-POD.
674     ASTContext &Context = getASTContext();
675     QualType T = Context.getBaseElementType(Field->getType());
676     if (T->isObjCRetainableType() || T.isObjCGCStrong()) {
677       if (!Context.getLangOpts().ObjCAutoRefCount) {
678         setHasObjectMember(true);
679       } else if (T.getObjCLifetime() != Qualifiers::OCL_ExplicitNone) {
680         // Objective-C Automatic Reference Counting:
681         //   If a class has a non-static data member of Objective-C pointer
682         //   type (or array thereof), it is a non-POD type and its
683         //   default constructor (if any), copy constructor, move constructor,
684         //   copy assignment operator, move assignment operator, and destructor are
685         //   non-trivial.
686         setHasObjectMember(true);
687         struct DefinitionData &Data = data();
688         Data.PlainOldData = false;
689         Data.HasTrivialSpecialMembers = 0;
690         Data.HasIrrelevantDestructor = false;
691       }
692     } else if (!T.isCXX98PODType(Context))
693       data().PlainOldData = false;
694 
695     if (T->isReferenceType()) {
696       if (!Field->hasInClassInitializer())
697         data().HasUninitializedReferenceMember = true;
698 
699       // C++0x [class]p7:
700       //   A standard-layout class is a class that:
701       //    -- has no non-static data members of type [...] reference,
702       data().IsStandardLayout = false;
703     }
704 
705     // Record if this field is the first non-literal or volatile field or base.
706     if (!T->isLiteralType(Context) || T.isVolatileQualified())
707       data().HasNonLiteralTypeFieldsOrBases = true;
708 
709     if (Field->hasInClassInitializer() ||
710         (Field->isAnonymousStructOrUnion() &&
711          Field->getType()->getAsCXXRecordDecl()->hasInClassInitializer())) {
712       data().HasInClassInitializer = true;
713 
714       // C++11 [class]p5:
715       //   A default constructor is trivial if [...] no non-static data member
716       //   of its class has a brace-or-equal-initializer.
717       data().HasTrivialSpecialMembers &= ~SMF_DefaultConstructor;
718 
719       // C++11 [dcl.init.aggr]p1:
720       //   An aggregate is a [...] class with [...] no
721       //   brace-or-equal-initializers for non-static data members.
722       //
723       // This rule was removed in C++1y.
724       if (!getASTContext().getLangOpts().CPlusPlus14)
725         data().Aggregate = false;
726 
727       // C++11 [class]p10:
728       //   A POD struct is [...] a trivial class.
729       data().PlainOldData = false;
730     }
731 
732     // C++11 [class.copy]p23:
733     //   A defaulted copy/move assignment operator for a class X is defined
734     //   as deleted if X has:
735     //    -- a non-static data member of reference type
736     if (T->isReferenceType())
737       data().DefaultedMoveAssignmentIsDeleted = true;
738 
739     if (const RecordType *RecordTy = T->getAs<RecordType>()) {
740       CXXRecordDecl* FieldRec = cast<CXXRecordDecl>(RecordTy->getDecl());
741       if (FieldRec->getDefinition()) {
742         addedClassSubobject(FieldRec);
743 
744         // We may need to perform overload resolution to determine whether a
745         // field can be moved if it's const or volatile qualified.
746         if (T.getCVRQualifiers() & (Qualifiers::Const | Qualifiers::Volatile)) {
747           data().NeedOverloadResolutionForMoveConstructor = true;
748           data().NeedOverloadResolutionForMoveAssignment = true;
749         }
750 
751         // C++11 [class.ctor]p5, C++11 [class.copy]p11:
752         //   A defaulted [special member] for a class X is defined as
753         //   deleted if:
754         //    -- X is a union-like class that has a variant member with a
755         //       non-trivial [corresponding special member]
756         if (isUnion()) {
757           if (FieldRec->hasNonTrivialMoveConstructor())
758             data().DefaultedMoveConstructorIsDeleted = true;
759           if (FieldRec->hasNonTrivialMoveAssignment())
760             data().DefaultedMoveAssignmentIsDeleted = true;
761           if (FieldRec->hasNonTrivialDestructor())
762             data().DefaultedDestructorIsDeleted = true;
763         }
764 
765         // C++0x [class.ctor]p5:
766         //   A default constructor is trivial [...] if:
767         //    -- for all the non-static data members of its class that are of
768         //       class type (or array thereof), each such class has a trivial
769         //       default constructor.
770         if (!FieldRec->hasTrivialDefaultConstructor())
771           data().HasTrivialSpecialMembers &= ~SMF_DefaultConstructor;
772 
773         // C++0x [class.copy]p13:
774         //   A copy/move constructor for class X is trivial if [...]
775         //    [...]
776         //    -- for each non-static data member of X that is of class type (or
777         //       an array thereof), the constructor selected to copy/move that
778         //       member is trivial;
779         if (!FieldRec->hasTrivialCopyConstructor())
780           data().HasTrivialSpecialMembers &= ~SMF_CopyConstructor;
781         // If the field doesn't have a simple move constructor, we'll eagerly
782         // declare the move constructor for this class and we'll decide whether
783         // it's trivial then.
784         if (!FieldRec->hasTrivialMoveConstructor())
785           data().HasTrivialSpecialMembers &= ~SMF_MoveConstructor;
786 
787         // C++0x [class.copy]p27:
788         //   A copy/move assignment operator for class X is trivial if [...]
789         //    [...]
790         //    -- for each non-static data member of X that is of class type (or
791         //       an array thereof), the assignment operator selected to
792         //       copy/move that member is trivial;
793         if (!FieldRec->hasTrivialCopyAssignment())
794           data().HasTrivialSpecialMembers &= ~SMF_CopyAssignment;
795         // If the field doesn't have a simple move assignment, we'll eagerly
796         // declare the move assignment for this class and we'll decide whether
797         // it's trivial then.
798         if (!FieldRec->hasTrivialMoveAssignment())
799           data().HasTrivialSpecialMembers &= ~SMF_MoveAssignment;
800 
801         if (!FieldRec->hasTrivialDestructor())
802           data().HasTrivialSpecialMembers &= ~SMF_Destructor;
803         if (!FieldRec->hasIrrelevantDestructor())
804           data().HasIrrelevantDestructor = false;
805         if (FieldRec->hasObjectMember())
806           setHasObjectMember(true);
807         if (FieldRec->hasVolatileMember())
808           setHasVolatileMember(true);
809 
810         // C++0x [class]p7:
811         //   A standard-layout class is a class that:
812         //    -- has no non-static data members of type non-standard-layout
813         //       class (or array of such types) [...]
814         if (!FieldRec->isStandardLayout())
815           data().IsStandardLayout = false;
816 
817         // C++0x [class]p7:
818         //   A standard-layout class is a class that:
819         //    [...]
820         //    -- has no base classes of the same type as the first non-static
821         //       data member.
822         // We don't want to expend bits in the state of the record decl
823         // tracking whether this is the first non-static data member so we
824         // cheat a bit and use some of the existing state: the empty bit.
825         // Virtual bases and virtual methods make a class non-empty, but they
826         // also make it non-standard-layout so we needn't check here.
827         // A non-empty base class may leave the class standard-layout, but not
828         // if we have arrived here, and have at least one non-static data
829         // member. If IsStandardLayout remains true, then the first non-static
830         // data member must come through here with Empty still true, and Empty
831         // will subsequently be set to false below.
832         if (data().IsStandardLayout && data().Empty) {
833           for (const auto &BI : bases()) {
834             if (Context.hasSameUnqualifiedType(BI.getType(), T)) {
835               data().IsStandardLayout = false;
836               break;
837             }
838           }
839         }
840 
841         // Keep track of the presence of mutable fields.
842         if (FieldRec->hasMutableFields())
843           data().HasMutableFields = true;
844 
845         // C++11 [class.copy]p13:
846         //   If the implicitly-defined constructor would satisfy the
847         //   requirements of a constexpr constructor, the implicitly-defined
848         //   constructor is constexpr.
849         // C++11 [dcl.constexpr]p4:
850         //    -- every constructor involved in initializing non-static data
851         //       members [...] shall be a constexpr constructor
852         if (!Field->hasInClassInitializer() &&
853             !FieldRec->hasConstexprDefaultConstructor() && !isUnion())
854           // The standard requires any in-class initializer to be a constant
855           // expression. We consider this to be a defect.
856           data().DefaultedDefaultConstructorIsConstexpr = false;
857 
858         // C++11 [class.copy]p8:
859         //   The implicitly-declared copy constructor for a class X will have
860         //   the form 'X::X(const X&)' if [...] for all the non-static data
861         //   members of X that are of a class type M (or array thereof), each
862         //   such class type has a copy constructor whose first parameter is
863         //   of type 'const M&' or 'const volatile M&'.
864         if (!FieldRec->hasCopyConstructorWithConstParam())
865           data().ImplicitCopyConstructorHasConstParam = false;
866 
867         // C++11 [class.copy]p18:
868         //   The implicitly-declared copy assignment oeprator for a class X will
869         //   have the form 'X& X::operator=(const X&)' if [...] for all the
870         //   non-static data members of X that are of a class type M (or array
871         //   thereof), each such class type has a copy assignment operator whose
872         //   parameter is of type 'const M&', 'const volatile M&' or 'M'.
873         if (!FieldRec->hasCopyAssignmentWithConstParam())
874           data().ImplicitCopyAssignmentHasConstParam = false;
875 
876         if (FieldRec->hasUninitializedReferenceMember() &&
877             !Field->hasInClassInitializer())
878           data().HasUninitializedReferenceMember = true;
879 
880         // C++11 [class.union]p8, DR1460:
881         //   a non-static data member of an anonymous union that is a member of
882         //   X is also a variant member of X.
883         if (FieldRec->hasVariantMembers() &&
884             Field->isAnonymousStructOrUnion())
885           data().HasVariantMembers = true;
886       }
887     } else {
888       // Base element type of field is a non-class type.
