• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===---- TargetInfo.cpp - Encapsulate target details -----------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // These classes wrap the information about a call or function
11 // definition used to handle ABI compliancy.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "TargetInfo.h"
16 #include "ABIInfo.h"
17 #include "CGCXXABI.h"
18 #include "CGValue.h"
19 #include "CodeGenFunction.h"
20 #include "clang/AST/RecordLayout.h"
21 #include "clang/CodeGen/CGFunctionInfo.h"
22 #include "clang/Frontend/CodeGenOptions.h"
23 #include "llvm/ADT/StringExtras.h"
24 #include "llvm/ADT/Triple.h"
25 #include "llvm/IR/DataLayout.h"
26 #include "llvm/IR/Type.h"
27 #include "llvm/Support/raw_ostream.h"
28 #include <algorithm>    // std::sort
29 
30 using namespace clang;
31 using namespace CodeGen;
32 
33 // Helper for coercing an aggregate argument or return value into an
34 // integer array of the same size (including padding).
35 //
36 // This is needed for RenderScript on ARM targets. The RenderScript
37 // compiler assumes that the size of the argument / return value in
38 // the IR is the same as the size of the corresponding qualified
39 // type. It is necessary to coerce the aggregate type into an
40 // array. We cannot pass a struct directly as an argument because
41 // clang's struct passing logic breaks up the struct into its
42 // constitutent fields.
43 //
44 // Ty          - The argument / return value type
45 // Context     - The associated ASTContext
46 // LLVMContext - The associated LLVMContext
coerceToIntArray(QualType Ty,ASTContext & Context,llvm::LLVMContext & LLVMContext)47 static ABIArgInfo coerceToIntArray(QualType Ty,
48                                    ASTContext &Context,
49                                    llvm::LLVMContext &LLVMContext) {
50   // Alignment and Size are measured in bits.
51   const uint64_t Size = Context.getTypeSize(Ty);
52   const uint64_t Alignment = Context.getTypeAlign(Ty);
53   llvm::Type *IntType = llvm::Type::getIntNTy(LLVMContext, Alignment);
54   const uint64_t NumElements = (Size + Alignment - 1) / Alignment;
55   return ABIArgInfo::getDirect(llvm::ArrayType::get(IntType, NumElements));
56 }
57 
AssignToArrayRange(CodeGen::CGBuilderTy & Builder,llvm::Value * Array,llvm::Value * Value,unsigned FirstIndex,unsigned LastIndex)58 static void AssignToArrayRange(CodeGen::CGBuilderTy &Builder,
59                                llvm::Value *Array,
60                                llvm::Value *Value,
61                                unsigned FirstIndex,
62                                unsigned LastIndex) {
63   // Alternatively, we could emit this as a loop in the source.
64   for (unsigned I = FirstIndex; I <= LastIndex; ++I) {
65     llvm::Value *Cell =
66         Builder.CreateConstInBoundsGEP1_32(Builder.getInt8Ty(), Array, I);
67     Builder.CreateAlignedStore(Value, Cell, CharUnits::One());
68   }
69 }
70 
isAggregateTypeForABI(QualType T)71 static bool isAggregateTypeForABI(QualType T) {
72   return !CodeGenFunction::hasScalarEvaluationKind(T) ||
73          T->isMemberFunctionPointerType();
74 }
75 
76 ABIArgInfo
getNaturalAlignIndirect(QualType Ty,bool ByRef,bool Realign,llvm::Type * Padding) const77 ABIInfo::getNaturalAlignIndirect(QualType Ty, bool ByRef, bool Realign,
78                                  llvm::Type *Padding) const {
79   return ABIArgInfo::getIndirect(getContext().getTypeAlignInChars(Ty),
80                                  ByRef, Realign, Padding);
81 }
82 
83 ABIArgInfo
getNaturalAlignIndirectInReg(QualType Ty,bool Realign) const84 ABIInfo::getNaturalAlignIndirectInReg(QualType Ty, bool Realign) const {
85   return ABIArgInfo::getIndirectInReg(getContext().getTypeAlignInChars(Ty),
86                                       /*ByRef*/ false, Realign);
87 }
88 
EmitMSVAArg(CodeGenFunction & CGF,Address VAListAddr,QualType Ty) const89 Address ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
90                              QualType Ty) const {
91   return Address::invalid();
92 }
93 
~ABIInfo()94 ABIInfo::~ABIInfo() {}
95 
getRecordArgABI(const RecordType * RT,CGCXXABI & CXXABI)96 static CGCXXABI::RecordArgABI getRecordArgABI(const RecordType *RT,
97                                               CGCXXABI &CXXABI) {
98   const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
99   if (!RD)
100     return CGCXXABI::RAA_Default;
101   return CXXABI.getRecordArgABI(RD);
102 }
103 
getRecordArgABI(QualType T,CGCXXABI & CXXABI)104 static CGCXXABI::RecordArgABI getRecordArgABI(QualType T,
105                                               CGCXXABI &CXXABI) {
106   const RecordType *RT = T->getAs<RecordType>();
107   if (!RT)
108     return CGCXXABI::RAA_Default;
109   return getRecordArgABI(RT, CXXABI);
110 }
111 
112 /// Pass transparent unions as if they were the type of the first element. Sema
113 /// should ensure that all elements of the union have the same "machine type".
