1 //===--- CGExprAgg.cpp - Emit LLVM Code from Aggregate Expressions --------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Aggregate Expr nodes as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "CodeGenFunction.h"
15 #include "CGObjCRuntime.h"
16 #include "CodeGenModule.h"
17 #include "clang/AST/ASTContext.h"
18 #include "clang/AST/DeclCXX.h"
19 #include "clang/AST/DeclTemplate.h"
20 #include "clang/AST/StmtVisitor.h"
21 #include "llvm/IR/Constants.h"
22 #include "llvm/IR/Function.h"
23 #include "llvm/IR/GlobalVariable.h"
24 #include "llvm/IR/Intrinsics.h"
25 using namespace clang;
26 using namespace CodeGen;
27
28 //===----------------------------------------------------------------------===//
29 // Aggregate Expression Emitter
30 //===----------------------------------------------------------------------===//
31
32 namespace {
33 class AggExprEmitter : public StmtVisitor<AggExprEmitter> {
34 CodeGenFunction &CGF;
35 CGBuilderTy &Builder;
36 AggValueSlot Dest;
37 bool IsResultUnused;
38
39 /// We want to use 'dest' as the return slot except under two
40 /// conditions:
41 /// - The destination slot requires garbage collection, so we
42 /// need to use the GC API.
43 /// - The destination slot is potentially aliased.
shouldUseDestForReturnSlot() const44 bool shouldUseDestForReturnSlot() const {
45 return !(Dest.requiresGCollection() || Dest.isPotentiallyAliased());
46 }
47
getReturnValueSlot() const48 ReturnValueSlot getReturnValueSlot() const {
49 if (!shouldUseDestForReturnSlot())
50 return ReturnValueSlot();
51
52 return ReturnValueSlot(Dest.getAddress(), Dest.isVolatile(),
53 IsResultUnused);
54 }
55
EnsureSlot(QualType T)56 AggValueSlot EnsureSlot(QualType T) {
57 if (!Dest.isIgnored()) return Dest;
58 return CGF.CreateAggTemp(T, "agg.tmp.ensured");
59 }
EnsureDest(QualType T)60 void EnsureDest(QualType T) {
61 if (!Dest.isIgnored()) return;
62 Dest = CGF.CreateAggTemp(T, "agg.tmp.ensured");
63 }
64
65 public:
AggExprEmitter(CodeGenFunction & cgf,AggValueSlot Dest,bool IsResultUnused)66 AggExprEmitter(CodeGenFunction &cgf, AggValueSlot Dest, bool IsResultUnused)
67 : CGF(cgf), Builder(CGF.Builder), Dest(Dest),
68 IsResultUnused(IsResultUnused) { }
69
70 //===--------------------------------------------------------------------===//
71 // Utilities
72 //===--------------------------------------------------------------------===//
73
74 /// EmitAggLoadOfLValue - Given an expression with aggregate type that
75 /// represents a value lvalue, this method emits the address of the lvalue,
76 /// then loads the result into DestPtr.
77 void EmitAggLoadOfLValue(const Expr *E);
78
79 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
80 void EmitFinalDestCopy(QualType type, const LValue &src);
81 void EmitFinalDestCopy(QualType type, RValue src);
82 void EmitCopy(QualType type, const AggValueSlot &dest,
83 const AggValueSlot &src);
84
85 void EmitMoveFromReturnSlot(const Expr *E, RValue Src);
86
87 void EmitArrayInit(Address DestPtr, llvm::ArrayType *AType,
88 QualType elementType, InitListExpr *E);
89
needsGC(QualType T)90 AggValueSlot::NeedsGCBarriers_t needsGC(QualType T) {
91 if (CGF.getLangOpts().getGC() && TypeRequiresGCollection(T))
92 return AggValueSlot::NeedsGCBarriers;
93 return AggValueSlot::DoesNotNeedGCBarriers;
94 }
95
96 bool TypeRequiresGCollection(QualType T);
97
98 //===--------------------------------------------------------------------===//
99 // Visitor Methods
100 //===--------------------------------------------------------------------===//
101
Visit(Expr * E)102 void Visit(Expr *E) {
103 ApplyDebugLocation DL(CGF, E);
104 StmtVisitor<AggExprEmitter>::Visit(E);
105 }
106
VisitStmt(Stmt * S)107 void VisitStmt(Stmt *S) {
108 CGF.ErrorUnsupported(S, "aggregate expression");
109 }
VisitParenExpr(ParenExpr * PE)110 void VisitParenExpr(ParenExpr *PE) { Visit(PE->getSubExpr()); }
VisitGenericSelectionExpr(GenericSelectionExpr * GE)111 void VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
112 Visit(GE->getResultExpr());
113 }
VisitUnaryExtension(UnaryOperator * E)114 void VisitUnaryExtension(UnaryOperator *E) { Visit(E->getSubExpr()); }
VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr * E)115 void VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) {
116 return Visit(E->getReplacement());
117 }
118
119 // l-values.
VisitDeclRefExpr(DeclRefExpr * E)120 void VisitDeclRefExpr(DeclRefExpr *E) {
121 // For aggregates, we should always be able to emit the variable
122 // as an l-value unless it's a reference. This is due to the fact
123 // that we can't actually ever see a normal l2r conversion on an
124 // aggregate in C++, and in C there's no language standard
125 // actively preventing us from listing variables in the captures
126 // list of a block.
127 if (E->getDecl()->getType()->isReferenceType()) {
128 if (CodeGenFunction::ConstantEmission result
129 = CGF.tryEmitAsConstant(E)) {
130 EmitFinalDestCopy(E->getType(), result.getReferenceLValue(CGF, E));
131 return;
132 }
133 }
134
135 EmitAggLoadOfLValue(E);
136 }
137
VisitMemberExpr(MemberExpr * ME)138 void VisitMemberExpr(MemberExpr *ME) { EmitAggLoadOfLValue(ME); }
VisitUnaryDeref(UnaryOperator * E)139 void VisitUnaryDeref(UnaryOperator *E) { EmitAggLoadOfLValue(E); }
VisitStringLiteral(StringLiteral * E)140 void VisitStringLiteral(StringLiteral *E) { EmitAggLoadOfLValue(E); }
141 void VisitCompoundLiteralExpr(CompoundLiteralExpr *E);
VisitArraySubscriptExpr(ArraySubscriptExpr * E)142 void VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
143 EmitAggLoadOfLValue(E);
144 }
VisitPredefinedExpr(const PredefinedExpr * E)145 void VisitPredefinedExpr(const PredefinedExpr *E) {
146 EmitAggLoadOfLValue(E);
147 }
148
149 // Operators.
150 void VisitCastExpr(CastExpr *E);
151 void VisitCallExpr(const CallExpr *E);
152 void VisitStmtExpr(const StmtExpr *E);
153 void VisitBinaryOperator(const BinaryOperator *BO);
154 void VisitPointerToDataMemberBinaryOperator(const BinaryOperator *BO);
155 void VisitBinAssign(const BinaryOperator *E);
156 void VisitBinComma(const BinaryOperator *E);
157
158 void VisitObjCMessageExpr(ObjCMessageExpr *E);
VisitObjCIvarRefExpr(ObjCIvarRefExpr * E)159 void VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
160 EmitAggLoadOfLValue(E);
161 }
162
163 void VisitDesignatedInitUpdateExpr(DesignatedInitUpdateExpr *E);
164 void VisitAbstractConditionalOperator(const AbstractConditionalOperator *CO);
165 void VisitChooseExpr(const ChooseExpr *CE);
166 void VisitInitListExpr(InitListExpr *E);
167 void VisitImplicitValueInitExpr(ImplicitValueInitExpr *E);
VisitNoInitExpr(NoInitExpr * E)168 void VisitNoInitExpr(NoInitExpr *E) { } // Do nothing.
VisitCXXDefaultArgExpr(CXXDefaultArgExpr * DAE)169 void VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
170 Visit(DAE->getExpr());
171 }
VisitCXXDefaultInitExpr(CXXDefaultInitExpr * DIE)172 void VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) {
173 CodeGenFunction::CXXDefaultInitExprScope Scope(CGF);
174 Visit(DIE->getExpr());
175 }
176 void VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E);
177 void VisitCXXConstructExpr(const CXXConstructExpr *E);
178 void VisitLambdaExpr(LambdaExpr *E);
179 void VisitCXXStdInitializerListExpr(CXXStdInitializerListExpr *E);
180 void VisitExprWithCleanups(ExprWithCleanups *E);
181 void VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E);
VisitCXXTypeidExpr(CXXTypeidExpr * E)182 void VisitCXXTypeidExpr(CXXTypeidExpr *E) { EmitAggLoadOfLValue(E); }
183 void VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E);
184 void VisitOpaqueValueExpr(OpaqueValueExpr *E);
185
VisitPseudoObjectExpr(PseudoObjectExpr * E)186 void VisitPseudoObjectExpr(PseudoObjectExpr *E) {
187 if (E->isGLValue()) {
188 LValue LV = CGF.EmitPseudoObjectLValue(E);
189 return EmitFinalDestCopy(E->getType(), LV);
190 }
191
192 CGF.EmitPseudoObjectRValue(E, EnsureSlot(E->getType()));
193 }
194
195 void VisitVAArgExpr(VAArgExpr *E);
196
197 void EmitInitializationToLValue(Expr *E, LValue Address);
198 void EmitNullInitializationToLValue(LValue Address);
199 // case Expr::ChooseExprClass:
VisitCXXThrowExpr(const CXXThrowExpr * E)200 void VisitCXXThrowExpr(const CXXThrowExpr *E) { CGF.EmitCXXThrowExpr(E); }
VisitAtomicExpr(AtomicExpr * E)201 void VisitAtomicExpr(AtomicExpr *E) {
202 RValue Res = CGF.EmitAtomicExpr(E);
203 EmitFinalDestCopy(E->getType(), Res);
204 }
205 };
206 } // end anonymous namespace.