889       if (!T->isLiteralType(Context) ||
890           (!Field->hasInClassInitializer() && !isUnion()))
891         data().DefaultedDefaultConstructorIsConstexpr = false;
892 
893       // C++11 [class.copy]p23:
894       //   A defaulted copy/move assignment operator for a class X is defined
895       //   as deleted if X has:
896       //    -- a non-static data member of const non-class type (or array
897       //       thereof)
898       if (T.isConstQualified())
899         data().DefaultedMoveAssignmentIsDeleted = true;
900     }
901 
902     // C++0x [class]p7:
903     //   A standard-layout class is a class that:
904     //    [...]
905     //    -- either has no non-static data members in the most derived
906     //       class and at most one base class with non-static data members,
907     //       or has no base classes with non-static data members, and
908     // At this point we know that we have a non-static data member, so the last
909     // clause holds.
910     if (!data().HasNoNonEmptyBases)
911       data().IsStandardLayout = false;
912 
913     // If this is not a zero-length bit-field, then the class is not empty.
914     if (data().Empty) {
915       if (!Field->isBitField() ||
916           (!Field->getBitWidth()->isTypeDependent() &&
917            !Field->getBitWidth()->isValueDependent() &&
918            Field->getBitWidthValue(Context) != 0))
919         data().Empty = false;
920     }
921   }
922 
923   // Handle using declarations of conversion functions.
924   if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(D)) {
925     if (Shadow->getDeclName().getNameKind()
926           == DeclarationName::CXXConversionFunctionName) {
927       ASTContext &Ctx = getASTContext();
928       data().Conversions.get(Ctx).addDecl(Ctx, Shadow, Shadow->getAccess());
929     }
930   }
931 }
932 
finishedDefaultedOrDeletedMember(CXXMethodDecl * D)933 void CXXRecordDecl::finishedDefaultedOrDeletedMember(CXXMethodDecl *D) {
934   assert(!D->isImplicit() && !D->isUserProvided());
935 
936   // The kind of special member this declaration is, if any.
937   unsigned SMKind = 0;
938 
939   if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(D)) {
940     if (Constructor->isDefaultConstructor()) {
941       SMKind |= SMF_DefaultConstructor;
942       if (Constructor->isConstexpr())
943         data().HasConstexprDefaultConstructor = true;
944     }
945     if (Constructor->isCopyConstructor())
946       SMKind |= SMF_CopyConstructor;
947     else if (Constructor->isMoveConstructor())
948       SMKind |= SMF_MoveConstructor;
949     else if (Constructor->isConstexpr())
950       // We may now know that the constructor is constexpr.
951       data().HasConstexprNonCopyMoveConstructor = true;
952   } else if (isa<CXXDestructorDecl>(D)) {
953     SMKind |= SMF_Destructor;
954     if (!D->isTrivial() || D->getAccess() != AS_public || D->isDeleted())
955       data().HasIrrelevantDestructor = false;
956   } else if (D->isCopyAssignmentOperator())
957     SMKind |= SMF_CopyAssignment;
958   else if (D->isMoveAssignmentOperator())
959     SMKind |= SMF_MoveAssignment;
960 
961   // Update which trivial / non-trivial special members we have.
962   // addedMember will have skipped this step for this member.
963   if (D->isTrivial())
964     data().HasTrivialSpecialMembers |= SMKind;
965   else
966     data().DeclaredNonTrivialSpecialMembers |= SMKind;
967 }
968 
isCLike() const969 bool CXXRecordDecl::isCLike() const {
970   if (getTagKind() == TTK_Class || getTagKind() == TTK_Interface ||
971       !TemplateOrInstantiation.isNull())
972     return false;
973   if (!hasDefinition())
974     return true;
975 
976   return isPOD() && data().HasOnlyCMembers;
977 }
978 
isGenericLambda() const979 bool CXXRecordDecl::isGenericLambda() const {
980   if (!isLambda()) return false;
981   return getLambdaData().IsGenericLambda;
982 }
983 
getLambdaCallOperator() const984 CXXMethodDecl* CXXRecordDecl::getLambdaCallOperator() const {
985   if (!isLambda()) return nullptr;
986   DeclarationName Name =
987     getASTContext().DeclarationNames.getCXXOperatorName(OO_Call);
988   DeclContext::lookup_result Calls = lookup(Name);
989 
990   assert(!Calls.empty() && "Missing lambda call operator!");
991   assert(Calls.size() == 1 && "More than one lambda call operator!");
992 
993   NamedDecl *CallOp = Calls.front();
994   if (FunctionTemplateDecl *CallOpTmpl =
995                     dyn_cast<FunctionTemplateDecl>(CallOp))
996     return cast<CXXMethodDecl>(CallOpTmpl->getTemplatedDecl());
997 
998   return cast<CXXMethodDecl>(CallOp);
999 }
1000 
getLambdaStaticInvoker() const1001 CXXMethodDecl* CXXRecordDecl::getLambdaStaticInvoker() const {
1002   if (!isLambda()) return nullptr;
1003   DeclarationName Name =
1004     &getASTContext().Idents.get(getLambdaStaticInvokerName());
1005   DeclContext::lookup_result Invoker = lookup(Name);
1006   if (Invoker.empty()) return nullptr;
1007   assert(Invoker.size() == 1 && "More than one static invoker operator!");
1008   NamedDecl *InvokerFun = Invoker.front();
1009   if (FunctionTemplateDecl *InvokerTemplate =
1010                   dyn_cast<FunctionTemplateDecl>(InvokerFun))
1011     return cast<CXXMethodDecl>(InvokerTemplate->getTemplatedDecl());
1012 
1013   return cast<CXXMethodDecl>(InvokerFun);
1014 }
1015 
getCaptureFields(llvm::DenseMap<const VarDecl *,FieldDecl * > & Captures,FieldDecl * & ThisCapture) const1016 void CXXRecordDecl::getCaptureFields(
1017        llvm::DenseMap<const VarDecl *, FieldDecl *> &Captures,
1018        FieldDecl *&ThisCapture) const {
1019   Captures.clear();
1020   ThisCapture = nullptr;
1021 
1022   LambdaDefinitionData &Lambda = getLambdaData();
1023   RecordDecl::field_iterator Field = field_begin();
1024   for (const LambdaCapture *C = Lambda.Captures, *CEnd = C + Lambda.NumCaptures;
1025        C != CEnd; ++C, ++Field) {
1026     if (C->capturesThis())
1027       ThisCapture = *Field;
1028     else if (C->capturesVariable())
1029       Captures[C->getCapturedVar()] = *Field;
1030   }
1031   assert(Field == field_end());
1032 }
1033 
1034 TemplateParameterList *
getGenericLambdaTemplateParameterList() const1035 CXXRecordDecl::getGenericLambdaTemplateParameterList() const {
1036   if (!isLambda()) return nullptr;
1037   CXXMethodDecl *CallOp = getLambdaCallOperator();
1038   if (FunctionTemplateDecl *Tmpl = CallOp->getDescribedFunctionTemplate())
1039     return Tmpl->getTemplateParameters();
1040   return nullptr;
1041 }
1042 
GetConversionType(ASTContext & Context,NamedDecl * Conv)1043 static CanQualType GetConversionType(ASTContext &Context, NamedDecl *Conv) {
1044   QualType T =
1045       cast<CXXConversionDecl>(Conv->getUnderlyingDecl()->getAsFunction())
1046           ->getConversionType();
1047   return Context.getCanonicalType(T);
1048 }
1049 
1050 /// Collect the visible conversions of a base class.
1051 ///
1052 /// \param Record a base class of the class we're considering
1053 /// \param InVirtual whether this base class is a virtual base (or a base
1054 ///   of a virtual base)
1055 /// \param Access the access along the inheritance path to this base
1056 /// \param ParentHiddenTypes the conversions provided by the inheritors
1057 ///   of this base
1058 /// \param Output the set to which to add conversions from non-virtual bases
1059 /// \param VOutput the set to which to add conversions from virtual bases
1060 /// \param HiddenVBaseCs the set of conversions which were hidden in a
1061 ///   virtual base along some inheritance path
CollectVisibleConversions(ASTContext & Context,CXXRecordDecl * Record,bool InVirtual,AccessSpecifier Access,const llvm::SmallPtrSet<CanQualType,8> & ParentHiddenTypes,ASTUnresolvedSet & Output,UnresolvedSetImpl & VOutput,llvm::SmallPtrSet<NamedDecl *,8> & HiddenVBaseCs)1062 static void CollectVisibleConversions(ASTContext &Context,
1063                                       CXXRecordDecl *Record,
1064                                       bool InVirtual,
1065                                       AccessSpecifier Access,
1066                   const llvm::SmallPtrSet<CanQualType, 8> &ParentHiddenTypes,
1067                                       ASTUnresolvedSet &Output,
1068                                       UnresolvedSetImpl &VOutput,
1069                            llvm::SmallPtrSet<NamedDecl*, 8> &HiddenVBaseCs) {
1070   // The set of types which have conversions in this class or its
1071   // subclasses.  As an optimization, we don't copy the derived set
1072   // unless it might change.
1073   const llvm::SmallPtrSet<CanQualType, 8> *HiddenTypes = &ParentHiddenTypes;
1074   llvm::SmallPtrSet<CanQualType, 8> HiddenTypesBuffer;
1075 
1076   // Collect the direct conversions and figure out which conversions
1077   // will be hidden in the subclasses.
1078   CXXRecordDecl::conversion_iterator ConvI = Record->conversion_begin();
1079   CXXRecordDecl::conversion_iterator ConvE = Record->conversion_end();
1080   if (ConvI != ConvE) {
1081     HiddenTypesBuffer = ParentHiddenTypes;
1082     HiddenTypes = &HiddenTypesBuffer;
1083 
1084     for (CXXRecordDecl::conversion_iterator I = ConvI; I != ConvE; ++I) {
1085       CanQualType ConvType(GetConversionType(Context, I.getDecl()));
1086       bool Hidden = ParentHiddenTypes.count(ConvType);
1087       if (!Hidden)
1088         HiddenTypesBuffer.insert(ConvType);
1089 
1090       // If this conversion is hidden and we're in a virtual base,
1091       // remember that it's hidden along some inheritance path.