useFirstFieldIfTransparentUnion(QualType Ty)114 static QualType useFirstFieldIfTransparentUnion(QualType Ty) {
115   if (const RecordType *UT = Ty->getAsUnionType()) {
116     const RecordDecl *UD = UT->getDecl();
117     if (UD->hasAttr<TransparentUnionAttr>()) {
118       assert(!UD->field_empty() && "sema created an empty transparent union");
119       return UD->field_begin()->getType();
120     }
121   }
122   return Ty;
123 }
124 
getCXXABI() const125 CGCXXABI &ABIInfo::getCXXABI() const {
126   return CGT.getCXXABI();
127 }
128 
getContext() const129 ASTContext &ABIInfo::getContext() const {
130   return CGT.getContext();
131 }
132 
getVMContext() const133 llvm::LLVMContext &ABIInfo::getVMContext() const {
134   return CGT.getLLVMContext();
135 }
136 
getDataLayout() const137 const llvm::DataLayout &ABIInfo::getDataLayout() const {
138   return CGT.getDataLayout();
139 }
140 
getTarget() const141 const TargetInfo &ABIInfo::getTarget() const {
142   return CGT.getTarget();
143 }
144 
isHomogeneousAggregateBaseType(QualType Ty) const145 bool ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
146   return false;
147 }
148 
isHomogeneousAggregateSmallEnough(const Type * Base,uint64_t Members) const149 bool ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base,
150                                                 uint64_t Members) const {
151   return false;
152 }
153 
shouldSignExtUnsignedType(QualType Ty) const154 bool ABIInfo::shouldSignExtUnsignedType(QualType Ty) const {
155   return false;
156 }
157 
dump() const158 void ABIArgInfo::dump() const {
159   raw_ostream &OS = llvm::errs();
160   OS << "(ABIArgInfo Kind=";
161   switch (TheKind) {
162   case Direct:
163     OS << "Direct Type=";
164     if (llvm::Type *Ty = getCoerceToType())
165       Ty->print(OS);
166     else
167       OS << "null";
168     break;
169   case Extend:
170     OS << "Extend";
171     break;
172   case Ignore:
173     OS << "Ignore";
174     break;
175   case InAlloca:
176     OS << "InAlloca Offset=" << getInAllocaFieldIndex();
177     break;
178   case Indirect:
179     OS << "Indirect Align=" << getIndirectAlign().getQuantity()
180        << " ByVal=" << getIndirectByVal()
181        << " Realign=" << getIndirectRealign();
182     break;
183   case Expand:
184     OS << "Expand";
185     break;
186   }
187   OS << ")\n";
188 }
189 
190 // Dynamically round a pointer up to a multiple of the given alignment.
emitRoundPointerUpToAlignment(CodeGenFunction & CGF,llvm::Value * Ptr,CharUnits Align)191 static llvm::Value *emitRoundPointerUpToAlignment(CodeGenFunction &CGF,
192                                                   llvm::Value *Ptr,
193                                                   CharUnits Align) {
194   llvm::Value *PtrAsInt = Ptr;
195   // OverflowArgArea = (OverflowArgArea + Align - 1) & -Align;
196   PtrAsInt = CGF.Builder.CreatePtrToInt(PtrAsInt, CGF.IntPtrTy);
197   PtrAsInt = CGF.Builder.CreateAdd(PtrAsInt,
198         llvm::ConstantInt::get(CGF.IntPtrTy, Align.getQuantity() - 1));
199   PtrAsInt = CGF.Builder.CreateAnd(PtrAsInt,
200            llvm::ConstantInt::get(CGF.IntPtrTy, -Align.getQuantity()));
201   PtrAsInt = CGF.Builder.CreateIntToPtr(PtrAsInt,
202                                         Ptr->getType(),
203                                         Ptr->getName() + ".aligned");
204   return PtrAsInt;
205 }
206 
207 /// Emit va_arg for a platform using the common void* representation,
208 /// where arguments are simply emitted in an array of slots on the stack.
209 ///
210 /// This version implements the core direct-value passing rules.
211 ///
212 /// \param SlotSize - The size and alignment of a stack slot.
213 ///   Each argument will be allocated to a multiple of this number of
214 ///   slots, and all the slots will be aligned to this value.
215 /// \param AllowHigherAlign - The slot alignment is not a cap;
216 ///   an argument type with an alignment greater than the slot size
217 ///   will be emitted on a higher-alignment address, potentially
218 ///   leaving one or more empty slots behind as padding.  If this
219 ///   is false, the returned address might be less-aligned than
220 ///   DirectAlign.
emitVoidPtrDirectVAArg(CodeGenFunction & CGF,Address VAListAddr,llvm::Type * DirectTy,CharUnits DirectSize,CharUnits DirectAlign,CharUnits SlotSize,bool AllowHigherAlign)221 static Address emitVoidPtrDirectVAArg(CodeGenFunction &CGF,
222                                       Address VAListAddr,
223                                       llvm::Type *DirectTy,
224                                       CharUnits DirectSize,
225                                       CharUnits DirectAlign,
226                                       CharUnits SlotSize,
227                                       bool AllowHigherAlign) {
228   // Cast the element type to i8* if necessary.  Some platforms define
229   // va_list as a struct containing an i8* instead of just an i8*.
230   if (VAListAddr.getElementType() != CGF.Int8PtrTy)
231     VAListAddr = CGF.Builder.CreateElementBitCast(VAListAddr, CGF.Int8PtrTy);
232 
233   llvm::Value *Ptr = CGF.Builder.CreateLoad(VAListAddr, "argp.cur");
234 
235   // If the CC aligns values higher than the slot size, do so if needed.
236   Address Addr = Address::invalid();
237   if (AllowHigherAlign && DirectAlign > SlotSize) {
238     Addr = Address(emitRoundPointerUpToAlignment(CGF, Ptr, DirectAlign),
239                                                  DirectAlign);
240   } else {
241     Addr = Address(Ptr, SlotSize);
242   }
243 
244   // Advance the pointer past the argument, then store that back.
245   CharUnits FullDirectSize = DirectSize.RoundUpToAlignment(SlotSize);
246   llvm::Value *NextPtr =
247     CGF.Builder.CreateConstInBoundsByteGEP(Addr.getPointer(), FullDirectSize,
248                                            "argp.next");
249   CGF.Builder.CreateStore(NextPtr, VAListAddr);
250 
251   // If the argument is smaller than a slot, and this is a big-endian
252   // target, the argument will be right-adjusted in its slot.
253   if (DirectSize < SlotSize && CGF.CGM.getDataLayout().isBigEndian()) {
254     Addr = CGF.Builder.CreateConstInBoundsByteGEP(Addr, SlotSize - DirectSize);
255   }
256 
257   Addr = CGF.Builder.CreateElementBitCast(Addr, DirectTy);
258   return Addr;
259 }
260 
261 /// Emit va_arg for a platform using the common void* representation,
262 /// where arguments are simply emitted in an array of slots on the stack.