207
208 //===----------------------------------------------------------------------===//
209 // Utilities
210 //===----------------------------------------------------------------------===//
211
212 /// EmitAggLoadOfLValue - Given an expression with aggregate type that
213 /// represents a value lvalue, this method emits the address of the lvalue,
214 /// then loads the result into DestPtr.
EmitAggLoadOfLValue(const Expr * E)215 void AggExprEmitter::EmitAggLoadOfLValue(const Expr *E) {
216 LValue LV = CGF.EmitLValue(E);
217
218 // If the type of the l-value is atomic, then do an atomic load.
219 if (LV.getType()->isAtomicType() || CGF.LValueIsSuitableForInlineAtomic(LV)) {
220 CGF.EmitAtomicLoad(LV, E->getExprLoc(), Dest);
221 return;
222 }
223
224 EmitFinalDestCopy(E->getType(), LV);
225 }
226
227 /// \brief True if the given aggregate type requires special GC API calls.
TypeRequiresGCollection(QualType T)228 bool AggExprEmitter::TypeRequiresGCollection(QualType T) {
229 // Only record types have members that might require garbage collection.
230 const RecordType *RecordTy = T->getAs<RecordType>();
231 if (!RecordTy) return false;
232
233 // Don't mess with non-trivial C++ types.
234 RecordDecl *Record = RecordTy->getDecl();
235 if (isa<CXXRecordDecl>(Record) &&
236 (cast<CXXRecordDecl>(Record)->hasNonTrivialCopyConstructor() ||
237 !cast<CXXRecordDecl>(Record)->hasTrivialDestructor()))
238 return false;
239
240 // Check whether the type has an object member.
241 return Record->hasObjectMember();
242 }
243
244 /// \brief Perform the final move to DestPtr if for some reason
245 /// getReturnValueSlot() didn't use it directly.
246 ///
247 /// The idea is that you do something like this:
248 /// RValue Result = EmitSomething(..., getReturnValueSlot());
249 /// EmitMoveFromReturnSlot(E, Result);
250 ///
251 /// If nothing interferes, this will cause the result to be emitted
252 /// directly into the return value slot. Otherwise, a final move
253 /// will be performed.
EmitMoveFromReturnSlot(const Expr * E,RValue src)254 void AggExprEmitter::EmitMoveFromReturnSlot(const Expr *E, RValue src) {
255 if (shouldUseDestForReturnSlot()) {
256 // Logically, Dest.getAddr() should equal Src.getAggregateAddr().
257 // The possibility of undef rvalues complicates that a lot,
258 // though, so we can't really assert.
259 return;
260 }
261
262 // Otherwise, copy from there to the destination.
263 assert(Dest.getPointer() != src.getAggregatePointer());
264 EmitFinalDestCopy(E->getType(), src);
265 }
266
267 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
EmitFinalDestCopy(QualType type,RValue src)268 void AggExprEmitter::EmitFinalDestCopy(QualType type, RValue src) {
269 assert(src.isAggregate() && "value must be aggregate value!");
270 LValue srcLV = CGF.MakeAddrLValue(src.getAggregateAddress(), type);
271 EmitFinalDestCopy(type, srcLV);
272 }
273
274 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
EmitFinalDestCopy(QualType type,const LValue & src)275 void AggExprEmitter::EmitFinalDestCopy(QualType type, const LValue &src) {
276 // If Dest is ignored, then we're evaluating an aggregate expression
277 // in a context that doesn't care about the result. Note that loads
278 // from volatile l-values force the existence of a non-ignored
279 // destination.
280 if (Dest.isIgnored())
281 return;
282
283 AggValueSlot srcAgg =
284 AggValueSlot::forLValue(src, AggValueSlot::IsDestructed,
285 needsGC(type), AggValueSlot::IsAliased);
286 EmitCopy(type, Dest, srcAgg);
287 }
288
289 /// Perform a copy from the source into the destination.
290 ///
291 /// \param type - the type of the aggregate being copied; qualifiers are
292 /// ignored
EmitCopy(QualType type,const AggValueSlot & dest,const AggValueSlot & src)293 void AggExprEmitter::EmitCopy(QualType type, const AggValueSlot &dest,
294 const AggValueSlot &src) {
295 if (dest.requiresGCollection()) {
296 CharUnits sz = CGF.getContext().getTypeSizeInChars(type);
297 llvm::Value *size = llvm::ConstantInt::get(CGF.SizeTy, sz.getQuantity());
298 CGF.CGM.getObjCRuntime().EmitGCMemmoveCollectable(CGF,
299 dest.getAddress(),
300 src.getAddress(),
301 size);
302 return;
303 }
304
305 // If the result of the assignment is used, copy the LHS there also.
306 // It's volatile if either side is. Use the minimum alignment of
307 // the two sides.
308 CGF.EmitAggregateCopy(dest.getAddress(), src.getAddress(), type,
309 dest.isVolatile() || src.isVolatile());
310 }
311
312 /// \brief Emit the initializer for a std::initializer_list initialized with a
313 /// real initializer list.
314 void
VisitCXXStdInitializerListExpr(CXXStdInitializerListExpr * E)315 AggExprEmitter::VisitCXXStdInitializerListExpr(CXXStdInitializerListExpr *E) {
316 // Emit an array containing the elements. The array is externally destructed
317 // if the std::initializer_list object is.
318 ASTContext &Ctx = CGF.getContext();
319 LValue Array = CGF.EmitLValue(E->getSubExpr());
320 assert(Array.isSimple() && "initializer_list array not a simple lvalue");
321 Address ArrayPtr = Array.getAddress();
322
323 const ConstantArrayType *ArrayType =
324 Ctx.getAsConstantArrayType(E->getSubExpr()->getType());
325 assert(ArrayType && "std::initializer_list constructed from non-array");
326
327 // FIXME: Perform the checks on the field types in SemaInit.
328 RecordDecl *Record = E->getType()->castAs<RecordType>()->getDecl();
329 RecordDecl::field_iterator Field = Record->field_begin();
330 if (Field == Record->field_end()) {
331 CGF.ErrorUnsupported(E, "weird std::initializer_list");
332 return;
333 }
334
335 // Start pointer.
336 if (!Field->getType()->isPointerType() ||
337 !Ctx.hasSameType(Field->getType()->getPointeeType(),
338 ArrayType->getElementType())) {
339 CGF.ErrorUnsupported(E, "weird std::initializer_list");
340 return;
341 }
342
343 AggValueSlot Dest = EnsureSlot(E->getType());
344 LValue DestLV = CGF.MakeAddrLValue(Dest.getAddress(), E->getType());
345 LValue Start = CGF.EmitLValueForFieldInitialization(DestLV, *Field);
346 llvm::Value *Zero = llvm::ConstantInt::get(CGF.PtrDiffTy, 0);
347 llvm::Value *IdxStart[] = { Zero, Zero };
348 llvm::Value *ArrayStart =
349 Builder.CreateInBoundsGEP(ArrayPtr.getPointer(), IdxStart, "arraystart");
350 CGF.EmitStoreThroughLValue(RValue::get(ArrayStart), Start);
351 ++Field;
352
353 if (Field == Record->field_end()) {
354 CGF.ErrorUnsupported(E, "weird std::initializer_list");
355 return;
356 }
357
358 llvm::Value *Size = Builder.getInt(ArrayType->getSize());
359 LValue EndOrLength = CGF.EmitLValueForFieldInitialization(DestLV, *Field);
360 if (Field->getType()->isPointerType() &&
361 Ctx.hasSameType(Field->getType()->getPointeeType(),
362 ArrayType->getElementType())) {
363 // End pointer.
364 llvm::Value *IdxEnd[] = { Zero, Size };
365 llvm::Value *ArrayEnd =
366 Builder.CreateInBoundsGEP(ArrayPtr.getPointer(), IdxEnd, "arrayend");
367 CGF.EmitStoreThroughLValue(RValue::get(ArrayEnd), EndOrLength);
368 } else if (Ctx.hasSameType(Field->getType(), Ctx.getSizeType())) {
369 // Length.