1092       if (Hidden && InVirtual)
1093         HiddenVBaseCs.insert(cast<NamedDecl>(I.getDecl()->getCanonicalDecl()));
1094 
1095       // If this conversion isn't hidden, add it to the appropriate output.
1096       else if (!Hidden) {
1097         AccessSpecifier IAccess
1098           = CXXRecordDecl::MergeAccess(Access, I.getAccess());
1099 
1100         if (InVirtual)
1101           VOutput.addDecl(I.getDecl(), IAccess);
1102         else
1103           Output.addDecl(Context, I.getDecl(), IAccess);
1104       }
1105     }
1106   }
1107 
1108   // Collect information recursively from any base classes.
1109   for (const auto &I : Record->bases()) {
1110     const RecordType *RT = I.getType()->getAs<RecordType>();
1111     if (!RT) continue;
1112 
1113     AccessSpecifier BaseAccess
1114       = CXXRecordDecl::MergeAccess(Access, I.getAccessSpecifier());
1115     bool BaseInVirtual = InVirtual || I.isVirtual();
1116 
1117     CXXRecordDecl *Base = cast<CXXRecordDecl>(RT->getDecl());
1118     CollectVisibleConversions(Context, Base, BaseInVirtual, BaseAccess,
1119                               *HiddenTypes, Output, VOutput, HiddenVBaseCs);
1120   }
1121 }
1122 
1123 /// Collect the visible conversions of a class.
1124 ///
1125 /// This would be extremely straightforward if it weren't for virtual
1126 /// bases.  It might be worth special-casing that, really.
CollectVisibleConversions(ASTContext & Context,CXXRecordDecl * Record,ASTUnresolvedSet & Output)1127 static void CollectVisibleConversions(ASTContext &Context,
1128                                       CXXRecordDecl *Record,
1129                                       ASTUnresolvedSet &Output) {
1130   // The collection of all conversions in virtual bases that we've
1131   // found.  These will be added to the output as long as they don't
1132   // appear in the hidden-conversions set.
1133   UnresolvedSet<8> VBaseCs;
1134 
1135   // The set of conversions in virtual bases that we've determined to
1136   // be hidden.
1137   llvm::SmallPtrSet<NamedDecl*, 8> HiddenVBaseCs;
1138 
1139   // The set of types hidden by classes derived from this one.
1140   llvm::SmallPtrSet<CanQualType, 8> HiddenTypes;
1141 
1142   // Go ahead and collect the direct conversions and add them to the
1143   // hidden-types set.
1144   CXXRecordDecl::conversion_iterator ConvI = Record->conversion_begin();
1145   CXXRecordDecl::conversion_iterator ConvE = Record->conversion_end();
1146   Output.append(Context, ConvI, ConvE);
1147   for (; ConvI != ConvE; ++ConvI)
1148     HiddenTypes.insert(GetConversionType(Context, ConvI.getDecl()));
1149 
1150   // Recursively collect conversions from base classes.
1151   for (const auto &I : Record->bases()) {
1152     const RecordType *RT = I.getType()->getAs<RecordType>();
1153     if (!RT) continue;
1154 
1155     CollectVisibleConversions(Context, cast<CXXRecordDecl>(RT->getDecl()),
1156                               I.isVirtual(), I.getAccessSpecifier(),
1157                               HiddenTypes, Output, VBaseCs, HiddenVBaseCs);
1158   }
1159 
1160   // Add any unhidden conversions provided by virtual bases.
1161   for (UnresolvedSetIterator I = VBaseCs.begin(), E = VBaseCs.end();
1162          I != E; ++I) {
1163     if (!HiddenVBaseCs.count(cast<NamedDecl>(I.getDecl()->getCanonicalDecl())))
1164       Output.addDecl(Context, I.getDecl(), I.getAccess());
1165   }
1166 }
1167 
1168 /// getVisibleConversionFunctions - get all conversion functions visible
1169 /// in current class; including conversion function templates.
1170 llvm::iterator_range<CXXRecordDecl::conversion_iterator>
getVisibleConversionFunctions()1171 CXXRecordDecl::getVisibleConversionFunctions() {
1172   ASTContext &Ctx = getASTContext();
1173 
1174   ASTUnresolvedSet *Set;
1175   if (bases_begin() == bases_end()) {
1176     // If root class, all conversions are visible.
1177     Set = &data().Conversions.get(Ctx);
1178   } else {
1179     Set = &data().VisibleConversions.get(Ctx);
1180     // If visible conversion list is not evaluated, evaluate it.
1181     if (!data().ComputedVisibleConversions) {
1182       CollectVisibleConversions(Ctx, this, *Set);
1183       data().ComputedVisibleConversions = true;
1184     }
1185   }
1186   return llvm::make_range(Set->begin(), Set->end());
1187 }
1188 
removeConversion(const NamedDecl * ConvDecl)1189 void CXXRecordDecl::removeConversion(const NamedDecl *ConvDecl) {
1190   // This operation is O(N) but extremely rare.  Sema only uses it to
1191   // remove UsingShadowDecls in a class that were followed by a direct
1192   // declaration, e.g.:
1193   //   class A : B {
1194   //     using B::operator int;
1195   //     operator int();
1196   //   };
1197   // This is uncommon by itself and even more uncommon in conjunction
1198   // with sufficiently large numbers of directly-declared conversions
1199   // that asymptotic behavior matters.
1200 
1201   ASTUnresolvedSet &Convs = data().Conversions.get(getASTContext());
1202   for (unsigned I = 0, E = Convs.size(); I != E; ++I) {
1203     if (Convs[I].getDecl() == ConvDecl) {
1204       Convs.erase(I);
1205       assert(std::find(Convs.begin(), Convs.end(), ConvDecl) == Convs.end()
1206              && "conversion was found multiple times in unresolved set");
1207       return;
1208     }
1209   }
1210 
1211   llvm_unreachable("conversion not found in set!");
1212 }
1213 
getInstantiatedFromMemberClass() const1214 CXXRecordDecl *CXXRecordDecl::getInstantiatedFromMemberClass() const {
1215   if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo())
1216     return cast<CXXRecordDecl>(MSInfo->getInstantiatedFrom());
1217 
1218   return nullptr;
1219 }
1220 
1221 void
setInstantiationOfMemberClass(CXXRecordDecl * RD,TemplateSpecializationKind TSK)1222 CXXRecordDecl::setInstantiationOfMemberClass(CXXRecordDecl *RD,
1223                                              TemplateSpecializationKind TSK) {
1224   assert(TemplateOrInstantiation.isNull() &&
1225          "Previous template or instantiation?");
1226   assert(!isa<ClassTemplatePartialSpecializationDecl>(this));
1227   TemplateOrInstantiation
1228     = new (getASTContext()) MemberSpecializationInfo(RD, TSK);
1229 }
1230 
getTemplateSpecializationKind() const1231 TemplateSpecializationKind CXXRecordDecl::getTemplateSpecializationKind() const{
1232   if (const ClassTemplateSpecializationDecl *Spec
1233         = dyn_cast<ClassTemplateSpecializationDecl>(this))
1234     return Spec->getSpecializationKind();
1235 
1236   if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo())
1237     return MSInfo->getTemplateSpecializationKind();
1238 
1239   return TSK_Undeclared;
1240 }
1241 
1242 void
setTemplateSpecializationKind(TemplateSpecializationKind TSK)1243 CXXRecordDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK) {
1244   if (ClassTemplateSpecializationDecl *Spec
1245       = dyn_cast<ClassTemplateSpecializationDecl>(this)) {
1246     Spec->setSpecializationKind(TSK);
1247     return;
1248   }
1249 
1250   if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo()) {
1251     MSInfo->setTemplateSpecializationKind(TSK);
1252     return;
1253   }
1254 
1255   llvm_unreachable("Not a class template or member class specialization");
1256 }
1257 
getTemplateInstantiationPattern() const1258 const CXXRecordDecl *CXXRecordDecl::getTemplateInstantiationPattern() const {
1259   // If it's a class template specialization, find the template or partial
1260   // specialization from which it was instantiated.
1261   if (auto *TD = dyn_cast<ClassTemplateSpecializationDecl>(this)) {
1262     auto From = TD->getInstantiatedFrom();
1263     if (auto *CTD = From.dyn_cast<ClassTemplateDecl *>()) {
1264       while (auto *NewCTD = CTD->getInstantiatedFromMemberTemplate()) {
1265         if (NewCTD->isMemberSpecialization())
1266           break;
1267         CTD = NewCTD;
1268       }
1269       return CTD->getTemplatedDecl()->getDefinition();
1270     }
1271     if (auto *CTPSD =
1272             From.dyn_cast<ClassTemplatePartialSpecializationDecl *>()) {
1273       while (auto *NewCTPSD = CTPSD->getInstantiatedFromMember()) {
1274         if (NewCTPSD->isMemberSpecialization())
1275           break;
1276         CTPSD = NewCTPSD;
1277       }
1278       return CTPSD->getDefinition();
1279     }
1280   }
1281 
1282   if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo()) {
1283     if (isTemplateInstantiation(MSInfo->getTemplateSpecializationKind())) {
1284       const CXXRecordDecl *RD = this;
1285       while (auto *NewRD = RD->getInstantiatedFromMemberClass())
1286         RD = NewRD;
1287       return RD->getDefinition();
1288     }
1289   }
1290 
1291   assert(!isTemplateInstantiation(this->getTemplateSpecializationKind()) &&
1292          "couldn't find pattern for class template instantiation");
1293   return nullptr;
1294 }
1295 
getDestructor() const1296 CXXDestructorDecl *CXXRecordDecl::getDestructor() const {
1297   ASTContext &Context = getASTContext();
1298   QualType ClassType = Context.getTypeDeclType(this);
1299 
1300   DeclarationName Name
1301     = Context.DeclarationNames.getCXXDestructorName(
1302                                           Context.getCanonicalType(ClassType));
1303 
1304   DeclContext::lookup_result R = lookup(Name);
1305   if (R.empty())
1306     return nullptr;
1307 
1308   CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(R.front());
1309   return Dtor;
1310 }
1311 
isAnyDestructorNoReturn() const1312 bool CXXRecordDecl::isAnyDestructorNoReturn() const {
1313   // Destructor is noreturn.