263 ///
264 /// \param IsIndirect - Values of this type are passed indirectly.
265 /// \param ValueInfo - The size and alignment of this type, generally
266 ///   computed with getContext().getTypeInfoInChars(ValueTy).
267 /// \param SlotSizeAndAlign - The size and alignment of a stack slot.
268 ///   Each argument will be allocated to a multiple of this number of
269 ///   slots, and all the slots will be aligned to this value.
270 /// \param AllowHigherAlign - The slot alignment is not a cap;
271 ///   an argument type with an alignment greater than the slot size
272 ///   will be emitted on a higher-alignment address, potentially
273 ///   leaving one or more empty slots behind as padding.
emitVoidPtrVAArg(CodeGenFunction & CGF,Address VAListAddr,QualType ValueTy,bool IsIndirect,std::pair<CharUnits,CharUnits> ValueInfo,CharUnits SlotSizeAndAlign,bool AllowHigherAlign)274 static Address emitVoidPtrVAArg(CodeGenFunction &CGF, Address VAListAddr,
275                                 QualType ValueTy, bool IsIndirect,
276                                 std::pair<CharUnits, CharUnits> ValueInfo,
277                                 CharUnits SlotSizeAndAlign,
278                                 bool AllowHigherAlign) {
279   // The size and alignment of the value that was passed directly.
280   CharUnits DirectSize, DirectAlign;
281   if (IsIndirect) {
282     DirectSize = CGF.getPointerSize();
283     DirectAlign = CGF.getPointerAlign();
284   } else {
285     DirectSize = ValueInfo.first;
286     DirectAlign = ValueInfo.second;
287   }
288 
289   // Cast the address we've calculated to the right type.
290   llvm::Type *DirectTy = CGF.ConvertTypeForMem(ValueTy);
291   if (IsIndirect)
292     DirectTy = DirectTy->getPointerTo(0);
293 
294   Address Addr = emitVoidPtrDirectVAArg(CGF, VAListAddr, DirectTy,
295                                         DirectSize, DirectAlign,
296                                         SlotSizeAndAlign,
297                                         AllowHigherAlign);
298 
299   if (IsIndirect) {
300     Addr = Address(CGF.Builder.CreateLoad(Addr), ValueInfo.second);
301   }
302 
303   return Addr;
304 
305 }
306 
emitMergePHI(CodeGenFunction & CGF,Address Addr1,llvm::BasicBlock * Block1,Address Addr2,llvm::BasicBlock * Block2,const llvm::Twine & Name="")307 static Address emitMergePHI(CodeGenFunction &CGF,
308                             Address Addr1, llvm::BasicBlock *Block1,
309                             Address Addr2, llvm::BasicBlock *Block2,
310                             const llvm::Twine &Name = "") {
311   assert(Addr1.getType() == Addr2.getType());
312   llvm::PHINode *PHI = CGF.Builder.CreatePHI(Addr1.getType(), 2, Name);
313   PHI->addIncoming(Addr1.getPointer(), Block1);
314   PHI->addIncoming(Addr2.getPointer(), Block2);
315   CharUnits Align = std::min(Addr1.getAlignment(), Addr2.getAlignment());
316   return Address(PHI, Align);
317 }
318 
~TargetCodeGenInfo()319 TargetCodeGenInfo::~TargetCodeGenInfo() { delete Info; }
320 
321 // If someone can figure out a general rule for this, that would be great.
322 // It's probably just doomed to be platform-dependent, though.
getSizeOfUnwindException() const323 unsigned TargetCodeGenInfo::getSizeOfUnwindException() const {
324   // Verified for:
325   //   x86-64     FreeBSD, Linux, Darwin
326   //   x86-32     FreeBSD, Linux, Darwin
327   //   PowerPC    Linux, Darwin
328   //   ARM        Darwin (*not* EABI)
329   //   AArch64    Linux
330   return 32;
331 }
332 
isNoProtoCallVariadic(const CallArgList & args,const FunctionNoProtoType * fnType) const333 bool TargetCodeGenInfo::isNoProtoCallVariadic(const CallArgList &args,
334                                      const FunctionNoProtoType *fnType) const {
335   // The following conventions are known to require this to be false:
336   //   x86_stdcall
337   //   MIPS
338   // For everything else, we just prefer false unless we opt out.
339   return false;
340 }
341 
342 void
getDependentLibraryOption(llvm::StringRef Lib,llvm::SmallString<24> & Opt) const343 TargetCodeGenInfo::getDependentLibraryOption(llvm::StringRef Lib,
344                                              llvm::SmallString<24> &Opt) const {
345   // This assumes the user is passing a library name like "rt" instead of a
346   // filename like "librt.a/so", and that they don't care whether it's static or
347   // dynamic.
348   Opt = "-l";
349   Opt += Lib;
350 }
351 
352 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays);
353 
354 /// isEmptyField - Return true iff a the field is "empty", that is it
355 /// is an unnamed bit-field or an (array of) empty record(s).
isEmptyField(ASTContext & Context,const FieldDecl * FD,bool AllowArrays)356 static bool isEmptyField(ASTContext &Context, const FieldDecl *FD,
357                          bool AllowArrays) {
358   if (FD->isUnnamedBitfield())
359     return true;
360 
361   QualType FT = FD->getType();
362 
363   // Constant arrays of empty records count as empty, strip them off.
364   // Constant arrays of zero length always count as empty.
365   if (AllowArrays)
366     while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) {
367       if (AT->getSize() == 0)
368         return true;
369       FT = AT->getElementType();
370     }
371 
372   const RecordType *RT = FT->getAs<RecordType>();
373   if (!RT)
374     return false;
375 
376   // C++ record fields are never empty, at least in the Itanium ABI.
377   //
378   // FIXME: We should use a predicate for whether this behavior is true in the
379   // current ABI.