370 CGF.EmitStoreThroughLValue(RValue::get(Size), EndOrLength);
371 } else {
372 CGF.ErrorUnsupported(E, "weird std::initializer_list");
373 return;
374 }
375 }
376
377 /// \brief Determine if E is a trivial array filler, that is, one that is
378 /// equivalent to zero-initialization.
isTrivialFiller(Expr * E)379 static bool isTrivialFiller(Expr *E) {
380 if (!E)
381 return true;
382
383 if (isa<ImplicitValueInitExpr>(E))
384 return true;
385
386 if (auto *ILE = dyn_cast<InitListExpr>(E)) {
387 if (ILE->getNumInits())
388 return false;
389 return isTrivialFiller(ILE->getArrayFiller());
390 }
391
392 if (auto *Cons = dyn_cast_or_null<CXXConstructExpr>(E))
393 return Cons->getConstructor()->isDefaultConstructor() &&
394 Cons->getConstructor()->isTrivial();
395
396 // FIXME: Are there other cases where we can avoid emitting an initializer?
397 return false;
398 }
399
400 /// \brief Emit initialization of an array from an initializer list.
EmitArrayInit(Address DestPtr,llvm::ArrayType * AType,QualType elementType,InitListExpr * E)401 void AggExprEmitter::EmitArrayInit(Address DestPtr, llvm::ArrayType *AType,
402 QualType elementType, InitListExpr *E) {
403 uint64_t NumInitElements = E->getNumInits();
404
405 uint64_t NumArrayElements = AType->getNumElements();
406 assert(NumInitElements <= NumArrayElements);
407
408 // DestPtr is an array*. Construct an elementType* by drilling
409 // down a level.
410 llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, 0);
411 llvm::Value *indices[] = { zero, zero };
412 llvm::Value *begin =
413 Builder.CreateInBoundsGEP(DestPtr.getPointer(), indices, "arrayinit.begin");
414
415 CharUnits elementSize = CGF.getContext().getTypeSizeInChars(elementType);
416 CharUnits elementAlign =
417 DestPtr.getAlignment().alignmentOfArrayElement(elementSize);
418
419 // Exception safety requires us to destroy all the
420 // already-constructed members if an initializer throws.
421 // For that, we'll need an EH cleanup.
422 QualType::DestructionKind dtorKind = elementType.isDestructedType();
423 Address endOfInit = Address::invalid();
424 EHScopeStack::stable_iterator cleanup;
425 llvm::Instruction *cleanupDominator = nullptr;
426 if (CGF.needsEHCleanup(dtorKind)) {
427 // In principle we could tell the cleanup where we are more
428 // directly, but the control flow can get so varied here that it
429 // would actually be quite complex. Therefore we go through an
430 // alloca.
431 endOfInit = CGF.CreateTempAlloca(begin->getType(), CGF.getPointerAlign(),
432 "arrayinit.endOfInit");
433 cleanupDominator = Builder.CreateStore(begin, endOfInit);
434 CGF.pushIrregularPartialArrayCleanup(begin, endOfInit, elementType,
435 elementAlign,
436 CGF.getDestroyer(dtorKind));
437 cleanup = CGF.EHStack.stable_begin();
438
439 // Otherwise, remember that we didn't need a cleanup.
440 } else {
441 dtorKind = QualType::DK_none;
442 }
443
444 llvm::Value *one = llvm::ConstantInt::get(CGF.SizeTy, 1);
445
446 // The 'current element to initialize'. The invariants on this
447 // variable are complicated. Essentially, after each iteration of
448 // the loop, it points to the last initialized element, except
449 // that it points to the beginning of the array before any
450 // elements have been initialized.
451 llvm::Value *element = begin;
452
453 // Emit the explicit initializers.
454 for (uint64_t i = 0; i != NumInitElements; ++i) {
455 // Advance to the next element.
456 if (i > 0) {
457 element = Builder.CreateInBoundsGEP(element, one, "arrayinit.element");
458
459 // Tell the cleanup that it needs to destroy up to this
460 // element. TODO: some of these stores can be trivially
461 // observed to be unnecessary.
462 if (endOfInit.isValid()) Builder.CreateStore(element, endOfInit);
463 }
464
465 LValue elementLV =
466 CGF.MakeAddrLValue(Address(element, elementAlign), elementType);
467 EmitInitializationToLValue(E->getInit(i), elementLV);
468 }
469
470 // Check whether there's a non-trivial array-fill expression.
471 Expr *filler = E->getArrayFiller();
472 bool hasTrivialFiller = isTrivialFiller(filler);
473
474 // Any remaining elements need to be zero-initialized, possibly
475 // using the filler expression. We can skip this if the we're
476 // emitting to zeroed memory.
477 if (NumInitElements != NumArrayElements &&
478 !(Dest.isZeroed() && hasTrivialFiller &&
479 CGF.getTypes().isZeroInitializable(elementType))) {
480
481 // Use an actual loop. This is basically
482 // do { *array++ = filler; } while (array != end);
483
484 // Advance to the start of the rest of the array.
485 if (NumInitElements) {
486 element = Builder.CreateInBoundsGEP(element, one, "arrayinit.start");
487 if (endOfInit.isValid()) Builder.CreateStore(element, endOfInit);
488 }
489
490 // Compute the end of the array.
491 llvm::Value *end = Builder.CreateInBoundsGEP(begin,
492 llvm::ConstantInt::get(CGF.SizeTy, NumArrayElements),
493 "arrayinit.end");
494
495 llvm::BasicBlock *entryBB = Builder.GetInsertBlock();
496 llvm::BasicBlock *bodyBB = CGF.createBasicBlock("arrayinit.body");
497
498 // Jump into the body.
499 CGF.EmitBlock(bodyBB);
500 llvm::PHINode *currentElement =
501 Builder.CreatePHI(element->getType(), 2, "arrayinit.cur");
502 currentElement->addIncoming(element, entryBB);
503
504 // Emit the actual filler expression.
505 LValue elementLV =
506 CGF.MakeAddrLValue(Address(currentElement, elementAlign), elementType);
507 if (filler)
508 EmitInitializationToLValue(filler, elementLV);
509 else
510 EmitNullInitializationToLValue(elementLV);
511
512 // Move on to the next element.
513 llvm::Value *nextElement =
514 Builder.CreateInBoundsGEP(currentElement, one, "arrayinit.next");
515
516 // Tell the EH cleanup that we finished with the last element.
517 if (endOfInit.isValid()) Builder.CreateStore(nextElement, endOfInit);
518
519 // Leave the loop if we're done.
520 llvm::Value *done = Builder.CreateICmpEQ(nextElement, end,
521 "arrayinit.done");
522 llvm::BasicBlock *endBB = CGF.createBasicBlock("arrayinit.end");
523 Builder.CreateCondBr(done, endBB, bodyBB);
524 currentElement->addIncoming(nextElement, Builder.GetInsertBlock());
525
526 CGF.EmitBlock(endBB);
527 }
528
529 // Leave the partial-array cleanup if we entered one.
530 if (dtorKind) CGF.DeactivateCleanupBlock(cleanup, cleanupDominator);
531 }
532
533 //===----------------------------------------------------------------------===//
534 // Visitor Methods
535 //===----------------------------------------------------------------------===//
536
VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr * E)537 void AggExprEmitter::VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E){
538 Visit(E->GetTemporaryExpr());
539 }
540
VisitOpaqueValueExpr(OpaqueValueExpr * e)541 void AggExprEmitter::VisitOpaqueValueExpr(OpaqueValueExpr *e) {
542 EmitFinalDestCopy(e->getType(), CGF.getOpaqueLValueMapping(e));
543 }
544
545 void
VisitCompoundLiteralExpr(CompoundLiteralExpr * E)546 AggExprEmitter::VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
547 if (Dest.isPotentiallyAliased() &&
548 E->getType().isPODType(CGF.getContext())) {
549 // For a POD type, just emit a load of the lvalue + a copy, because our
550 // compound literal might alias the destination.
551 EmitAggLoadOfLValue(E);
552 return;
553 }
554
555 AggValueSlot Slot = EnsureSlot(E->getType());
556 CGF.EmitAggExpr(E->getInitializer(), Slot);
557 }
558
559 /// Attempt to look through various unimportant expressions to find a
560 /// cast of the given kind.
findPeephole(Expr * op,CastKind kind)561 static Expr *findPeephole(Expr *op, CastKind kind) {
562 while (true) {
563 op = op->IgnoreParens();
564 if (CastExpr *castE = dyn_cast<CastExpr>(op)) {
565 if (castE->getCastKind() == kind)
566 return castE->getSubExpr();
567 if (castE->getCastKind() == CK_NoOp)
568 continue;
569 }
570 return nullptr;
571 }
572 }
573
VisitCastExpr(CastExpr * E)574 void AggExprEmitter::VisitCastExpr(CastExpr *E) {
575 if (const auto *ECE = dyn_cast<ExplicitCastExpr>(E))
576 CGF.CGM.EmitExplicitCastExprType(ECE, &CGF);
577 switch (E->getCastKind()) {
578 case CK_Dynamic: {
579 // FIXME: Can this actually happen? We have no test coverage for it.