1314   if (const CXXDestructorDecl *Destructor = getDestructor())
1315     if (Destructor->isNoReturn())
1316       return true;
1317 
1318   // Check base classes destructor for noreturn.
1319   for (const auto &Base : bases())
1320     if (Base.getType()->getAsCXXRecordDecl()->isAnyDestructorNoReturn())
1321       return true;
1322 
1323   // Check fields for noreturn.
1324   for (const auto *Field : fields())
1325     if (const CXXRecordDecl *RD =
1326             Field->getType()->getBaseElementTypeUnsafe()->getAsCXXRecordDecl())
1327       if (RD->isAnyDestructorNoReturn())
1328         return true;
1329 
1330   // All destructors are not noreturn.
1331   return false;
1332 }
1333 
completeDefinition()1334 void CXXRecordDecl::completeDefinition() {
1335   completeDefinition(nullptr);
1336 }
1337 
completeDefinition(CXXFinalOverriderMap * FinalOverriders)1338 void CXXRecordDecl::completeDefinition(CXXFinalOverriderMap *FinalOverriders) {
1339   RecordDecl::completeDefinition();
1340 
1341   // If the class may be abstract (but hasn't been marked as such), check for
1342   // any pure final overriders.
1343   if (mayBeAbstract()) {
1344     CXXFinalOverriderMap MyFinalOverriders;
1345     if (!FinalOverriders) {
1346       getFinalOverriders(MyFinalOverriders);
1347       FinalOverriders = &MyFinalOverriders;
1348     }
1349 
1350     bool Done = false;
1351     for (CXXFinalOverriderMap::iterator M = FinalOverriders->begin(),
1352                                      MEnd = FinalOverriders->end();
1353          M != MEnd && !Done; ++M) {
1354       for (OverridingMethods::iterator SO = M->second.begin(),
1355                                     SOEnd = M->second.end();
1356            SO != SOEnd && !Done; ++SO) {
1357         assert(SO->second.size() > 0 &&
1358                "All virtual functions have overridding virtual functions");
1359 
1360         // C++ [class.abstract]p4:
1361         //   A class is abstract if it contains or inherits at least one
1362         //   pure virtual function for which the final overrider is pure
1363         //   virtual.
1364         if (SO->second.front().Method->isPure()) {
1365           data().Abstract = true;
1366           Done = true;
1367           break;
1368         }
1369       }
1370     }
1371   }
1372 
1373   // Set access bits correctly on the directly-declared conversions.
1374   for (conversion_iterator I = conversion_begin(), E = conversion_end();
1375        I != E; ++I)
1376     I.setAccess((*I)->getAccess());
1377 }
1378 
mayBeAbstract() const1379 bool CXXRecordDecl::mayBeAbstract() const {
1380   if (data().Abstract || isInvalidDecl() || !data().Polymorphic ||
1381       isDependentContext())
1382     return false;
1383 
1384   for (const auto &B : bases()) {
1385     CXXRecordDecl *BaseDecl
1386       = cast<CXXRecordDecl>(B.getType()->getAs<RecordType>()->getDecl());
1387     if (BaseDecl->isAbstract())
1388       return true;
1389   }
1390 
1391   return false;
1392 }
1393 
anchor()1394 void CXXMethodDecl::anchor() { }
1395 
isStatic() const1396 bool CXXMethodDecl::isStatic() const {
1397   const CXXMethodDecl *MD = getCanonicalDecl();
1398 
1399   if (MD->getStorageClass() == SC_Static)
1400     return true;
1401 
1402   OverloadedOperatorKind OOK = getDeclName().getCXXOverloadedOperator();
1403   return isStaticOverloadedOperator(OOK);
1404 }
1405 
recursivelyOverrides(const CXXMethodDecl * DerivedMD,const CXXMethodDecl * BaseMD)1406 static bool recursivelyOverrides(const CXXMethodDecl *DerivedMD,
1407                                  const CXXMethodDecl *BaseMD) {
1408   for (CXXMethodDecl::method_iterator I = DerivedMD->begin_overridden_methods(),
1409          E = DerivedMD->end_overridden_methods(); I != E; ++I) {
1410     const CXXMethodDecl *MD = *I;
1411     if (MD->getCanonicalDecl() == BaseMD->getCanonicalDecl())
1412       return true;
1413     if (recursivelyOverrides(MD, BaseMD))
1414       return true;
1415   }
1416   return false;
1417 }
1418 
1419 CXXMethodDecl *
getCorrespondingMethodInClass(const CXXRecordDecl * RD,bool MayBeBase)1420 CXXMethodDecl::getCorrespondingMethodInClass(const CXXRecordDecl *RD,
1421                                              bool MayBeBase) {
1422   if (this->getParent()->getCanonicalDecl() == RD->getCanonicalDecl())
1423     return this;
1424 
1425   // Lookup doesn't work for destructors, so handle them separately.
1426   if (isa<CXXDestructorDecl>(this)) {
1427     CXXMethodDecl *MD = RD->getDestructor();
1428     if (MD) {
1429       if (recursivelyOverrides(MD, this))
1430         return MD;
1431       if (MayBeBase && recursivelyOverrides(this, MD))
1432         return MD;
1433     }
1434     return nullptr;
1435   }
1436 
1437   for (auto *ND : RD->lookup(getDeclName())) {
1438     CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(ND);
1439     if (!MD)
1440       continue;
1441     if (recursivelyOverrides(MD, this))
1442       return MD;
1443     if (MayBeBase && recursivelyOverrides(this, MD))
1444       return MD;
1445   }
1446 
1447   for (const auto &I : RD->bases()) {
1448     const RecordType *RT = I.getType()->getAs<RecordType>();
1449     if (!RT)
1450       continue;
1451     const CXXRecordDecl *Base = cast<CXXRecordDecl>(RT->getDecl());
1452     CXXMethodDecl *T = this->getCorrespondingMethodInClass(Base);
1453     if (T)
1454       return T;
1455   }
1456 
1457   return nullptr;
1458 }
1459 
1460 CXXMethodDecl *
Create(ASTContext & C,CXXRecordDecl * RD,SourceLocation StartLoc,const DeclarationNameInfo & NameInfo,QualType T,TypeSourceInfo * TInfo,StorageClass SC,bool isInline,bool isConstexpr,SourceLocation EndLocation)1461 CXXMethodDecl::Create(ASTContext &C, CXXRecordDecl *RD,
1462                       SourceLocation StartLoc,
1463                       const DeclarationNameInfo &NameInfo,
1464                       QualType T, TypeSourceInfo *TInfo,
1465                       StorageClass SC, bool isInline,
1466                       bool isConstexpr, SourceLocation EndLocation) {
1467   return new (C, RD) CXXMethodDecl(CXXMethod, C, RD, StartLoc, NameInfo,
1468                                    T, TInfo, SC, isInline, isConstexpr,
1469                                    EndLocation);
1470 }
1471 
CreateDeserialized(ASTContext & C,unsigned ID)1472 CXXMethodDecl *CXXMethodDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
1473   return new (C, ID) CXXMethodDecl(CXXMethod, C, nullptr, SourceLocation(),
1474                                    DeclarationNameInfo(), QualType(), nullptr,
1475                                    SC_None, false, false, SourceLocation());
1476 }
1477 
isUsualDeallocationFunction() const1478 bool CXXMethodDecl::isUsualDeallocationFunction() const {
1479   if (getOverloadedOperator() != OO_Delete &&
1480       getOverloadedOperator() != OO_Array_Delete)
1481     return false;
1482 
1483   // C++ [basic.stc.dynamic.deallocation]p2:
1484   //   A template instance is never a usual deallocation function,
1485   //   regardless of its signature.
1486   if (getPrimaryTemplate())
1487     return false;
1488 
1489   // C++ [basic.stc.dynamic.deallocation]p2:
1490   //   If a class T has a member deallocation function named operator delete
1491   //   with exactly one parameter, then that function is a usual (non-placement)
1492   //   deallocation function. [...]
1493   if (getNumParams() == 1)
1494     return true;
1495 
1496   // C++ [basic.stc.dynamic.deallocation]p2:
1497   //   [...] If class T does not declare such an operator delete but does
1498   //   declare a member deallocation function named operator delete with
1499   //   exactly two parameters, the second of which has type std::size_t (18.1),
1500   //   then this function is a usual deallocation function.
1501   ASTContext &Context = getASTContext();
1502   if (getNumParams() != 2 ||
1503       !Context.hasSameUnqualifiedType(getParamDecl(1)->getType(),
1504                                       Context.getSizeType()))
1505     return false;
1506 
1507   // This function is a usual deallocation function if there are no
1508   // single-parameter deallocation functions of the same kind.
1509   DeclContext::lookup_result R = getDeclContext()->lookup(getDeclName());
1510   for (DeclContext::lookup_result::iterator I = R.begin(), E = R.end();
1511        I != E; ++I) {
1512     if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(*I))
1513       if (FD->getNumParams() == 1)
1514         return false;
1515   }
1516 
1517   return true;
1518 }
1519 
isCopyAssignmentOperator() const1520 bool CXXMethodDecl::isCopyAssignmentOperator() const {
1521   // C++0x [class.copy]p17:
1522   //  A user-declared copy assignment operator X::operator= is a non-static
1523   //  non-template member function of class X with exactly one parameter of
1524   //  type X, X&, const X&, volatile X& or const volatile X&.