380   if (isa<CXXRecordDecl>(RT->getDecl()))
381     return false;
382 
383   return isEmptyRecord(Context, FT, AllowArrays);
384 }
385 
386 /// isEmptyRecord - Return true iff a structure contains only empty
387 /// fields. Note that a structure with a flexible array member is not
388 /// considered empty.
isEmptyRecord(ASTContext & Context,QualType T,bool AllowArrays)389 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays) {
390   const RecordType *RT = T->getAs<RecordType>();
391   if (!RT)
392     return 0;
393   const RecordDecl *RD = RT->getDecl();
394   if (RD->hasFlexibleArrayMember())
395     return false;
396 
397   // If this is a C++ record, check the bases first.
398   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
399     for (const auto &I : CXXRD->bases())
400       if (!isEmptyRecord(Context, I.getType(), true))
401         return false;
402 
403   for (const auto *I : RD->fields())
404     if (!isEmptyField(Context, I, AllowArrays))
405       return false;
406   return true;
407 }
408 
409 /// isSingleElementStruct - Determine if a structure is a "single
410 /// element struct", i.e. it has exactly one non-empty field or
411 /// exactly one field which is itself a single element
412 /// struct. Structures with flexible array members are never
413 /// considered single element structs.
414 ///
415 /// \return The field declaration for the single non-empty field, if
416 /// it exists.
isSingleElementStruct(QualType T,ASTContext & Context)417 static const Type *isSingleElementStruct(QualType T, ASTContext &Context) {
418   const RecordType *RT = T->getAs<RecordType>();
419   if (!RT)
420     return nullptr;
421 
422   const RecordDecl *RD = RT->getDecl();
423   if (RD->hasFlexibleArrayMember())
424     return nullptr;
425 
426   const Type *Found = nullptr;
427 
428   // If this is a C++ record, check the bases first.
429   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
430     for (const auto &I : CXXRD->bases()) {
431       // Ignore empty records.
432       if (isEmptyRecord(Context, I.getType(), true))
433         continue;
434 
435       // If we already found an element then this isn't a single-element struct.
436       if (Found)
437         return nullptr;
438 
439       // If this is non-empty and not a single element struct, the composite
440       // cannot be a single element struct.
441       Found = isSingleElementStruct(I.getType(), Context);
442       if (!Found)
443         return nullptr;
444     }
445   }
446 
447   // Check for single element.
448   for (const auto *FD : RD->fields()) {
449     QualType FT = FD->getType();
450 
451     // Ignore empty fields.
452     if (isEmptyField(Context, FD, true))
453       continue;
454 
455     // If we already found an element then this isn't a single-element
456     // struct.
457     if (Found)
458       return nullptr;
459 
460     // Treat single element arrays as the element.
461     while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) {
462       if (AT->getSize().getZExtValue() != 1)
463         break;
464       FT = AT->getElementType();
465     }
466 
467     if (!isAggregateTypeForABI(FT)) {
468       Found = FT.getTypePtr();
469     } else {
470       Found = isSingleElementStruct(FT, Context);
471       if (!Found)
472         return nullptr;
473     }
474   }
475 
476   // We don't consider a struct a single-element struct if it has
477   // padding beyond the element type.
478   if (Found && Context.getTypeSize(Found) != Context.getTypeSize(T))
479     return nullptr;
480 
481   return Found;
482 }
483 
is32Or64BitBasicType(QualType Ty,ASTContext & Context)484 static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) {
485   // Treat complex types as the element type.
486   if (const ComplexType *CTy = Ty->getAs<ComplexType>())
487     Ty = CTy->getElementType();
488 
489   // Check for a type which we know has a simple scalar argument-passing
490   // convention without any padding.  (We're specifically looking for 32
491   // and 64-bit integer and integer-equivalents, float, and double.)
492   if (!Ty->getAs<BuiltinType>() && !Ty->hasPointerRepresentation() &&
493       !Ty->isEnumeralType() && !Ty->isBlockPointerType())
494     return false;
495 
496   uint64_t Size = Context.getTypeSize(Ty);
497   return Size == 32 || Size == 64;
498 }
499 
500 /// canExpandIndirectArgument - Test whether an argument type which is to be
501 /// passed indirectly (on the stack) would have the equivalent layout if it was
502 /// expanded into separate arguments. If so, we prefer to do the latter to avoid
503 /// inhibiting optimizations.
504 ///
505 // FIXME: This predicate is missing many cases, currently it just follows
506 // llvm-gcc (checks that all fields are 32-bit or 64-bit primitive types). We
507 // should probably make this smarter, or better yet make the LLVM backend
508 // capable of handling it.
canExpandIndirectArgument(QualType Ty,ASTContext & Context)509 static bool canExpandIndirectArgument(QualType Ty, ASTContext &Context) {
510   // We can only expand structure types.
511   const RecordType *RT = Ty->getAs<RecordType>();
512   if (!RT)
513     return false;
514 
515   // We can only expand (C) structures.
516   //
517   // FIXME: This needs to be generalized to handle classes as well.
518   const RecordDecl *RD = RT->getDecl();
519   if (!RD->isStruct())
520     return false;
521 
522   // We try to expand CLike CXXRecordDecl.
523   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
524     if (!CXXRD->isCLike())
525       return false;
526   }
527 
528   uint64_t Size = 0;
529 
530   for (const auto *FD : RD->fields()) {
531     if (!is32Or64BitBasicType(FD->getType(), Context))
532       return false;
533 
534     // FIXME: Reject bit-fields wholesale; there are two problems, we don't know
535     // how to expand them yet, and the predicate for telling if a bitfield still
536     // counts as "basic" is more complicated than what we were doing previously.
537     if (FD->isBitField())
538       return false;
539 
540     Size += Context.getTypeSize(FD->getType());
541   }
542 
543   // Make sure there are not any holes in the struct.
544   if (Size != Context.getTypeSize(Ty))
545     return false;
546 
547   return true;
548 }
549 
550 namespace {
551 /// DefaultABIInfo - The default implementation for ABI specific
552 /// details. This implementation provides information which results in
553 /// self-consistent and sensible LLVM IR generation, but does not
554 /// conform to any particular ABI.