580 assert(isa<CXXDynamicCastExpr>(E) && "CK_Dynamic without a dynamic_cast?");
581 LValue LV = CGF.EmitCheckedLValue(E->getSubExpr(),
582 CodeGenFunction::TCK_Load);
583 // FIXME: Do we also need to handle property references here?
584 if (LV.isSimple())
585 CGF.EmitDynamicCast(LV.getAddress(), cast<CXXDynamicCastExpr>(E));
586 else
587 CGF.CGM.ErrorUnsupported(E, "non-simple lvalue dynamic_cast");
588
589 if (!Dest.isIgnored())
590 CGF.CGM.ErrorUnsupported(E, "lvalue dynamic_cast with a destination");
591 break;
592 }
593
594 case CK_ToUnion: {
595 // Evaluate even if the destination is ignored.
596 if (Dest.isIgnored()) {
597 CGF.EmitAnyExpr(E->getSubExpr(), AggValueSlot::ignored(),
598 /*ignoreResult=*/true);
599 break;
600 }
601
602 // GCC union extension
603 QualType Ty = E->getSubExpr()->getType();
604 Address CastPtr =
605 Builder.CreateElementBitCast(Dest.getAddress(), CGF.ConvertType(Ty));
606 EmitInitializationToLValue(E->getSubExpr(),
607 CGF.MakeAddrLValue(CastPtr, Ty));
608 break;
609 }
610
611 case CK_DerivedToBase:
612 case CK_BaseToDerived:
613 case CK_UncheckedDerivedToBase: {
614 llvm_unreachable("cannot perform hierarchy conversion in EmitAggExpr: "
615 "should have been unpacked before we got here");
616 }
617
618 case CK_NonAtomicToAtomic:
619 case CK_AtomicToNonAtomic: {
620 bool isToAtomic = (E->getCastKind() == CK_NonAtomicToAtomic);
621
622 // Determine the atomic and value types.
623 QualType atomicType = E->getSubExpr()->getType();
624 QualType valueType = E->getType();
625 if (isToAtomic) std::swap(atomicType, valueType);
626
627 assert(atomicType->isAtomicType());
628 assert(CGF.getContext().hasSameUnqualifiedType(valueType,
629 atomicType->castAs<AtomicType>()->getValueType()));
630
631 // Just recurse normally if we're ignoring the result or the
632 // atomic type doesn't change representation.
633 if (Dest.isIgnored() || !CGF.CGM.isPaddedAtomicType(atomicType)) {
634 return Visit(E->getSubExpr());
635 }
636
637 CastKind peepholeTarget =
638 (isToAtomic ? CK_AtomicToNonAtomic : CK_NonAtomicToAtomic);
639
640 // These two cases are reverses of each other; try to peephole them.
641 if (Expr *op = findPeephole(E->getSubExpr(), peepholeTarget)) {
642 assert(CGF.getContext().hasSameUnqualifiedType(op->getType(),
643 E->getType()) &&
644 "peephole significantly changed types?");
645 return Visit(op);
646 }
647
648 // If we're converting an r-value of non-atomic type to an r-value
649 // of atomic type, just emit directly into the relevant sub-object.
650 if (isToAtomic) {
651 AggValueSlot valueDest = Dest;
652 if (!valueDest.isIgnored() && CGF.CGM.isPaddedAtomicType(atomicType)) {
653 // Zero-initialize. (Strictly speaking, we only need to intialize
654 // the padding at the end, but this is simpler.)
655 if (!Dest.isZeroed())
656 CGF.EmitNullInitialization(Dest.getAddress(), atomicType);
657
658 // Build a GEP to refer to the subobject.
659 Address valueAddr =
660 CGF.Builder.CreateStructGEP(valueDest.getAddress(), 0,
661 CharUnits());
662 valueDest = AggValueSlot::forAddr(valueAddr,
663 valueDest.getQualifiers(),
664 valueDest.isExternallyDestructed(),
665 valueDest.requiresGCollection(),
666 valueDest.isPotentiallyAliased(),
667 AggValueSlot::IsZeroed);
668 }
669
670 CGF.EmitAggExpr(E->getSubExpr(), valueDest);
671 return;
672 }
673
674 // Otherwise, we're converting an atomic type to a non-atomic type.
675 // Make an atomic temporary, emit into that, and then copy the value out.
676 AggValueSlot atomicSlot =
677 CGF.CreateAggTemp(atomicType, "atomic-to-nonatomic.temp");
678 CGF.EmitAggExpr(E->getSubExpr(), atomicSlot);
679
680 Address valueAddr =
681 Builder.CreateStructGEP(atomicSlot.getAddress(), 0, CharUnits());
682 RValue rvalue = RValue::getAggregate(valueAddr, atomicSlot.isVolatile());
683 return EmitFinalDestCopy(valueType, rvalue);
684 }
685
686 case CK_LValueToRValue:
687 // If we're loading from a volatile type, force the destination
688 // into existence.
689 if (E->getSubExpr()->getType().isVolatileQualified()) {
690 EnsureDest(E->getType());
691 return Visit(E->getSubExpr());
692 }
693
694 // fallthrough
695
696 case CK_NoOp:
697 case CK_UserDefinedConversion:
698 case CK_ConstructorConversion:
699 assert(CGF.getContext().hasSameUnqualifiedType(E->getSubExpr()->getType(),
700 E->getType()) &&
701 "Implicit cast types must be compatible");
702 Visit(E->getSubExpr());
703 break;
704
705 case CK_LValueBitCast:
706 llvm_unreachable("should not be emitting lvalue bitcast as rvalue");
707
708 case CK_Dependent:
709 case CK_BitCast:
710 case CK_ArrayToPointerDecay:
711 case CK_FunctionToPointerDecay:
712 case CK_NullToPointer:
713 case CK_NullToMemberPointer:
714 case CK_BaseToDerivedMemberPointer:
715 case CK_DerivedToBaseMemberPointer:
716 case CK_MemberPointerToBoolean:
717 case CK_ReinterpretMemberPointer:
718 case CK_IntegralToPointer:
719 case CK_PointerToIntegral:
720 case CK_PointerToBoolean:
721 case CK_ToVoid:
722 case CK_VectorSplat:
723 case CK_IntegralCast:
724 case CK_IntegralToBoolean:
725 case CK_IntegralToFloating:
726 case CK_FloatingToIntegral:
727 case CK_FloatingToBoolean:
728 case CK_FloatingCast:
729 case CK_CPointerToObjCPointerCast:
730 case CK_BlockPointerToObjCPointerCast:
731 case CK_AnyPointerToBlockPointerCast:
732 case CK_ObjCObjectLValueCast:
733 case CK_FloatingRealToComplex:
734 case CK_FloatingComplexToReal:
735 case CK_FloatingComplexToBoolean:
736 case CK_FloatingComplexCast:
737 case CK_FloatingComplexToIntegralComplex:
738 case CK_IntegralRealToComplex:
739 case CK_IntegralComplexToReal:
740 case CK_IntegralComplexToBoolean:
741 case CK_IntegralComplexCast:
742 case CK_IntegralComplexToFloatingComplex:
743 case CK_ARCProduceObject:
744 case CK_ARCConsumeObject:
745 case CK_ARCReclaimReturnedObject:
746 case CK_ARCExtendBlockObject:
747 case CK_CopyAndAutoreleaseBlockObject:
748 case CK_BuiltinFnToFnPtr:
749 case CK_ZeroToOCLEvent:
750 case CK_AddressSpaceConversion:
751 llvm_unreachable("cast kind invalid for aggregate types");
752 }
753 }
754
VisitCallExpr(const CallExpr * E)755 void AggExprEmitter::VisitCallExpr(const CallExpr *E) {
756 if (E->getCallReturnType(CGF.getContext())->isReferenceType()) {
757 EmitAggLoadOfLValue(E);
758 return;
759 }
760
761 RValue RV = CGF.EmitCallExpr(E, getReturnValueSlot());
762 EmitMoveFromReturnSlot(E, RV);
763 }
764
VisitObjCMessageExpr(ObjCMessageExpr * E)765 void AggExprEmitter::VisitObjCMessageExpr(ObjCMessageExpr *E) {
766 RValue RV = CGF.EmitObjCMessageExpr(E, getReturnValueSlot());
767 EmitMoveFromReturnSlot(E, RV);
768 }
769
VisitBinComma(const BinaryOperator * E)770 void AggExprEmitter::VisitBinComma(const BinaryOperator *E) {
771 CGF.EmitIgnoredExpr(E->getLHS());
772 Visit(E->getRHS());
773 }
774
VisitStmtExpr(const StmtExpr * E)775 void AggExprEmitter::VisitStmtExpr(const StmtExpr *E) {
776 CodeGenFunction::StmtExprEvaluation eval(CGF);
777 CGF.EmitCompoundStmt(*E->getSubStmt(), true, Dest);
778 }
779
VisitBinaryOperator(const BinaryOperator * E)780 void AggExprEmitter::VisitBinaryOperator(const BinaryOperator *E) {
781 if (E->getOpcode() == BO_PtrMemD || E->getOpcode() == BO_PtrMemI)
782 VisitPointerToDataMemberBinaryOperator(E);
783 else
784 CGF.ErrorUnsupported(E, "aggregate binary expression");
785 }
786
VisitPointerToDataMemberBinaryOperator(const BinaryOperator * E)787 void AggExprEmitter::VisitPointerToDataMemberBinaryOperator(
788 const BinaryOperator *E) {
789 LValue LV = CGF.EmitPointerToDataMemberBinaryExpr(E);
790 EmitFinalDestCopy(E->getType(), LV);
791 }
792
793 /// Is the value of the given expression possibly a reference to or
794 /// into a __block variable?
isBlockVarRef(const Expr * E)795 static bool isBlockVarRef(const Expr *E) {
796 // Make sure we look through parens.