1525   if (/*operator=*/getOverloadedOperator() != OO_Equal ||
1526       /*non-static*/ isStatic() ||
1527       /*non-template*/getPrimaryTemplate() || getDescribedFunctionTemplate() ||
1528       getNumParams() != 1)
1529     return false;
1530 
1531   QualType ParamType = getParamDecl(0)->getType();
1532   if (const LValueReferenceType *Ref = ParamType->getAs<LValueReferenceType>())
1533     ParamType = Ref->getPointeeType();
1534 
1535   ASTContext &Context = getASTContext();
1536   QualType ClassType
1537     = Context.getCanonicalType(Context.getTypeDeclType(getParent()));
1538   return Context.hasSameUnqualifiedType(ClassType, ParamType);
1539 }
1540 
isMoveAssignmentOperator() const1541 bool CXXMethodDecl::isMoveAssignmentOperator() const {
1542   // C++0x [class.copy]p19:
1543   //  A user-declared move assignment operator X::operator= is a non-static
1544   //  non-template member function of class X with exactly one parameter of type
1545   //  X&&, const X&&, volatile X&&, or const volatile X&&.
1546   if (getOverloadedOperator() != OO_Equal || isStatic() ||
1547       getPrimaryTemplate() || getDescribedFunctionTemplate() ||
1548       getNumParams() != 1)
1549     return false;
1550 
1551   QualType ParamType = getParamDecl(0)->getType();
1552   if (!isa<RValueReferenceType>(ParamType))
1553     return false;
1554   ParamType = ParamType->getPointeeType();
1555 
1556   ASTContext &Context = getASTContext();
1557   QualType ClassType
1558     = Context.getCanonicalType(Context.getTypeDeclType(getParent()));
1559   return Context.hasSameUnqualifiedType(ClassType, ParamType);
1560 }
1561 
addOverriddenMethod(const CXXMethodDecl * MD)1562 void CXXMethodDecl::addOverriddenMethod(const CXXMethodDecl *MD) {
1563   assert(MD->isCanonicalDecl() && "Method is not canonical!");
1564   assert(!MD->getParent()->isDependentContext() &&
1565          "Can't add an overridden method to a class template!");
1566   assert(MD->isVirtual() && "Method is not virtual!");
1567 
1568   getASTContext().addOverriddenMethod(this, MD);
1569 }
1570 
begin_overridden_methods() const1571 CXXMethodDecl::method_iterator CXXMethodDecl::begin_overridden_methods() const {
1572   if (isa<CXXConstructorDecl>(this)) return nullptr;
1573   return getASTContext().overridden_methods_begin(this);
1574 }
1575 
end_overridden_methods() const1576 CXXMethodDecl::method_iterator CXXMethodDecl::end_overridden_methods() const {
1577   if (isa<CXXConstructorDecl>(this)) return nullptr;
1578   return getASTContext().overridden_methods_end(this);
1579 }
1580 
size_overridden_methods() const1581 unsigned CXXMethodDecl::size_overridden_methods() const {
1582   if (isa<CXXConstructorDecl>(this)) return 0;
1583   return getASTContext().overridden_methods_size(this);
1584 }
1585 
getThisType(ASTContext & C) const1586 QualType CXXMethodDecl::getThisType(ASTContext &C) const {
1587   // C++ 9.3.2p1: The type of this in a member function of a class X is X*.
1588   // If the member function is declared const, the type of this is const X*,
1589   // if the member function is declared volatile, the type of this is
1590   // volatile X*, and if the member function is declared const volatile,
1591   // the type of this is const volatile X*.
1592 
1593   assert(isInstance() && "No 'this' for static methods!");
1594 
1595   QualType ClassTy = C.getTypeDeclType(getParent());
1596   ClassTy = C.getQualifiedType(ClassTy,
1597                                Qualifiers::fromCVRMask(getTypeQualifiers()));
1598   return C.getPointerType(ClassTy);
1599 }
1600 
hasInlineBody() const1601 bool CXXMethodDecl::hasInlineBody() const {
1602   // If this function is a template instantiation, look at the template from
1603   // which it was instantiated.
1604   const FunctionDecl *CheckFn = getTemplateInstantiationPattern();
1605   if (!CheckFn)
1606     CheckFn = this;
1607 
1608   const FunctionDecl *fn;
1609   return CheckFn->hasBody(fn) && !fn->isOutOfLine();
1610 }
1611 
isLambdaStaticInvoker() const1612 bool CXXMethodDecl::isLambdaStaticInvoker() const {
1613   const CXXRecordDecl *P = getParent();
1614   if (P->isLambda()) {
1615     if (const CXXMethodDecl *StaticInvoker = P->getLambdaStaticInvoker()) {
1616       if (StaticInvoker == this) return true;
1617       if (P->isGenericLambda() && this->isFunctionTemplateSpecialization())
1618         return StaticInvoker == this->getPrimaryTemplate()->getTemplatedDecl();
1619     }
1620   }
1621   return false;
1622 }
1623 
CXXCtorInitializer(ASTContext & Context,TypeSourceInfo * TInfo,bool IsVirtual,SourceLocation L,Expr * Init,SourceLocation R,SourceLocation EllipsisLoc)1624 CXXCtorInitializer::CXXCtorInitializer(ASTContext &Context,
1625                                        TypeSourceInfo *TInfo, bool IsVirtual,
1626                                        SourceLocation L, Expr *Init,
1627                                        SourceLocation R,
1628                                        SourceLocation EllipsisLoc)
1629   : Initializee(TInfo), MemberOrEllipsisLocation(EllipsisLoc), Init(Init),
1630     LParenLoc(L), RParenLoc(R), IsDelegating(false), IsVirtual(IsVirtual),
1631     IsWritten(false), SourceOrderOrNumArrayIndices(0)
1632 {
1633 }
1634 
CXXCtorInitializer(ASTContext & Context,FieldDecl * Member,SourceLocation MemberLoc,SourceLocation L,Expr * Init,SourceLocation R)1635 CXXCtorInitializer::CXXCtorInitializer(ASTContext &Context,
1636                                        FieldDecl *Member,
1637                                        SourceLocation MemberLoc,
1638                                        SourceLocation L, Expr *Init,
1639                                        SourceLocation R)
1640   : Initializee(Member), MemberOrEllipsisLocation(MemberLoc), Init(Init),
1641     LParenLoc(L), RParenLoc(R), IsDelegating(false), IsVirtual(false),
1642     IsWritten(false), SourceOrderOrNumArrayIndices(0)
1643 {
1644 }
1645 
CXXCtorInitializer(ASTContext & Context,IndirectFieldDecl * Member,SourceLocation MemberLoc,SourceLocation L,Expr * Init,SourceLocation R)1646 CXXCtorInitializer::CXXCtorInitializer(ASTContext &Context,
1647                                        IndirectFieldDecl *Member,
1648                                        SourceLocation MemberLoc,
1649                                        SourceLocation L, Expr *Init,
1650                                        SourceLocation R)
1651   : Initializee(Member), MemberOrEllipsisLocation(MemberLoc), Init(Init),
1652     LParenLoc(L), RParenLoc(R), IsDelegating(false), IsVirtual(false),
1653     IsWritten(false), SourceOrderOrNumArrayIndices(0)
1654 {
1655 }
1656 
CXXCtorInitializer(ASTContext & Context,TypeSourceInfo * TInfo,SourceLocation L,Expr * Init,SourceLocation R)1657 CXXCtorInitializer::CXXCtorInitializer(ASTContext &Context,
1658                                        TypeSourceInfo *TInfo,
1659                                        SourceLocation L, Expr *Init,
1660                                        SourceLocation R)
1661   : Initializee(TInfo), MemberOrEllipsisLocation(), Init(Init),
1662     LParenLoc(L), RParenLoc(R), IsDelegating(true), IsVirtual(false),
1663     IsWritten(false), SourceOrderOrNumArrayIndices(0)
1664 {
1665 }
1666 
CXXCtorInitializer(ASTContext & Context,FieldDecl * Member,SourceLocation MemberLoc,SourceLocation L,Expr * Init,SourceLocation R,VarDecl ** Indices,unsigned NumIndices)1667 CXXCtorInitializer::CXXCtorInitializer(ASTContext &Context,
1668                                        FieldDecl *Member,
1669                                        SourceLocation MemberLoc,
1670                                        SourceLocation L, Expr *Init,
1671                                        SourceLocation R,
1672                                        VarDecl **Indices,
1673                                        unsigned NumIndices)
1674   : Initializee(Member), MemberOrEllipsisLocation(MemberLoc), Init(Init),
1675     LParenLoc(L), RParenLoc(R), IsDelegating(false), IsVirtual(false),
1676     IsWritten(false), SourceOrderOrNumArrayIndices(NumIndices)
1677 {
1678   VarDecl **MyIndices = reinterpret_cast<VarDecl **> (this + 1);
1679   memcpy(MyIndices, Indices, NumIndices * sizeof(VarDecl *));
1680 }
1681 
Create(ASTContext & Context,FieldDecl * Member,SourceLocation MemberLoc,SourceLocation L,Expr * Init,SourceLocation R,VarDecl ** Indices,unsigned NumIndices)1682 CXXCtorInitializer *CXXCtorInitializer::Create(ASTContext &Context,