555 class DefaultABIInfo : public ABIInfo {
556 public:
DefaultABIInfo(CodeGen::CodeGenTypes & CGT)557   DefaultABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
558 
559   ABIArgInfo classifyReturnType(QualType RetTy) const;
560   ABIArgInfo classifyArgumentType(QualType RetTy) const;
561 
computeInfo(CGFunctionInfo & FI) const562   void computeInfo(CGFunctionInfo &FI) const override {
563     if (!getCXXABI().classifyReturnType(FI))
564       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
565     for (auto &I : FI.arguments())
566       I.info = classifyArgumentType(I.type);
567   }
568 
569   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
570                     QualType Ty) const override;
571 };
572 
573 class DefaultTargetCodeGenInfo : public TargetCodeGenInfo {
574 public:
DefaultTargetCodeGenInfo(CodeGen::CodeGenTypes & CGT)575   DefaultTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
576     : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
577 };
578 
EmitVAArg(CodeGenFunction & CGF,Address VAListAddr,QualType Ty) const579 Address DefaultABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
580                                   QualType Ty) const {
581   return Address::invalid();
582 }
583 
classifyArgumentType(QualType Ty) const584 ABIArgInfo DefaultABIInfo::classifyArgumentType(QualType Ty) const {
585   Ty = useFirstFieldIfTransparentUnion(Ty);
586 
587   if (isAggregateTypeForABI(Ty)) {
588     // Records with non-trivial destructors/copy-constructors should not be
589     // passed by value.
590     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
591       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
592 
593     return getNaturalAlignIndirect(Ty);
594   }
595 
596   // Treat an enum type as its underlying type.
597   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
598     Ty = EnumTy->getDecl()->getIntegerType();
599 
600   return (Ty->isPromotableIntegerType() ?
601           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
602 }
603 
classifyReturnType(QualType RetTy) const604 ABIArgInfo DefaultABIInfo::classifyReturnType(QualType RetTy) const {
605   if (RetTy->isVoidType())
606     return ABIArgInfo::getIgnore();
607 
608   if (isAggregateTypeForABI(RetTy))
609     return getNaturalAlignIndirect(RetTy);
610 
611   // Treat an enum type as its underlying type.
612   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
613     RetTy = EnumTy->getDecl()->getIntegerType();
614 
615   return (RetTy->isPromotableIntegerType() ?
616           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
617 }
618 
619 //===----------------------------------------------------------------------===//
620 // WebAssembly ABI Implementation
621 //
622 // This is a very simple ABI that relies a lot on DefaultABIInfo.
623 //===----------------------------------------------------------------------===//
624 
625 class WebAssemblyABIInfo final : public DefaultABIInfo {
626 public:
WebAssemblyABIInfo(CodeGen::CodeGenTypes & CGT)627   explicit WebAssemblyABIInfo(CodeGen::CodeGenTypes &CGT)
628       : DefaultABIInfo(CGT) {}
629 
630 private:
631   ABIArgInfo classifyReturnType(QualType RetTy) const;
632   ABIArgInfo classifyArgumentType(QualType Ty) const;
633 
634   // DefaultABIInfo's classifyReturnType and classifyArgumentType are
635   // non-virtual, but computeInfo is virtual, so we overload that.
computeInfo(CGFunctionInfo & FI) const636   void computeInfo(CGFunctionInfo &FI) const override {
637     if (!getCXXABI().classifyReturnType(FI))
638       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
639     for (auto &Arg : FI.arguments())
640       Arg.info = classifyArgumentType(Arg.type);
641   }
642 };
643 
644 class WebAssemblyTargetCodeGenInfo final : public TargetCodeGenInfo {
645 public:
WebAssemblyTargetCodeGenInfo(CodeGen::CodeGenTypes & CGT)646   explicit WebAssemblyTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
647       : TargetCodeGenInfo(new WebAssemblyABIInfo(CGT)) {}
648 };
649 
650 /// \brief Classify argument of given type \p Ty.
classifyArgumentType(QualType Ty) const651 ABIArgInfo WebAssemblyABIInfo::classifyArgumentType(QualType Ty) const {
652   Ty = useFirstFieldIfTransparentUnion(Ty);
653 
654   if (isAggregateTypeForABI(Ty)) {
655     // Records with non-trivial destructors/copy-constructors should not be
656     // passed by value.
657     if (auto RAA = getRecordArgABI(Ty, getCXXABI()))
658       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
659     // Ignore empty structs/unions.
660     if (isEmptyRecord(getContext(), Ty, true))
661       return ABIArgInfo::getIgnore();
662     // Lower single-element structs to just pass a regular value. TODO: We
663     // could do reasonable-size multiple-element structs too, using getExpand(),
664     // though watch out for things like bitfields.
665     if (const Type *SeltTy = isSingleElementStruct(Ty, getContext()))
666       return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
667   }
668 
669   // Otherwise just do the default thing.
670   return DefaultABIInfo::classifyArgumentType(Ty);
671 }
672 
classifyReturnType(QualType RetTy) const673 ABIArgInfo WebAssemblyABIInfo::classifyReturnType(QualType RetTy) const {
674   if (isAggregateTypeForABI(RetTy)) {
675     // Records with non-trivial destructors/copy-constructors should not be
676     // returned by value.
677     if (!getRecordArgABI(RetTy, getCXXABI())) {
678       // Ignore empty structs/unions.
679       if (isEmptyRecord(getContext(), RetTy, true))
680         return ABIArgInfo::getIgnore();
681       // Lower single-element structs to just return a regular value. TODO: We
682       // could do reasonable-size multiple-element structs too, using
683       // ABIArgInfo::getDirect().
684       if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext()))
685         return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
686     }
687   }
688 
689   // Otherwise just do the default thing.
690   return DefaultABIInfo::classifyReturnType(RetTy);
691 }
692 
693 //===----------------------------------------------------------------------===//
694 // le32/PNaCl bitcode ABI Implementation
695 //
696 // This is a simplified version of the x86_32 ABI.  Arguments and return values
697 // are always passed on the stack.