797 E = E->IgnoreParens();
798
799 // Check for a direct reference to a __block variable.
800 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
801 const VarDecl *var = dyn_cast<VarDecl>(DRE->getDecl());
802 return (var && var->hasAttr<BlocksAttr>());
803 }
804
805 // More complicated stuff.
806
807 // Binary operators.
808 if (const BinaryOperator *op = dyn_cast<BinaryOperator>(E)) {
809 // For an assignment or pointer-to-member operation, just care
810 // about the LHS.
811 if (op->isAssignmentOp() || op->isPtrMemOp())
812 return isBlockVarRef(op->getLHS());
813
814 // For a comma, just care about the RHS.
815 if (op->getOpcode() == BO_Comma)
816 return isBlockVarRef(op->getRHS());
817
818 // FIXME: pointer arithmetic?
819 return false;
820
821 // Check both sides of a conditional operator.
822 } else if (const AbstractConditionalOperator *op
823 = dyn_cast<AbstractConditionalOperator>(E)) {
824 return isBlockVarRef(op->getTrueExpr())
825 || isBlockVarRef(op->getFalseExpr());
826
827 // OVEs are required to support BinaryConditionalOperators.
828 } else if (const OpaqueValueExpr *op
829 = dyn_cast<OpaqueValueExpr>(E)) {
830 if (const Expr *src = op->getSourceExpr())
831 return isBlockVarRef(src);
832
833 // Casts are necessary to get things like (*(int*)&var) = foo().
834 // We don't really care about the kind of cast here, except
835 // we don't want to look through l2r casts, because it's okay
836 // to get the *value* in a __block variable.
837 } else if (const CastExpr *cast = dyn_cast<CastExpr>(E)) {
838 if (cast->getCastKind() == CK_LValueToRValue)
839 return false;
840 return isBlockVarRef(cast->getSubExpr());
841
842 // Handle unary operators. Again, just aggressively look through
843 // it, ignoring the operation.
844 } else if (const UnaryOperator *uop = dyn_cast<UnaryOperator>(E)) {
845 return isBlockVarRef(uop->getSubExpr());
846
847 // Look into the base of a field access.
848 } else if (const MemberExpr *mem = dyn_cast<MemberExpr>(E)) {
849 return isBlockVarRef(mem->getBase());
850
851 // Look into the base of a subscript.
852 } else if (const ArraySubscriptExpr *sub = dyn_cast<ArraySubscriptExpr>(E)) {
853 return isBlockVarRef(sub->getBase());
854 }
855
856 return false;
857 }
858
VisitBinAssign(const BinaryOperator * E)859 void AggExprEmitter::VisitBinAssign(const BinaryOperator *E) {
860 // For an assignment to work, the value on the right has
861 // to be compatible with the value on the left.
862 assert(CGF.getContext().hasSameUnqualifiedType(E->getLHS()->getType(),
863 E->getRHS()->getType())
864 && "Invalid assignment");
865
866 // If the LHS might be a __block variable, and the RHS can
867 // potentially cause a block copy, we need to evaluate the RHS first
868 // so that the assignment goes the right place.
869 // This is pretty semantically fragile.
870 if (isBlockVarRef(E->getLHS()) &&
871 E->getRHS()->HasSideEffects(CGF.getContext())) {
872 // Ensure that we have a destination, and evaluate the RHS into that.
873 EnsureDest(E->getRHS()->getType());
874 Visit(E->getRHS());
875
876 // Now emit the LHS and copy into it.
877 LValue LHS = CGF.EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
878
879 // That copy is an atomic copy if the LHS is atomic.
880 if (LHS.getType()->isAtomicType() ||
881 CGF.LValueIsSuitableForInlineAtomic(LHS)) {
882 CGF.EmitAtomicStore(Dest.asRValue(), LHS, /*isInit*/ false);
883 return;
884 }
885
886 EmitCopy(E->getLHS()->getType(),
887 AggValueSlot::forLValue(LHS, AggValueSlot::IsDestructed,
888 needsGC(E->getLHS()->getType()),
889 AggValueSlot::IsAliased),
890 Dest);
891 return;
892 }
893
894 LValue LHS = CGF.EmitLValue(E->getLHS());
895
896 // If we have an atomic type, evaluate into the destination and then
897 // do an atomic copy.
898 if (LHS.getType()->isAtomicType() ||
899 CGF.LValueIsSuitableForInlineAtomic(LHS)) {
900 EnsureDest(E->getRHS()->getType());
901 Visit(E->getRHS());
902 CGF.EmitAtomicStore(Dest.asRValue(), LHS, /*isInit*/ false);
903 return;
904 }
905
906 // Codegen the RHS so that it stores directly into the LHS.
907 AggValueSlot LHSSlot =
908 AggValueSlot::forLValue(LHS, AggValueSlot::IsDestructed,
909 needsGC(E->getLHS()->getType()),
910 AggValueSlot::IsAliased);
911 // A non-volatile aggregate destination might have volatile member.
912 if (!LHSSlot.isVolatile() &&
913 CGF.hasVolatileMember(E->getLHS()->getType()))
914 LHSSlot.setVolatile(true);
915
916 CGF.EmitAggExpr(E->getRHS(), LHSSlot);
917
918 // Copy into the destination if the assignment isn't ignored.
919 EmitFinalDestCopy(E->getType(), LHS);
920 }
921
922 void AggExprEmitter::
VisitAbstractConditionalOperator(const AbstractConditionalOperator * E)923 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
924 llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
925 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
926 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
927
928 // Bind the common expression if necessary.
929 CodeGenFunction::OpaqueValueMapping binding(CGF, E);
930
931 CodeGenFunction::ConditionalEvaluation eval(CGF);
932 CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock,
933 CGF.getProfileCount(E));
934
935 // Save whether the destination's lifetime is externally managed.
936 bool isExternallyDestructed = Dest.isExternallyDestructed();
937
938 eval.begin(CGF);
939 CGF.EmitBlock(LHSBlock);
940 CGF.incrementProfileCounter(E);
941 Visit(E->getTrueExpr());
942 eval.end(CGF);
943
944 assert(CGF.HaveInsertPoint() && "expression evaluation ended with no IP!");
945 CGF.Builder.CreateBr(ContBlock);
946
947 // If the result of an agg expression is unused, then the emission
948 // of the LHS might need to create a destination slot. That's fine
949 // with us, and we can safely emit the RHS into the same slot, but
950 // we shouldn't claim that it's already being destructed.
951 Dest.setExternallyDestructed(isExternallyDestructed);
952
953 eval.begin(CGF);
954 CGF.EmitBlock(RHSBlock);
955 Visit(E->getFalseExpr());
956 eval.end(CGF);
957
958 CGF.EmitBlock(ContBlock);
959 }
960
VisitChooseExpr(const ChooseExpr * CE)961 void AggExprEmitter::VisitChooseExpr(const ChooseExpr *CE) {
962 Visit(CE->getChosenSubExpr());
963 }
964
VisitVAArgExpr(VAArgExpr * VE)965 void AggExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
966 Address ArgValue = Address::invalid();
967 Address ArgPtr = CGF.EmitVAArg(VE, ArgValue);
968
969 if (!ArgPtr.isValid()) {
970 // If EmitVAArg fails, we fall back to the LLVM instruction.
971 llvm::Value *Val = Builder.CreateVAArg(ArgValue.getPointer(),
972 CGF.ConvertType(VE->getType()));
973 if (!Dest.isIgnored())
974 Builder.CreateStore(Val, Dest.getAddress());
975 return;
976 }
977
978 EmitFinalDestCopy(VE->getType(), CGF.MakeAddrLValue(ArgPtr, VE->getType()));
979 }
980
VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr * E)981 void AggExprEmitter::VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
982 // Ensure that we have a slot, but if we already do, remember
983 // whether it was externally destructed.