1683                                                FieldDecl *Member,
1684                                                SourceLocation MemberLoc,
1685                                                SourceLocation L, Expr *Init,
1686                                                SourceLocation R,
1687                                                VarDecl **Indices,
1688                                                unsigned NumIndices) {
1689   void *Mem = Context.Allocate(sizeof(CXXCtorInitializer) +
1690                                sizeof(VarDecl *) * NumIndices,
1691                                llvm::alignOf<CXXCtorInitializer>());
1692   return new (Mem) CXXCtorInitializer(Context, Member, MemberLoc, L, Init, R,
1693                                       Indices, NumIndices);
1694 }
1695 
getBaseClassLoc() const1696 TypeLoc CXXCtorInitializer::getBaseClassLoc() const {
1697   if (isBaseInitializer())
1698     return Initializee.get<TypeSourceInfo*>()->getTypeLoc();
1699   else
1700     return TypeLoc();
1701 }
1702 
getBaseClass() const1703 const Type *CXXCtorInitializer::getBaseClass() const {
1704   if (isBaseInitializer())
1705     return Initializee.get<TypeSourceInfo*>()->getType().getTypePtr();
1706   else
1707     return nullptr;
1708 }
1709 
getSourceLocation() const1710 SourceLocation CXXCtorInitializer::getSourceLocation() const {
1711   if (isInClassMemberInitializer())
1712     return getAnyMember()->getLocation();
1713 
1714   if (isAnyMemberInitializer())
1715     return getMemberLocation();
1716 
1717   if (TypeSourceInfo *TSInfo = Initializee.get<TypeSourceInfo*>())
1718     return TSInfo->getTypeLoc().getLocalSourceRange().getBegin();
1719 
1720   return SourceLocation();
1721 }
1722 
getSourceRange() const1723 SourceRange CXXCtorInitializer::getSourceRange() const {
1724   if (isInClassMemberInitializer()) {
1725     FieldDecl *D = getAnyMember();
1726     if (Expr *I = D->getInClassInitializer())
1727       return I->getSourceRange();
1728     return SourceRange();
1729   }
1730 
1731   return SourceRange(getSourceLocation(), getRParenLoc());
1732 }
1733 
anchor()1734 void CXXConstructorDecl::anchor() { }
1735 
1736 CXXConstructorDecl *
CreateDeserialized(ASTContext & C,unsigned ID)1737 CXXConstructorDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
1738   return new (C, ID) CXXConstructorDecl(C, nullptr, SourceLocation(),
1739                                         DeclarationNameInfo(), QualType(),
1740                                         nullptr, false, false, false, false);
1741 }
1742 
1743 CXXConstructorDecl *
Create(ASTContext & C,CXXRecordDecl * RD,SourceLocation StartLoc,const DeclarationNameInfo & NameInfo,QualType T,TypeSourceInfo * TInfo,bool isExplicit,bool isInline,bool isImplicitlyDeclared,bool isConstexpr)1744 CXXConstructorDecl::Create(ASTContext &C, CXXRecordDecl *RD,
1745                            SourceLocation StartLoc,
1746                            const DeclarationNameInfo &NameInfo,
1747                            QualType T, TypeSourceInfo *TInfo,
1748                            bool isExplicit, bool isInline,
1749                            bool isImplicitlyDeclared, bool isConstexpr) {
1750   assert(NameInfo.getName().getNameKind()
1751          == DeclarationName::CXXConstructorName &&
1752          "Name must refer to a constructor");
1753   return new (C, RD) CXXConstructorDecl(C, RD, StartLoc, NameInfo, T, TInfo,
1754                                         isExplicit, isInline,
1755                                         isImplicitlyDeclared, isConstexpr);
1756 }
1757 
init_begin() const1758 CXXConstructorDecl::init_const_iterator CXXConstructorDecl::init_begin() const {
1759   return CtorInitializers.get(getASTContext().getExternalSource());
1760 }
1761 
getTargetConstructor() const1762 CXXConstructorDecl *CXXConstructorDecl::getTargetConstructor() const {
1763   assert(isDelegatingConstructor() && "Not a delegating constructor!");
1764   Expr *E = (*init_begin())->getInit()->IgnoreImplicit();
1765   if (CXXConstructExpr *Construct = dyn_cast<CXXConstructExpr>(E))
1766     return Construct->getConstructor();
1767 
1768   return nullptr;
1769 }
1770 
isDefaultConstructor() const1771 bool CXXConstructorDecl::isDefaultConstructor() const {
1772   // C++ [class.ctor]p5:
1773   //   A default constructor for a class X is a constructor of class
1774   //   X that can be called without an argument.
1775   return (getNumParams() == 0) ||
1776          (getNumParams() > 0 && getParamDecl(0)->hasDefaultArg());
1777 }
1778 
1779 bool
isCopyConstructor(unsigned & TypeQuals) const1780 CXXConstructorDecl::isCopyConstructor(unsigned &TypeQuals) const {
1781   return isCopyOrMoveConstructor(TypeQuals) &&
1782          getParamDecl(0)->getType()->isLValueReferenceType();
1783 }
1784 
isMoveConstructor(unsigned & TypeQuals) const1785 bool CXXConstructorDecl::isMoveConstructor(unsigned &TypeQuals) const {
1786   return isCopyOrMoveConstructor(TypeQuals) &&
1787     getParamDecl(0)->getType()->isRValueReferenceType();
1788 }
1789 
1790 /// \brief Determine whether this is a copy or move constructor.
isCopyOrMoveConstructor(unsigned & TypeQuals) const1791 bool CXXConstructorDecl::isCopyOrMoveConstructor(unsigned &TypeQuals) const {
1792   // C++ [class.copy]p2:
1793   //   A non-template constructor for class X is a copy constructor
1794   //   if its first parameter is of type X&, const X&, volatile X& or
1795   //   const volatile X&, and either there are no other parameters
1796   //   or else all other parameters have default arguments (8.3.6).
1797   // C++0x [class.copy]p3:
1798   //   A non-template constructor for class X is a move constructor if its
1799   //   first parameter is of type X&&, const X&&, volatile X&&, or
1800   //   const volatile X&&, and either there are no other parameters or else
1801   //   all other parameters have default arguments.
1802   if ((getNumParams() < 1) ||
1803       (getNumParams() > 1 && !getParamDecl(1)->hasDefaultArg()) ||
1804       (getPrimaryTemplate() != nullptr) ||
1805       (getDescribedFunctionTemplate() != nullptr))
1806     return false;
1807 
1808   const ParmVarDecl *Param = getParamDecl(0);
1809 
1810   // Do we have a reference type?
1811   const ReferenceType *ParamRefType = Param->getType()->getAs<ReferenceType>();
1812   if (!ParamRefType)
1813     return false;
1814 
1815   // Is it a reference to our class type?
1816   ASTContext &Context = getASTContext();
1817 
1818   CanQualType PointeeType
1819     = Context.getCanonicalType(ParamRefType->getPointeeType());
1820   CanQualType ClassTy
1821     = Context.getCanonicalType(Context.getTagDeclType(getParent()));
1822   if (PointeeType.getUnqualifiedType() != ClassTy)
1823     return false;
1824 
1825   // FIXME: other qualifiers?
1826 
1827   // We have a copy or move constructor.
1828   TypeQuals = PointeeType.getCVRQualifiers();
1829   return true;
1830 }
1831 
isConvertingConstructor(bool AllowExplicit) const1832 bool CXXConstructorDecl::isConvertingConstructor(bool AllowExplicit) const {
1833   // C++ [class.conv.ctor]p1:
1834   //   A constructor declared without the function-specifier explicit
1835   //   that can be called with a single parameter specifies a
1836   //   conversion from the type of its first parameter to the type of
1837   //   its class. Such a constructor is called a converting
1838   //   constructor.
1839   if (isExplicit() && !AllowExplicit)
1840     return false;
1841 
1842   return (getNumParams() == 0 &&
1843           getType()->getAs<FunctionProtoType>()->isVariadic()) ||
1844          (getNumParams() == 1) ||
1845          (getNumParams() > 1 &&
1846           (getParamDecl(1)->hasDefaultArg() ||
1847            getParamDecl(1)->isParameterPack()));
1848 }
1849 
isSpecializationCopyingObject() const1850 bool CXXConstructorDecl::isSpecializationCopyingObject() const {
1851   if ((getNumParams() < 1) ||
1852       (getNumParams() > 1 && !getParamDecl(1)->hasDefaultArg()) ||
1853       (getDescribedFunctionTemplate() != nullptr))
1854     return false;
1855 
1856   const ParmVarDecl *Param = getParamDecl(0);
1857 
1858   ASTContext &Context = getASTContext();
1859   CanQualType ParamType = Context.getCanonicalType(Param->getType());
1860 
1861   // Is it the same as our our class type?