698 //===----------------------------------------------------------------------===//
699 
700 class PNaClABIInfo : public ABIInfo {
701  public:
PNaClABIInfo(CodeGen::CodeGenTypes & CGT)702   PNaClABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
703 
704   ABIArgInfo classifyReturnType(QualType RetTy) const;
705   ABIArgInfo classifyArgumentType(QualType RetTy) const;
706 
707   void computeInfo(CGFunctionInfo &FI) const override;
708   Address EmitVAArg(CodeGenFunction &CGF,
709                     Address VAListAddr, QualType Ty) const override;
710 };
711 
712 class PNaClTargetCodeGenInfo : public TargetCodeGenInfo {
713  public:
PNaClTargetCodeGenInfo(CodeGen::CodeGenTypes & CGT)714   PNaClTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
715     : TargetCodeGenInfo(new PNaClABIInfo(CGT)) {}
716 };
717 
computeInfo(CGFunctionInfo & FI) const718 void PNaClABIInfo::computeInfo(CGFunctionInfo &FI) const {
719   if (!getCXXABI().classifyReturnType(FI))
720     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
721 
722   for (auto &I : FI.arguments())
723     I.info = classifyArgumentType(I.type);
724 }
725 
EmitVAArg(CodeGenFunction & CGF,Address VAListAddr,QualType Ty) const726 Address PNaClABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
727                                 QualType Ty) const {
728   return Address::invalid();
729 }
730 
731 /// \brief Classify argument of given type \p Ty.
classifyArgumentType(QualType Ty) const732 ABIArgInfo PNaClABIInfo::classifyArgumentType(QualType Ty) const {
733   if (isAggregateTypeForABI(Ty)) {
734     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
735       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
736     return getNaturalAlignIndirect(Ty);
737   } else if (const EnumType *EnumTy = Ty->getAs<EnumType>()) {
738     // Treat an enum type as its underlying type.
739     Ty = EnumTy->getDecl()->getIntegerType();
740   } else if (Ty->isFloatingType()) {
741     // Floating-point types don't go inreg.
742     return ABIArgInfo::getDirect();
743   }
744 
745   return (Ty->isPromotableIntegerType() ?
746           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
747 }
748 
classifyReturnType(QualType RetTy) const749 ABIArgInfo PNaClABIInfo::classifyReturnType(QualType RetTy) const {
750   if (RetTy->isVoidType())
751     return ABIArgInfo::getIgnore();
752 
753   // In the PNaCl ABI we always return records/structures on the stack.
754   if (isAggregateTypeForABI(RetTy))
755     return getNaturalAlignIndirect(RetTy);
756 
757   // Treat an enum type as its underlying type.
758   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
759     RetTy = EnumTy->getDecl()->getIntegerType();
760 
761   return (RetTy->isPromotableIntegerType() ?
762           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
763 }
764 
765 /// IsX86_MMXType - Return true if this is an MMX type.
IsX86_MMXType(llvm::Type * IRType)766 bool IsX86_MMXType(llvm::Type *IRType) {
767   // Return true if the type is an MMX type <2 x i32>, <4 x i16>, or <8 x i8>.
768   return IRType->isVectorTy() && IRType->getPrimitiveSizeInBits() == 64 &&
769     cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy() &&
770     IRType->getScalarSizeInBits() != 64;
771 }
772 
X86AdjustInlineAsmType(CodeGen::CodeGenFunction & CGF,StringRef Constraint,llvm::Type * Ty)773 static llvm::Type* X86AdjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
774                                           StringRef Constraint,
775                                           llvm::Type* Ty) {
776   if ((Constraint == "y" || Constraint == "&y") && Ty->isVectorTy()) {
777     if (cast<llvm::VectorType>(Ty)->getBitWidth() != 64) {
778       // Invalid MMX constraint
779       return nullptr;
780     }
781 
782     return llvm::Type::getX86_MMXTy(CGF.getLLVMContext());
783   }
784 
785   // No operation needed
786   return Ty;
787 }
788 
789 /// Returns true if this type can be passed in SSE registers with the
790 /// X86_VectorCall calling convention. Shared between x86_32 and x86_64.
isX86VectorTypeForVectorCall(ASTContext & Context,QualType Ty)791 static bool isX86VectorTypeForVectorCall(ASTContext &Context, QualType Ty) {
792   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
793     if (BT->isFloatingPoint() && BT->getKind() != BuiltinType::Half)
794       return true;
795   } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
796     // vectorcall can pass XMM, YMM, and ZMM vectors. We don't pass SSE1 MMX
797     // registers specially.
798     unsigned VecSize = Context.getTypeSize(VT);
799     if (VecSize == 128 || VecSize == 256 || VecSize == 512)
800       return true;
801   }
802   return false;
803 }
804 
805 /// Returns true if this aggregate is small enough to be passed in SSE registers
806 /// in the X86_VectorCall calling convention. Shared between x86_32 and x86_64.
isX86VectorCallAggregateSmallEnough(uint64_t NumMembers)807 static bool isX86VectorCallAggregateSmallEnough(uint64_t NumMembers) {
808   return NumMembers <= 4;
809 }
810 
811 //===----------------------------------------------------------------------===//
812 // X86-32 ABI Implementation
813 //===----------------------------------------------------------------------===//
814 
815 /// \brief Similar to llvm::CCState, but for Clang.
816 struct CCState {
CCState__anon2cc540940111::CCState817   CCState(unsigned CC) : CC(CC), FreeRegs(0), FreeSSERegs(0) {}
818 
819   unsigned CC;
820   unsigned FreeRegs;
821   unsigned FreeSSERegs;
822 };
823 
824 /// X86_32ABIInfo - The X86-32 ABI information.
825 class X86_32ABIInfo : public ABIInfo {
826   enum Class {
827     Integer,
828     Float
829   };
830 
831   static const unsigned MinABIStackAlignInBytes = 4;
832 
833   bool IsDarwinVectorABI;
834   bool IsRetSmallStructInRegABI;
835   bool IsWin32StructABI;
836   bool IsSoftFloatABI;
837   bool IsMCUABI;
838   unsigned DefaultNumRegisterParameters;
839 
isRegisterSize(unsigned Size)840   static bool isRegisterSize(unsigned Size) {
841     return (Size == 8 || Size == 16 || Size == 32 || Size == 64);
842   }
843 
isHomogeneousAggregateBaseType(QualType Ty) const844   bool isHomogeneousAggregateBaseType(QualType Ty) const override {
845     // FIXME: Assumes vectorcall is in use.