984 bool wasExternallyDestructed = Dest.isExternallyDestructed();
985 EnsureDest(E->getType());
986
987 // We're going to push a destructor if there isn't already one.
988 Dest.setExternallyDestructed();
989
990 Visit(E->getSubExpr());
991
992 // Push that destructor we promised.
993 if (!wasExternallyDestructed)
994 CGF.EmitCXXTemporary(E->getTemporary(), E->getType(), Dest.getAddress());
995 }
996
997 void
VisitCXXConstructExpr(const CXXConstructExpr * E)998 AggExprEmitter::VisitCXXConstructExpr(const CXXConstructExpr *E) {
999 AggValueSlot Slot = EnsureSlot(E->getType());
1000 CGF.EmitCXXConstructExpr(E, Slot);
1001 }
1002
1003 void
VisitLambdaExpr(LambdaExpr * E)1004 AggExprEmitter::VisitLambdaExpr(LambdaExpr *E) {
1005 AggValueSlot Slot = EnsureSlot(E->getType());
1006 CGF.EmitLambdaExpr(E, Slot);
1007 }
1008
VisitExprWithCleanups(ExprWithCleanups * E)1009 void AggExprEmitter::VisitExprWithCleanups(ExprWithCleanups *E) {
1010 CGF.enterFullExpression(E);
1011 CodeGenFunction::RunCleanupsScope cleanups(CGF);
1012 Visit(E->getSubExpr());
1013 }
1014
VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr * E)1015 void AggExprEmitter::VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E) {
1016 QualType T = E->getType();
1017 AggValueSlot Slot = EnsureSlot(T);
1018 EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddress(), T));
1019 }
1020
VisitImplicitValueInitExpr(ImplicitValueInitExpr * E)1021 void AggExprEmitter::VisitImplicitValueInitExpr(ImplicitValueInitExpr *E) {
1022 QualType T = E->getType();
1023 AggValueSlot Slot = EnsureSlot(T);
1024 EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddress(), T));
1025 }
1026
1027 /// isSimpleZero - If emitting this value will obviously just cause a store of
1028 /// zero to memory, return true. This can return false if uncertain, so it just
1029 /// handles simple cases.
isSimpleZero(const Expr * E,CodeGenFunction & CGF)1030 static bool isSimpleZero(const Expr *E, CodeGenFunction &CGF) {
1031 E = E->IgnoreParens();
1032
1033 // 0
1034 if (const IntegerLiteral *IL = dyn_cast<IntegerLiteral>(E))
1035 return IL->getValue() == 0;
1036 // +0.0
1037 if (const FloatingLiteral *FL = dyn_cast<FloatingLiteral>(E))
1038 return FL->getValue().isPosZero();
1039 // int()
1040 if ((isa<ImplicitValueInitExpr>(E) || isa<CXXScalarValueInitExpr>(E)) &&
1041 CGF.getTypes().isZeroInitializable(E->getType()))
1042 return true;
1043 // (int*)0 - Null pointer expressions.
1044 if (const CastExpr *ICE = dyn_cast<CastExpr>(E))
1045 return ICE->getCastKind() == CK_NullToPointer;
1046 // '\0'
1047 if (const CharacterLiteral *CL = dyn_cast<CharacterLiteral>(E))
1048 return CL->getValue() == 0;
1049
1050 // Otherwise, hard case: conservatively return false.
1051 return false;
1052 }
1053
1054
1055 void
EmitInitializationToLValue(Expr * E,LValue LV)1056 AggExprEmitter::EmitInitializationToLValue(Expr *E, LValue LV) {
1057 QualType type = LV.getType();
1058 // FIXME: Ignore result?
1059 // FIXME: Are initializers affected by volatile?
1060 if (Dest.isZeroed() && isSimpleZero(E, CGF)) {
1061 // Storing "i32 0" to a zero'd memory location is a noop.
1062 return;
1063 } else if (isa<ImplicitValueInitExpr>(E) || isa<CXXScalarValueInitExpr>(E)) {
1064 return EmitNullInitializationToLValue(LV);
1065 } else if (isa<NoInitExpr>(E)) {
1066 // Do nothing.
1067 return;
1068 } else if (type->isReferenceType()) {
1069 RValue RV = CGF.EmitReferenceBindingToExpr(E);
1070 return CGF.EmitStoreThroughLValue(RV, LV);
1071 }
1072
1073 switch (CGF.getEvaluationKind(type)) {
1074 case TEK_Complex:
1075 CGF.EmitComplexExprIntoLValue(E, LV, /*isInit*/ true);
1076 return;
1077 case TEK_Aggregate:
1078 CGF.EmitAggExpr(E, AggValueSlot::forLValue(LV,
1079 AggValueSlot::IsDestructed,
1080 AggValueSlot::DoesNotNeedGCBarriers,
1081 AggValueSlot::IsNotAliased,
1082 Dest.isZeroed()));
1083 return;
1084 case TEK_Scalar:
1085 if (LV.isSimple()) {
1086 CGF.EmitScalarInit(E, /*D=*/nullptr, LV, /*Captured=*/false);
1087 } else {
1088 CGF.EmitStoreThroughLValue(RValue::get(CGF.EmitScalarExpr(E)), LV);
1089 }
1090 return;
1091 }
1092 llvm_unreachable("bad evaluation kind");
1093 }
1094
EmitNullInitializationToLValue(LValue lv)1095 void AggExprEmitter::EmitNullInitializationToLValue(LValue lv) {
1096 QualType type = lv.getType();
1097
1098 // If the destination slot is already zeroed out before the aggregate is
1099 // copied into it, we don't have to emit any zeros here.
1100 if (Dest.isZeroed() && CGF.getTypes().isZeroInitializable(type))
1101 return;
1102
1103 if (CGF.hasScalarEvaluationKind(type)) {
1104 // For non-aggregates, we can store the appropriate null constant.
1105 llvm::Value *null = CGF.CGM.EmitNullConstant(type);
1106 // Note that the following is not equivalent to
1107 // EmitStoreThroughBitfieldLValue for ARC types.
1108 if (lv.isBitField()) {
1109 CGF.EmitStoreThroughBitfieldLValue(RValue::get(null), lv);
1110 } else {
1111 assert(lv.isSimple());
1112 CGF.EmitStoreOfScalar(null, lv, /* isInitialization */ true);
1113 }
1114 } else {
1115 // There's a potential optimization opportunity in combining
1116 // memsets; that would be easy for arrays, but relatively
1117 // difficult for structures with the current code.
1118 CGF.EmitNullInitialization(lv.getAddress(), lv.getType());
1119 }
1120 }
1121
VisitInitListExpr(InitListExpr * E)1122 void AggExprEmitter::VisitInitListExpr(InitListExpr *E) {
1123 #if 0
1124 // FIXME: Assess perf here? Figure out what cases are worth optimizing here
1125 // (Length of globals? Chunks of zeroed-out space?).
1126 //
1127 // If we can, prefer a copy from a global; this is a lot less code for long
1128 // globals, and it's easier for the current optimizers to analyze.
1129 if (llvm::Constant* C = CGF.CGM.EmitConstantExpr(E, E->getType(), &CGF)) {
1130 llvm::GlobalVariable* GV =
1131 new llvm::GlobalVariable(CGF.CGM.getModule(), C->getType(), true,
1132 llvm::GlobalValue::InternalLinkage, C, "");
1133 EmitFinalDestCopy(E->getType(), CGF.MakeAddrLValue(GV, E->getType()));
1134 return;
1135 }
1136 #endif
1137 if (E->hadArrayRangeDesignator())
1138 CGF.ErrorUnsupported(E, "GNU array range designator extension");
1139
1140 AggValueSlot Dest = EnsureSlot(E->getType());
1141
1142 LValue DestLV = CGF.MakeAddrLValue(Dest.getAddress(), E->getType());
1143
1144 // Handle initialization of an array.
1145 if (E->getType()->isArrayType()) {
1146 if (E->isStringLiteralInit())
1147 return Visit(E->getInit(0));
1148
1149 QualType elementType =
1150 CGF.getContext().getAsArrayType(E->getType())->getElementType();
1151
1152 auto AType = cast<llvm::ArrayType>(Dest.getAddress().getElementType());
1153 EmitArrayInit(Dest.getAddress(), AType, elementType, E);
1154 return;
1155 }
1156
1157 if (E->getType()->isAtomicType()) {
1158 // An _Atomic(T) object can be list-initialized from an expression
1159 // of the same type.