1862   CanQualType ClassTy
1863     = Context.getCanonicalType(Context.getTagDeclType(getParent()));
1864   if (ParamType.getUnqualifiedType() != ClassTy)
1865     return false;
1866 
1867   return true;
1868 }
1869 
getInheritedConstructor() const1870 const CXXConstructorDecl *CXXConstructorDecl::getInheritedConstructor() const {
1871   // Hack: we store the inherited constructor in the overridden method table
1872   method_iterator It = getASTContext().overridden_methods_begin(this);
1873   if (It == getASTContext().overridden_methods_end(this))
1874     return nullptr;
1875 
1876   return cast<CXXConstructorDecl>(*It);
1877 }
1878 
1879 void
setInheritedConstructor(const CXXConstructorDecl * BaseCtor)1880 CXXConstructorDecl::setInheritedConstructor(const CXXConstructorDecl *BaseCtor){
1881   // Hack: we store the inherited constructor in the overridden method table
1882   assert(getASTContext().overridden_methods_size(this) == 0 &&
1883          "Base ctor already set.");
1884   getASTContext().addOverriddenMethod(this, BaseCtor);
1885 }
1886 
anchor()1887 void CXXDestructorDecl::anchor() { }
1888 
1889 CXXDestructorDecl *
CreateDeserialized(ASTContext & C,unsigned ID)1890 CXXDestructorDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
1891   return new (C, ID)
1892       CXXDestructorDecl(C, nullptr, SourceLocation(), DeclarationNameInfo(),
1893                         QualType(), nullptr, false, false);
1894 }
1895 
1896 CXXDestructorDecl *
Create(ASTContext & C,CXXRecordDecl * RD,SourceLocation StartLoc,const DeclarationNameInfo & NameInfo,QualType T,TypeSourceInfo * TInfo,bool isInline,bool isImplicitlyDeclared)1897 CXXDestructorDecl::Create(ASTContext &C, CXXRecordDecl *RD,
1898                           SourceLocation StartLoc,
1899                           const DeclarationNameInfo &NameInfo,
1900                           QualType T, TypeSourceInfo *TInfo,
1901                           bool isInline, bool isImplicitlyDeclared) {
1902   assert(NameInfo.getName().getNameKind()
1903          == DeclarationName::CXXDestructorName &&
1904          "Name must refer to a destructor");
1905   return new (C, RD) CXXDestructorDecl(C, RD, StartLoc, NameInfo, T, TInfo,
1906                                        isInline, isImplicitlyDeclared);
1907 }
1908 
setOperatorDelete(FunctionDecl * OD)1909 void CXXDestructorDecl::setOperatorDelete(FunctionDecl *OD) {
1910   auto *First = cast<CXXDestructorDecl>(getFirstDecl());
1911   if (OD && !First->OperatorDelete) {
1912     First->OperatorDelete = OD;
1913     if (auto *L = getASTMutationListener())
1914       L->ResolvedOperatorDelete(First, OD);
1915   }
1916 }
1917 
anchor()1918 void CXXConversionDecl::anchor() { }
1919 
1920 CXXConversionDecl *
CreateDeserialized(ASTContext & C,unsigned ID)1921 CXXConversionDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
1922   return new (C, ID) CXXConversionDecl(C, nullptr, SourceLocation(),
1923                                        DeclarationNameInfo(), QualType(),
1924                                        nullptr, false, false, false,
1925                                        SourceLocation());
1926 }
1927 
1928 CXXConversionDecl *
Create(ASTContext & C,CXXRecordDecl * RD,SourceLocation StartLoc,const DeclarationNameInfo & NameInfo,QualType T,TypeSourceInfo * TInfo,bool isInline,bool isExplicit,bool isConstexpr,SourceLocation EndLocation)1929 CXXConversionDecl::Create(ASTContext &C, CXXRecordDecl *RD,
1930                           SourceLocation StartLoc,
1931                           const DeclarationNameInfo &NameInfo,
1932                           QualType T, TypeSourceInfo *TInfo,
1933                           bool isInline, bool isExplicit,
1934                           bool isConstexpr, SourceLocation EndLocation) {
1935   assert(NameInfo.getName().getNameKind()
1936          == DeclarationName::CXXConversionFunctionName &&
1937          "Name must refer to a conversion function");
1938   return new (C, RD) CXXConversionDecl(C, RD, StartLoc, NameInfo, T, TInfo,
1939                                        isInline, isExplicit, isConstexpr,
1940                                        EndLocation);
1941 }
1942 
isLambdaToBlockPointerConversion() const1943 bool CXXConversionDecl::isLambdaToBlockPointerConversion() const {
1944   return isImplicit() && getParent()->isLambda() &&
1945          getConversionType()->isBlockPointerType();
1946 }
1947 
anchor()1948 void LinkageSpecDecl::anchor() { }
1949 
Create(ASTContext & C,DeclContext * DC,SourceLocation ExternLoc,SourceLocation LangLoc,LanguageIDs Lang,bool HasBraces)1950 LinkageSpecDecl *LinkageSpecDecl::Create(ASTContext &C,
1951                                          DeclContext *DC,
1952                                          SourceLocation ExternLoc,
1953                                          SourceLocation LangLoc,
1954                                          LanguageIDs Lang,
1955                                          bool HasBraces) {
1956   return new (C, DC) LinkageSpecDecl(DC, ExternLoc, LangLoc, Lang, HasBraces);
1957 }
1958 
CreateDeserialized(ASTContext & C,unsigned ID)1959 LinkageSpecDecl *LinkageSpecDecl::CreateDeserialized(ASTContext &C,
1960                                                      unsigned ID) {
1961   return new (C, ID) LinkageSpecDecl(nullptr, SourceLocation(),
1962                                      SourceLocation(), lang_c, false);
1963 }
1964 
anchor()1965 void UsingDirectiveDecl::anchor() { }
1966 
Create(ASTContext & C,DeclContext * DC,SourceLocation L,SourceLocation NamespaceLoc,NestedNameSpecifierLoc QualifierLoc,SourceLocation IdentLoc,NamedDecl * Used,DeclContext * CommonAncestor)1967 UsingDirectiveDecl *UsingDirectiveDecl::Create(ASTContext &C, DeclContext *DC,
1968                                                SourceLocation L,
1969                                                SourceLocation NamespaceLoc,
1970                                            NestedNameSpecifierLoc QualifierLoc,
1971                                                SourceLocation IdentLoc,
1972                                                NamedDecl *Used,
1973                                                DeclContext *CommonAncestor) {
1974   if (NamespaceDecl *NS = dyn_cast_or_null<NamespaceDecl>(Used))
1975     Used = NS->getOriginalNamespace();
1976   return new (C, DC) UsingDirectiveDecl(DC, L, NamespaceLoc, QualifierLoc,
1977                                         IdentLoc, Used, CommonAncestor);
1978 }
1979 
CreateDeserialized(ASTContext & C,unsigned ID)1980 UsingDirectiveDecl *UsingDirectiveDecl::CreateDeserialized(ASTContext &C,
1981                                                            unsigned ID) {
1982   return new (C, ID) UsingDirectiveDecl(nullptr, SourceLocation(),
1983                                         SourceLocation(),
1984                                         NestedNameSpecifierLoc(),
1985                                         SourceLocation(), nullptr, nullptr);
1986 }
1987 
getNominatedNamespace()1988 NamespaceDecl *UsingDirectiveDecl::getNominatedNamespace() {
1989   if (NamespaceAliasDecl *NA =
1990         dyn_cast_or_null<NamespaceAliasDecl>(NominatedNamespace))
1991     return NA->getNamespace();
1992   return cast_or_null<NamespaceDecl>(NominatedNamespace);
1993 }
1994 
NamespaceDecl(ASTContext & C,DeclContext * DC,bool Inline,SourceLocation StartLoc,SourceLocation IdLoc,IdentifierInfo * Id,NamespaceDecl * PrevDecl)1995 NamespaceDecl::NamespaceDecl(ASTContext &C, DeclContext *DC, bool Inline,
1996                              SourceLocation StartLoc, SourceLocation IdLoc,
1997                              IdentifierInfo *Id, NamespaceDecl *PrevDecl)
1998     : NamedDecl(Namespace, DC, IdLoc, Id), DeclContext(Namespace),
1999       redeclarable_base(C), LocStart(StartLoc), RBraceLoc(),
2000       AnonOrFirstNamespaceAndInline(nullptr, Inline) {
2001   setPreviousDecl(PrevDecl);
2002 
2003   if (PrevDecl)
2004     AnonOrFirstNamespaceAndInline.setPointer(PrevDecl->getOriginalNamespace());
2005 }
2006 
Create(ASTContext & C,DeclContext * DC,bool Inline,SourceLocation StartLoc,SourceLocation IdLoc,IdentifierInfo * Id,NamespaceDecl * PrevDecl)2007 NamespaceDecl *NamespaceDecl::Create(ASTContext &C, DeclContext *DC,
2008                                      bool Inline, SourceLocation StartLoc,
2009                                      SourceLocation IdLoc, IdentifierInfo *Id,
2010                                      NamespaceDecl *PrevDecl) {
2011   return new (C, DC) NamespaceDecl(C, DC, Inline, StartLoc, IdLoc, Id,
2012                                    PrevDecl);
2013 }
2014 
CreateDeserialized(ASTContext & C,unsigned ID)2015 NamespaceDecl *NamespaceDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
2016   return new (C, ID) NamespaceDecl(C, nullptr, false, SourceLocation(),
2017                                    SourceLocation(), nullptr, nullptr);
2018 }
2019 
getNextRedeclarationImpl()2020 NamespaceDecl *NamespaceDecl::getNextRedeclarationImpl() {
2021   return getNextRedeclaration();
2022 }
getPreviousDeclImpl()2023 NamespaceDecl *NamespaceDecl::getPreviousDeclImpl() {
2024   return getPreviousDecl();
2025 }
getMostRecentDeclImpl()2026 NamespaceDecl *NamespaceDecl::getMostRecentDeclImpl() {
2027   return getMostRecentDecl();
2028 }
2029 
anchor()2030 void NamespaceAliasDecl::anchor() { }
2031 
getNextRedeclarationImpl()2032 NamespaceAliasDecl *NamespaceAliasDecl::getNextRedeclarationImpl() {
2033   return getNextRedeclaration();
2034 }
getPreviousDeclImpl()2035 NamespaceAliasDecl *NamespaceAliasDecl::getPreviousDeclImpl() {
2036   return getPreviousDecl();
2037 }
getMostRecentDeclImpl()2038 NamespaceAliasDecl *NamespaceAliasDecl::getMostRecentDeclImpl() {
2039   return getMostRecentDecl();
2040 }
2041 
Create(ASTContext & C,DeclContext * DC,SourceLocation UsingLoc,SourceLocation AliasLoc,IdentifierInfo * Alias,NestedNameSpecifierLoc QualifierLoc,SourceLocation IdentLoc,NamedDecl * Namespace)2042 NamespaceAliasDecl *NamespaceAliasDecl::Create(ASTContext &C, DeclContext *DC,
2043                                                SourceLocation UsingLoc,
2044                                                SourceLocation AliasLoc,
2045                                                IdentifierInfo *Alias,
2046                                            NestedNameSpecifierLoc QualifierLoc,
2047                                                SourceLocation IdentLoc,
2048                                                NamedDecl *Namespace) {
2049   // FIXME: Preserve the aliased namespace as written.