846     return isX86VectorTypeForVectorCall(getContext(), Ty);
847   }
848 
isHomogeneousAggregateSmallEnough(const Type * Ty,uint64_t NumMembers) const849   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
850                                          uint64_t NumMembers) const override {
851     // FIXME: Assumes vectorcall is in use.
852     return isX86VectorCallAggregateSmallEnough(NumMembers);
853   }
854 
855   bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context) const;
856 
857   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
858   /// such that the argument will be passed in memory.
859   ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const;
860 
861   ABIArgInfo getIndirectReturnResult(QualType Ty, CCState &State) const;
862 
863   /// \brief Return the alignment to use for the given type on the stack.
864   unsigned getTypeStackAlignInBytes(QualType Ty, unsigned Align) const;
865 
866   Class classify(QualType Ty) const;
867   ABIArgInfo classifyReturnType(QualType RetTy, CCState &State) const;
868   ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const;
869   bool shouldUseInReg(QualType Ty, CCState &State, bool &NeedsPadding) const;
870 
871   /// \brief Rewrite the function info so that all memory arguments use
872   /// inalloca.
873   void rewriteWithInAlloca(CGFunctionInfo &FI) const;
874 
875   void addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields,
876                            CharUnits &StackOffset, ABIArgInfo &Info,
877                            QualType Type) const;
878 
879 public:
880 
881   void computeInfo(CGFunctionInfo &FI) const override;
882   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
883                     QualType Ty) const override;
884 
X86_32ABIInfo(CodeGen::CodeGenTypes & CGT,bool DarwinVectorABI,bool RetSmallStructInRegABI,bool Win32StructABI,unsigned NumRegisterParameters,bool SoftFloatABI)885   X86_32ABIInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI,
886                 bool RetSmallStructInRegABI, bool Win32StructABI,
887                 unsigned NumRegisterParameters, bool SoftFloatABI)
888     : ABIInfo(CGT), IsDarwinVectorABI(DarwinVectorABI),
889       IsRetSmallStructInRegABI(RetSmallStructInRegABI),
890       IsWin32StructABI(Win32StructABI),
891       IsSoftFloatABI(SoftFloatABI),
892       IsMCUABI(CGT.getTarget().getTriple().isOSIAMCU()),
893       DefaultNumRegisterParameters(NumRegisterParameters) {}
894 };
895 
896 class X86_32TargetCodeGenInfo : public TargetCodeGenInfo {
897 public:
X86_32TargetCodeGenInfo(CodeGen::CodeGenTypes & CGT,bool DarwinVectorABI,bool RetSmallStructInRegABI,bool Win32StructABI,unsigned NumRegisterParameters,bool SoftFloatABI)898   X86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI,
899                           bool RetSmallStructInRegABI, bool Win32StructABI,
900                           unsigned NumRegisterParameters, bool SoftFloatABI)
901       : TargetCodeGenInfo(new X86_32ABIInfo(
902             CGT, DarwinVectorABI, RetSmallStructInRegABI, Win32StructABI,
903             NumRegisterParameters, SoftFloatABI)) {}
904 
905   static bool isStructReturnInRegABI(
906       const llvm::Triple &Triple, const CodeGenOptions &Opts);
907 
908   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
909                            CodeGen::CodeGenModule &CGM) const override;
910 
getDwarfEHStackPointer(CodeGen::CodeGenModule & CGM) const911   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
912     // Darwin uses different dwarf register numbers for EH.
913     if (CGM.getTarget().getTriple().isOSDarwin()) return 5;
914     return 4;
915   }
916 
917   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
918                                llvm::Value *Address) const override;
919 
adjustInlineAsmType(CodeGen::CodeGenFunction & CGF,StringRef Constraint,llvm::Type * Ty) const920   llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
921                                   StringRef Constraint,
922                                   llvm::Type* Ty) const override {
923     return X86AdjustInlineAsmType(CGF, Constraint, Ty);
924   }
925 
926   void addReturnRegisterOutputs(CodeGenFunction &CGF, LValue ReturnValue,
927                                 std::string &Constraints,
928                                 std::vector<llvm::Type *> &ResultRegTypes,
929                                 std::vector<llvm::Type *> &ResultTruncRegTypes,
930                                 std::vector<LValue> &ResultRegDests,
931                                 std::string &AsmString,
932                                 unsigned NumOutputs) const override;
933 
934   llvm::Constant *
getUBSanFunctionSignature(CodeGen::CodeGenModule & CGM) const935   getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override {
936     unsigned Sig = (0xeb << 0) |  // jmp rel8
937                    (0x06 << 8) |  //           .+0x08
938                    ('F' << 16) |
939                    ('T' << 24);
940     return llvm::ConstantInt::get(CGM.Int32Ty, Sig);
941   }
942 };
943 
944 }
945 
946 /// Rewrite input constraint references after adding some output constraints.
947 /// In the case where there is one output and one input and we add one output,
948 /// we need to replace all operand references greater than or equal to 1:
949 ///     mov $0, $1
950 ///     mov eax, $1
951 /// The result will be:
952 ///     mov $0, $2
953 ///     mov eax, $2
rewriteInputConstraintReferences(unsigned FirstIn,unsigned NumNewOuts,std::string & AsmString)954 static void rewriteInputConstraintReferences(unsigned FirstIn,
955                                              unsigned NumNewOuts,
956                                              std::string &AsmString) {
957   std::string Buf;
958   llvm::raw_string_ostream OS(Buf);
959   size_t Pos = 0;
960   while (Pos < AsmString.size()) {
961     size_t DollarStart = AsmString.find('$', Pos);
962     if (DollarStart == std::string::npos)
963       DollarStart = AsmString.size();
964     size_t DollarEnd = AsmString.find_first_not_of('$', DollarStart);
965     if (DollarEnd == std::string::npos)
966       DollarEnd = AsmString.size();
967     OS << StringRef(&AsmString[Pos], DollarEnd - Pos);
968     Pos = DollarEnd;
969     size_t NumDollars = DollarEnd - DollarStart;
970     if (NumDollars % 2 != 0 && Pos < AsmString.size()) {
971       // We have an operand reference.