1160 assert(E->getNumInits() == 1 &&
1161 CGF.getContext().hasSameUnqualifiedType(E->getInit(0)->getType(),
1162 E->getType()) &&
1163 "unexpected list initialization for atomic object");
1164 return Visit(E->getInit(0));
1165 }
1166
1167 assert(E->getType()->isRecordType() && "Only support structs/unions here!");
1168
1169 // Do struct initialization; this code just sets each individual member
1170 // to the approprate value. This makes bitfield support automatic;
1171 // the disadvantage is that the generated code is more difficult for
1172 // the optimizer, especially with bitfields.
1173 unsigned NumInitElements = E->getNumInits();
1174 RecordDecl *record = E->getType()->castAs<RecordType>()->getDecl();
1175
1176 // Prepare a 'this' for CXXDefaultInitExprs.
1177 CodeGenFunction::FieldConstructionScope FCS(CGF, Dest.getAddress());
1178
1179 if (record->isUnion()) {
1180 // Only initialize one field of a union. The field itself is
1181 // specified by the initializer list.
1182 if (!E->getInitializedFieldInUnion()) {
1183 // Empty union; we have nothing to do.
1184
1185 #ifndef NDEBUG
1186 // Make sure that it's really an empty and not a failure of
1187 // semantic analysis.
1188 for (const auto *Field : record->fields())
1189 assert(Field->isUnnamedBitfield() && "Only unnamed bitfields allowed");
1190 #endif
1191 return;
1192 }
1193
1194 // FIXME: volatility
1195 FieldDecl *Field = E->getInitializedFieldInUnion();
1196
1197 LValue FieldLoc = CGF.EmitLValueForFieldInitialization(DestLV, Field);
1198 if (NumInitElements) {
1199 // Store the initializer into the field
1200 EmitInitializationToLValue(E->getInit(0), FieldLoc);
1201 } else {
1202 // Default-initialize to null.
1203 EmitNullInitializationToLValue(FieldLoc);
1204 }
1205
1206 return;
1207 }
1208
1209 // We'll need to enter cleanup scopes in case any of the member
1210 // initializers throw an exception.
1211 SmallVector<EHScopeStack::stable_iterator, 16> cleanups;
1212 llvm::Instruction *cleanupDominator = nullptr;
1213
1214 // Here we iterate over the fields; this makes it simpler to both
1215 // default-initialize fields and skip over unnamed fields.
1216 unsigned curInitIndex = 0;
1217 for (const auto *field : record->fields()) {
1218 // We're done once we hit the flexible array member.
1219 if (field->getType()->isIncompleteArrayType())
1220 break;
1221
1222 // Always skip anonymous bitfields.
1223 if (field->isUnnamedBitfield())
1224 continue;
1225
1226 // We're done if we reach the end of the explicit initializers, we
1227 // have a zeroed object, and the rest of the fields are
1228 // zero-initializable.
1229 if (curInitIndex == NumInitElements && Dest.isZeroed() &&
1230 CGF.getTypes().isZeroInitializable(E->getType()))
1231 break;
1232
1233
1234 LValue LV = CGF.EmitLValueForFieldInitialization(DestLV, field);
1235 // We never generate write-barries for initialized fields.
1236 LV.setNonGC(true);
1237
1238 if (curInitIndex < NumInitElements) {
1239 // Store the initializer into the field.
1240 EmitInitializationToLValue(E->getInit(curInitIndex++), LV);
1241 } else {
1242 // We're out of initalizers; default-initialize to null
1243 EmitNullInitializationToLValue(LV);
1244 }
1245
1246 // Push a destructor if necessary.
1247 // FIXME: if we have an array of structures, all explicitly
1248 // initialized, we can end up pushing a linear number of cleanups.
1249 bool pushedCleanup = false;
1250 if (QualType::DestructionKind dtorKind
1251 = field->getType().isDestructedType()) {
1252 assert(LV.isSimple());
1253 if (CGF.needsEHCleanup(dtorKind)) {
1254 if (!cleanupDominator)
1255 cleanupDominator = CGF.Builder.CreateAlignedLoad(
1256 CGF.Int8Ty,
1257 llvm::Constant::getNullValue(CGF.Int8PtrTy),
1258 CharUnits::One()); // placeholder
1259
1260 CGF.pushDestroy(EHCleanup, LV.getAddress(), field->getType(),
1261 CGF.getDestroyer(dtorKind), false);
1262 cleanups.push_back(CGF.EHStack.stable_begin());
1263 pushedCleanup = true;
1264 }
1265 }
1266
1267 // If the GEP didn't get used because of a dead zero init or something
1268 // else, clean it up for -O0 builds and general tidiness.
1269 if (!pushedCleanup && LV.isSimple())
1270 if (llvm::GetElementPtrInst *GEP =
1271 dyn_cast<llvm::GetElementPtrInst>(LV.getPointer()))
1272 if (GEP->use_empty())
1273 GEP->eraseFromParent();
1274 }
1275
1276 // Deactivate all the partial cleanups in reverse order, which
1277 // generally means popping them.
1278 for (unsigned i = cleanups.size(); i != 0; --i)
1279 CGF.DeactivateCleanupBlock(cleanups[i-1], cleanupDominator);
1280
1281 // Destroy the placeholder if we made one.
1282 if (cleanupDominator)
1283 cleanupDominator->eraseFromParent();
1284 }
1285
VisitDesignatedInitUpdateExpr(DesignatedInitUpdateExpr * E)1286 void AggExprEmitter::VisitDesignatedInitUpdateExpr(DesignatedInitUpdateExpr *E) {
1287 AggValueSlot Dest = EnsureSlot(E->getType());
1288
1289 LValue DestLV = CGF.MakeAddrLValue(Dest.getAddress(), E->getType());
1290 EmitInitializationToLValue(E->getBase(), DestLV);
1291 VisitInitListExpr(E->getUpdater());
1292 }
1293
1294 //===----------------------------------------------------------------------===//
1295 // Entry Points into this File
1296 //===----------------------------------------------------------------------===//
1297
1298 /// GetNumNonZeroBytesInInit - Get an approximate count of the number of
1299 /// non-zero bytes that will be stored when outputting the initializer for the
1300 /// specified initializer expression.
GetNumNonZeroBytesInInit(const Expr * E,CodeGenFunction & CGF)1301 static CharUnits GetNumNonZeroBytesInInit(const Expr *E, CodeGenFunction &CGF) {
1302 E = E->IgnoreParens();
1303
1304 // 0 and 0.0 won't require any non-zero stores!
1305 if (isSimpleZero(E, CGF)) return CharUnits::Zero();
1306
1307 // If this is an initlist expr, sum up the size of sizes of the (present)
1308 // elements. If this is something weird, assume the whole thing is non-zero.
1309 const InitListExpr *ILE = dyn_cast<InitListExpr>(E);
1310 if (!ILE || !CGF.getTypes().isZeroInitializable(ILE->getType()))
1311 return CGF.getContext().getTypeSizeInChars(E->getType());
1312
1313 // InitListExprs for structs have to be handled carefully. If there are
1314 // reference members, we need to consider the size of the reference, not the
1315 // referencee. InitListExprs for unions and arrays can't have references.
1316 if (const RecordType *RT = E->getType()->getAs<RecordType>()) {
1317 if (!RT->isUnionType()) {
1318 RecordDecl *SD = E->getType()->getAs<RecordType>()->getDecl();
1319 CharUnits NumNonZeroBytes = CharUnits::Zero();
1320
1321 unsigned ILEElement = 0;
1322 for (const auto *Field : SD->fields()) {
1323 // We're done once we hit the flexible array member or run out of
1324 // InitListExpr elements.
1325 if (Field->getType()->isIncompleteArrayType() ||
1326 ILEElement == ILE->getNumInits())
1327 break;
1328 if (Field->isUnnamedBitfield())
1329 continue;
1330
1331 const Expr *E = ILE->getInit(ILEElement++);
1332
1333 // Reference values are always non-null and have the width of a pointer.
1334 if (Field->getType()->isReferenceType())
1335 NumNonZeroBytes += CGF.getContext().toCharUnitsFromBits(
1336 CGF.getTarget().getPointerWidth(0));
1337 else
1338 NumNonZeroBytes += GetNumNonZeroBytesInInit(E, CGF);
1339 }
1340
1341 return NumNonZeroBytes;
1342 }
1343 }
1344
1345
1346 CharUnits NumNonZeroBytes = CharUnits::Zero();
1347 for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i)
1348 NumNonZeroBytes += GetNumNonZeroBytesInInit(ILE->getInit(i), CGF);
1349 return NumNonZeroBytes;
1350 }
1351
1352 /// CheckAggExprForMemSetUse - If the initializer is large and has a lot of
1353 /// zeros in it, emit a memset and avoid storing the individual zeros.
1354 ///
CheckAggExprForMemSetUse(AggValueSlot & Slot,const Expr * E,CodeGenFunction & CGF)1355 static void CheckAggExprForMemSetUse(AggValueSlot &Slot, const Expr *E,
1356 CodeGenFunction &CGF) {
1357 // If the slot is already known to be zeroed, nothing to do. Don't mess with
1358 // volatile stores.