2050   if (NamespaceDecl *NS = dyn_cast_or_null<NamespaceDecl>(Namespace))
2051     Namespace = NS->getOriginalNamespace();
2052   return new (C, DC) NamespaceAliasDecl(C, DC, UsingLoc, AliasLoc, Alias,
2053                                         QualifierLoc, IdentLoc, Namespace);
2054 }
2055 
2056 NamespaceAliasDecl *
CreateDeserialized(ASTContext & C,unsigned ID)2057 NamespaceAliasDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
2058   return new (C, ID) NamespaceAliasDecl(C, nullptr, SourceLocation(),
2059                                         SourceLocation(), nullptr,
2060                                         NestedNameSpecifierLoc(),
2061                                         SourceLocation(), nullptr);
2062 }
2063 
anchor()2064 void UsingShadowDecl::anchor() { }
2065 
2066 UsingShadowDecl *
CreateDeserialized(ASTContext & C,unsigned ID)2067 UsingShadowDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
2068   return new (C, ID) UsingShadowDecl(C, nullptr, SourceLocation(),
2069                                      nullptr, nullptr);
2070 }
2071 
getUsingDecl() const2072 UsingDecl *UsingShadowDecl::getUsingDecl() const {
2073   const UsingShadowDecl *Shadow = this;
2074   while (const UsingShadowDecl *NextShadow =
2075          dyn_cast<UsingShadowDecl>(Shadow->UsingOrNextShadow))
2076     Shadow = NextShadow;
2077   return cast<UsingDecl>(Shadow->UsingOrNextShadow);
2078 }
2079 
anchor()2080 void UsingDecl::anchor() { }
2081 
addShadowDecl(UsingShadowDecl * S)2082 void UsingDecl::addShadowDecl(UsingShadowDecl *S) {
2083   assert(std::find(shadow_begin(), shadow_end(), S) == shadow_end() &&
2084          "declaration already in set");
2085   assert(S->getUsingDecl() == this);
2086 
2087   if (FirstUsingShadow.getPointer())
2088     S->UsingOrNextShadow = FirstUsingShadow.getPointer();
2089   FirstUsingShadow.setPointer(S);
2090 }
2091 
removeShadowDecl(UsingShadowDecl * S)2092 void UsingDecl::removeShadowDecl(UsingShadowDecl *S) {
2093   assert(std::find(shadow_begin(), shadow_end(), S) != shadow_end() &&
2094          "declaration not in set");
2095   assert(S->getUsingDecl() == this);
2096 
2097   // Remove S from the shadow decl chain. This is O(n) but hopefully rare.
2098 
2099   if (FirstUsingShadow.getPointer() == S) {
2100     FirstUsingShadow.setPointer(
2101       dyn_cast<UsingShadowDecl>(S->UsingOrNextShadow));
2102     S->UsingOrNextShadow = this;
2103     return;
2104   }
2105 
2106   UsingShadowDecl *Prev = FirstUsingShadow.getPointer();
2107   while (Prev->UsingOrNextShadow != S)
2108     Prev = cast<UsingShadowDecl>(Prev->UsingOrNextShadow);
2109   Prev->UsingOrNextShadow = S->UsingOrNextShadow;
2110   S->UsingOrNextShadow = this;
2111 }
2112 
Create(ASTContext & C,DeclContext * DC,SourceLocation UL,NestedNameSpecifierLoc QualifierLoc,const DeclarationNameInfo & NameInfo,bool HasTypename)2113 UsingDecl *UsingDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation UL,
2114                              NestedNameSpecifierLoc QualifierLoc,
2115                              const DeclarationNameInfo &NameInfo,
2116                              bool HasTypename) {
2117   return new (C, DC) UsingDecl(DC, UL, QualifierLoc, NameInfo, HasTypename);
2118 }
2119 
CreateDeserialized(ASTContext & C,unsigned ID)2120 UsingDecl *UsingDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
2121   return new (C, ID) UsingDecl(nullptr, SourceLocation(),
2122                                NestedNameSpecifierLoc(), DeclarationNameInfo(),
2123                                false);
2124 }
2125 
getSourceRange() const2126 SourceRange UsingDecl::getSourceRange() const {
2127   SourceLocation Begin = isAccessDeclaration()
2128     ? getQualifierLoc().getBeginLoc() : UsingLocation;
2129   return SourceRange(Begin, getNameInfo().getEndLoc());
2130 }
2131 
anchor()2132 void UnresolvedUsingValueDecl::anchor() { }
2133 
2134 UnresolvedUsingValueDecl *
Create(ASTContext & C,DeclContext * DC,SourceLocation UsingLoc,NestedNameSpecifierLoc QualifierLoc,const DeclarationNameInfo & NameInfo)2135 UnresolvedUsingValueDecl::Create(ASTContext &C, DeclContext *DC,
2136                                  SourceLocation UsingLoc,
2137                                  NestedNameSpecifierLoc QualifierLoc,
2138                                  const DeclarationNameInfo &NameInfo) {
2139   return new (C, DC) UnresolvedUsingValueDecl(DC, C.DependentTy, UsingLoc,
2140                                               QualifierLoc, NameInfo);
2141 }
2142 
2143 UnresolvedUsingValueDecl *
CreateDeserialized(ASTContext & C,unsigned ID)2144 UnresolvedUsingValueDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
2145   return new (C, ID) UnresolvedUsingValueDecl(nullptr, QualType(),
2146                                               SourceLocation(),
2147                                               NestedNameSpecifierLoc(),
2148                                               DeclarationNameInfo());
2149 }
2150 
getSourceRange() const2151 SourceRange UnresolvedUsingValueDecl::getSourceRange() const {
2152   SourceLocation Begin = isAccessDeclaration()
2153     ? getQualifierLoc().getBeginLoc() : UsingLocation;
2154   return SourceRange(Begin, getNameInfo().getEndLoc());
2155 }
2156 
anchor()2157 void UnresolvedUsingTypenameDecl::anchor() { }
2158 
2159 UnresolvedUsingTypenameDecl *
Create(ASTContext & C,DeclContext * DC,SourceLocation UsingLoc,SourceLocation TypenameLoc,NestedNameSpecifierLoc QualifierLoc,SourceLocation TargetNameLoc,DeclarationName TargetName)2160 UnresolvedUsingTypenameDecl::Create(ASTContext &C, DeclContext *DC,
2161                                     SourceLocation UsingLoc,
2162                                     SourceLocation TypenameLoc,
2163                                     NestedNameSpecifierLoc QualifierLoc,
2164                                     SourceLocation TargetNameLoc,
2165                                     DeclarationName TargetName) {
2166   return new (C, DC) UnresolvedUsingTypenameDecl(
2167       DC, UsingLoc, TypenameLoc, QualifierLoc, TargetNameLoc,
2168       TargetName.getAsIdentifierInfo());
2169 }
2170 
2171 UnresolvedUsingTypenameDecl *
CreateDeserialized(ASTContext & C,unsigned ID)2172 UnresolvedUsingTypenameDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
2173   return new (C, ID) UnresolvedUsingTypenameDecl(
2174       nullptr, SourceLocation(), SourceLocation(), NestedNameSpecifierLoc(),
2175       SourceLocation(), nullptr);
2176 }
2177 
anchor()2178 void StaticAssertDecl::anchor() { }
2179 
Create(ASTContext & C,DeclContext * DC,SourceLocation StaticAssertLoc,Expr * AssertExpr,StringLiteral * Message,SourceLocation RParenLoc,bool Failed)2180 StaticAssertDecl *StaticAssertDecl::Create(ASTContext &C, DeclContext *DC,
2181                                            SourceLocation StaticAssertLoc,
2182                                            Expr *AssertExpr,
2183                                            StringLiteral *Message,
2184                                            SourceLocation RParenLoc,
2185                                            bool Failed) {
2186   return new (C, DC) StaticAssertDecl(DC, StaticAssertLoc, AssertExpr, Message,
2187                                       RParenLoc, Failed);
2188 }
2189 
CreateDeserialized(ASTContext & C,unsigned ID)2190 StaticAssertDecl *StaticAssertDecl::CreateDeserialized(ASTContext &C,
2191                                                        unsigned ID) {
2192   return new (C, ID) StaticAssertDecl(nullptr, SourceLocation(), nullptr,
2193                                       nullptr, SourceLocation(), false);
2194 }
2195 
Create(ASTContext & C,DeclContext * DC,SourceLocation L,DeclarationName N,QualType T,TypeSourceInfo * TInfo,SourceLocation StartL,IdentifierInfo * Getter,IdentifierInfo * Setter)2196 MSPropertyDecl *MSPropertyDecl::Create(ASTContext &C, DeclContext *DC,
2197                                        SourceLocation L, DeclarationName N,
2198                                        QualType T, TypeSourceInfo *TInfo,
2199                                        SourceLocation StartL,
2200                                        IdentifierInfo *Getter,
2201                                        IdentifierInfo *Setter) {
2202   return new (C, DC) MSPropertyDecl(DC, L, N, T, TInfo, StartL, Getter, Setter);
2203 }
2204 
CreateDeserialized(ASTContext & C,unsigned ID)2205 MSPropertyDecl *MSPropertyDecl::CreateDeserialized(ASTContext &C,
2206                                                    unsigned ID) {
2207   return new (C, ID) MSPropertyDecl(nullptr, SourceLocation(),
2208                                     DeclarationName(), QualType(), nullptr,
2209                                     SourceLocation(), nullptr, nullptr);
2210 }
2211 
getAccessName(AccessSpecifier AS)2212 static const char *getAccessName(AccessSpecifier AS) {
2213   switch (AS) {
2214     case AS_none:
2215       llvm_unreachable("Invalid access specifier!");
2216     case AS_public:
2217       return "public";
2218     case AS_private:
2219       return "private";
2220     case AS_protected:
2221       return "protected";
2222   }
2223   llvm_unreachable("Invalid access specifier!");
2224 }
2225 
operator <<(const DiagnosticBuilder & DB,AccessSpecifier AS)2226 const DiagnosticBuilder &clang::operator<<(const DiagnosticBuilder &DB,
2227                                            AccessSpecifier AS) {
2228   return DB << getAccessName(AS);
2229 }
2230 
operator <<(const PartialDiagnostic & DB,AccessSpecifier AS)2231 const PartialDiagnostic &clang::operator<<(const PartialDiagnostic &DB,
2232                                            AccessSpecifier AS) {
2233   return DB << getAccessName(AS);
2234 }
2235