1359 if (Slot.isZeroed() || Slot.isVolatile() || !Slot.getAddress().isValid())
1360 return;
1361
1362 // C++ objects with a user-declared constructor don't need zero'ing.
1363 if (CGF.getLangOpts().CPlusPlus)
1364 if (const RecordType *RT = CGF.getContext()
1365 .getBaseElementType(E->getType())->getAs<RecordType>()) {
1366 const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
1367 if (RD->hasUserDeclaredConstructor())
1368 return;
1369 }
1370
1371 // If the type is 16-bytes or smaller, prefer individual stores over memset.
1372 CharUnits Size = CGF.getContext().getTypeSizeInChars(E->getType());
1373 if (Size <= CharUnits::fromQuantity(16))
1374 return;
1375
1376 // Check to see if over 3/4 of the initializer are known to be zero. If so,
1377 // we prefer to emit memset + individual stores for the rest.
1378 CharUnits NumNonZeroBytes = GetNumNonZeroBytesInInit(E, CGF);
1379 if (NumNonZeroBytes*4 > Size)
1380 return;
1381
1382 // Okay, it seems like a good idea to use an initial memset, emit the call.
1383 llvm::Constant *SizeVal = CGF.Builder.getInt64(Size.getQuantity());
1384
1385 Address Loc = Slot.getAddress();
1386 Loc = CGF.Builder.CreateElementBitCast(Loc, CGF.Int8Ty);
1387 CGF.Builder.CreateMemSet(Loc, CGF.Builder.getInt8(0), SizeVal, false);
1388
1389 // Tell the AggExprEmitter that the slot is known zero.
1390 Slot.setZeroed();
1391 }
1392
1393
1394
1395
1396 /// EmitAggExpr - Emit the computation of the specified expression of aggregate
1397 /// type. The result is computed into DestPtr. Note that if DestPtr is null,
1398 /// the value of the aggregate expression is not needed. If VolatileDest is
1399 /// true, DestPtr cannot be 0.
EmitAggExpr(const Expr * E,AggValueSlot Slot)1400 void CodeGenFunction::EmitAggExpr(const Expr *E, AggValueSlot Slot) {
1401 assert(E && hasAggregateEvaluationKind(E->getType()) &&
1402 "Invalid aggregate expression to emit");
1403 assert((Slot.getAddress().isValid() || Slot.isIgnored()) &&
1404 "slot has bits but no address");
1405
1406 // Optimize the slot if possible.
1407 CheckAggExprForMemSetUse(Slot, E, *this);
1408
1409 AggExprEmitter(*this, Slot, Slot.isIgnored()).Visit(const_cast<Expr*>(E));
1410 }
1411
EmitAggExprToLValue(const Expr * E)1412 LValue CodeGenFunction::EmitAggExprToLValue(const Expr *E) {
1413 assert(hasAggregateEvaluationKind(E->getType()) && "Invalid argument!");
1414 Address Temp = CreateMemTemp(E->getType());
1415 LValue LV = MakeAddrLValue(Temp, E->getType());
1416 EmitAggExpr(E, AggValueSlot::forLValue(LV, AggValueSlot::IsNotDestructed,
1417 AggValueSlot::DoesNotNeedGCBarriers,
1418 AggValueSlot::IsNotAliased));
1419 return LV;
1420 }
1421
EmitAggregateCopy(Address DestPtr,Address SrcPtr,QualType Ty,bool isVolatile,bool isAssignment)1422 void CodeGenFunction::EmitAggregateCopy(Address DestPtr,
1423 Address SrcPtr, QualType Ty,
1424 bool isVolatile,
1425 bool isAssignment) {
1426 assert(!Ty->isAnyComplexType() && "Shouldn't happen for complex");
1427
1428 if (getLangOpts().CPlusPlus) {
1429 if (const RecordType *RT = Ty->getAs<RecordType>()) {
1430 CXXRecordDecl *Record = cast<CXXRecordDecl>(RT->getDecl());
1431 assert((Record->hasTrivialCopyConstructor() ||
1432 Record->hasTrivialCopyAssignment() ||
1433 Record->hasTrivialMoveConstructor() ||
1434 Record->hasTrivialMoveAssignment() ||
1435 Record->isUnion()) &&
1436 "Trying to aggregate-copy a type without a trivial copy/move "
1437 "constructor or assignment operator");
1438 // Ignore empty classes in C++.
1439 if (Record->isEmpty())
1440 return;
1441 }
1442 }
1443
1444 // Aggregate assignment turns into llvm.memcpy. This is almost valid per
1445 // C99 6.5.16.1p3, which states "If the value being stored in an object is
1446 // read from another object that overlaps in anyway the storage of the first
1447 // object, then the overlap shall be exact and the two objects shall have
1448 // qualified or unqualified versions of a compatible type."
1449 //
1450 // memcpy is not defined if the source and destination pointers are exactly
1451 // equal, but other compilers do this optimization, and almost every memcpy
1452 // implementation handles this case safely. If there is a libc that does not
1453 // safely handle this, we can add a target hook.
1454
1455 // Get data size info for this aggregate. If this is an assignment,
1456 // don't copy the tail padding, because we might be assigning into a
1457 // base subobject where the tail padding is claimed. Otherwise,
1458 // copying it is fine.
1459 std::pair<CharUnits, CharUnits> TypeInfo;
1460 if (isAssignment)
1461 TypeInfo = getContext().getTypeInfoDataSizeInChars(Ty);
1462 else
1463 TypeInfo = getContext().getTypeInfoInChars(Ty);
1464
1465 llvm::Value *SizeVal = nullptr;
1466 if (TypeInfo.first.isZero()) {
1467 // But note that getTypeInfo returns 0 for a VLA.
1468 if (auto *VAT = dyn_cast_or_null<VariableArrayType>(
1469 getContext().getAsArrayType(Ty))) {
1470 QualType BaseEltTy;
1471 SizeVal = emitArrayLength(VAT, BaseEltTy, DestPtr);
1472 TypeInfo = getContext().getTypeInfoDataSizeInChars(BaseEltTy);
1473 std::pair<CharUnits, CharUnits> LastElementTypeInfo;
1474 if (!isAssignment)
1475 LastElementTypeInfo = getContext().getTypeInfoInChars(BaseEltTy);
1476 assert(!TypeInfo.first.isZero());
1477 SizeVal = Builder.CreateNUWMul(
1478 SizeVal,
1479 llvm::ConstantInt::get(SizeTy, TypeInfo.first.getQuantity()));
1480 if (!isAssignment) {
1481 SizeVal = Builder.CreateNUWSub(
1482 SizeVal,
1483 llvm::ConstantInt::get(SizeTy, TypeInfo.first.getQuantity()));
1484 SizeVal = Builder.CreateNUWAdd(
1485 SizeVal, llvm::ConstantInt::get(
1486 SizeTy, LastElementTypeInfo.first.getQuantity()));
1487 }
1488 }
1489 }
1490 if (!SizeVal) {
1491 SizeVal = llvm::ConstantInt::get(SizeTy, TypeInfo.first.getQuantity());
1492 }
1493
1494 // FIXME: If we have a volatile struct, the optimizer can remove what might
1495 // appear to be `extra' memory ops:
1496 //
1497 // volatile struct { int i; } a, b;
1498 //
1499 // int main() {
1500 // a = b;
1501 // a = b;
1502 // }
1503 //
1504 // we need to use a different call here. We use isVolatile to indicate when
1505 // either the source or the destination is volatile.
1506
1507 DestPtr = Builder.CreateElementBitCast(DestPtr, Int8Ty);
1508 SrcPtr = Builder.CreateElementBitCast(SrcPtr, Int8Ty);
1509
1510 // Don't do any of the memmove_collectable tests if GC isn't set.
1511 if (CGM.getLangOpts().getGC() == LangOptions::NonGC) {
1512 // fall through
1513 } else if (const RecordType *RecordTy = Ty->getAs<RecordType>()) {
1514 RecordDecl *Record = RecordTy->getDecl();
1515 if (Record->hasObjectMember()) {
1516 CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr,
1517 SizeVal);
1518 return;
1519 }
1520 } else if (Ty->isArrayType()) {
1521 QualType BaseType = getContext().getBaseElementType(Ty);
1522 if (const RecordType *RecordTy = BaseType->getAs<RecordType>()) {
1523 if (RecordTy->getDecl()->hasObjectMember()) {
1524 CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr,
1525 SizeVal);
1526 return;
1527 }
1528 }
1529 }
1530
1531 auto Inst = Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, isVolatile);
1532
1533 // Determine the metadata to describe the position of any padding in this
1534 // memcpy, as well as the TBAA tags for the members of the struct, in case
1535 // the optimizer wishes to expand it in to scalar memory operations.
1536 if (llvm::MDNode *TBAAStructTag = CGM.getTBAAStructInfo(Ty))
1537 Inst->setMetadata(llvm::LLVMContext::MD_tbaa_struct, TBAAStructTag);
1538 }
1539