972       size_t DigitStart = Pos;
973       size_t DigitEnd = AsmString.find_first_not_of("0123456789", DigitStart);
974       if (DigitEnd == std::string::npos)
975         DigitEnd = AsmString.size();
976       StringRef OperandStr(&AsmString[DigitStart], DigitEnd - DigitStart);
977       unsigned OperandIndex;
978       if (!OperandStr.getAsInteger(10, OperandIndex)) {
979         if (OperandIndex >= FirstIn)
980           OperandIndex += NumNewOuts;
981         OS << OperandIndex;
982       } else {
983         OS << OperandStr;
984       }
985       Pos = DigitEnd;
986     }
987   }
988   AsmString = std::move(OS.str());
989 }
990 
991 /// Add output constraints for EAX:EDX because they are return registers.
addReturnRegisterOutputs(CodeGenFunction & CGF,LValue ReturnSlot,std::string & Constraints,std::vector<llvm::Type * > & ResultRegTypes,std::vector<llvm::Type * > & ResultTruncRegTypes,std::vector<LValue> & ResultRegDests,std::string & AsmString,unsigned NumOutputs) const992 void X86_32TargetCodeGenInfo::addReturnRegisterOutputs(
993     CodeGenFunction &CGF, LValue ReturnSlot, std::string &Constraints,
994     std::vector<llvm::Type *> &ResultRegTypes,
995     std::vector<llvm::Type *> &ResultTruncRegTypes,
996     std::vector<LValue> &ResultRegDests, std::string &AsmString,
997     unsigned NumOutputs) const {
998   uint64_t RetWidth = CGF.getContext().getTypeSize(ReturnSlot.getType());
999 
1000   // Use the EAX constraint if the width is 32 or smaller and EAX:EDX if it is
1001   // larger.
1002   if (!Constraints.empty())
1003     Constraints += ',';
1004   if (RetWidth <= 32) {
1005     Constraints += "={eax}";
1006     ResultRegTypes.push_back(CGF.Int32Ty);
1007   } else {
1008     // Use the 'A' constraint for EAX:EDX.
1009     Constraints += "=A";
1010     ResultRegTypes.push_back(CGF.Int64Ty);
1011   }
1012 
1013   // Truncate EAX or EAX:EDX to an integer of the appropriate size.
1014   llvm::Type *CoerceTy = llvm::IntegerType::get(CGF.getLLVMContext(), RetWidth);
1015   ResultTruncRegTypes.push_back(CoerceTy);
1016 
1017   // Coerce the integer by bitcasting the return slot pointer.
1018   ReturnSlot.setAddress(CGF.Builder.CreateBitCast(ReturnSlot.getAddress(),
1019                                                   CoerceTy->getPointerTo()));
1020   ResultRegDests.push_back(ReturnSlot);
1021 
1022   rewriteInputConstraintReferences(NumOutputs, 1, AsmString);
1023 }
1024 
1025 /// shouldReturnTypeInRegister - Determine if the given type should be
1026 /// returned in a register (for the Darwin and MCU ABI).
shouldReturnTypeInRegister(QualType Ty,ASTContext & Context) const1027 bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty,
1028                                                ASTContext &Context) const {
1029   uint64_t Size = Context.getTypeSize(Ty);
1030 
1031   // Type must be register sized.
1032   if (!isRegisterSize(Size))
1033     return false;
1034 
1035   if (Ty->isVectorType()) {
1036     // 64- and 128- bit vectors inside structures are not returned in
1037     // registers.
1038     if (Size == 64 || Size == 128)
1039       return false;
1040 
1041     return true;
1042   }
1043 
1044   // If this is a builtin, pointer, enum, complex type, member pointer, or
1045   // member function pointer it is ok.
1046   if (Ty->getAs<BuiltinType>() || Ty->hasPointerRepresentation() ||
1047       Ty->isAnyComplexType() || Ty->isEnumeralType() ||
1048       Ty->isBlockPointerType() || Ty->isMemberPointerType())
1049     return true;
1050 
1051   // Arrays are treated like records.
1052   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty))
1053     return shouldReturnTypeInRegister(AT->getElementType(), Context);
1054 
1055   // Otherwise, it must be a record type.
1056   const RecordType *RT = Ty->getAs<RecordType>();
1057   if (!RT) return false;
1058 
1059   // FIXME: Traverse bases here too.
1060 
1061   // Structure types are passed in register if all fields would be
1062   // passed in a register.
1063   for (const auto *FD : RT->getDecl()->fields()) {
1064     // Empty fields are ignored.
1065     if (isEmptyField(Context, FD, true))
1066       continue;
1067 
1068     // Check fields recursively.
1069     if (!shouldReturnTypeInRegister(FD->getType(), Context))
1070       return false;
1071   }
1072   return true;
1073 }
1074 
getIndirectReturnResult(QualType RetTy,CCState & State) const1075 ABIArgInfo X86_32ABIInfo::getIndirectReturnResult(QualType RetTy, CCState &State) const {
1076   // If the return value is indirect, then the hidden argument is consuming one
1077   // integer register.
1078   if (State.FreeRegs) {
1079     --State.FreeRegs;
1080     return getNaturalAlignIndirectInReg(RetTy);
1081   }
1082   return getNaturalAlignIndirect(RetTy, /*ByVal=*/false);
1083 }
1084 
classifyReturnType(QualType RetTy,CCState & State) const1085 ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy,
1086                                              CCState &State) const {
1087   if (RetTy->isVoidType())
1088     return ABIArgInfo::getIgnore();
1089 
1090   const Type *Base = nullptr;
1091   uint64_t NumElts = 0;
1092   if (State.CC == llvm::CallingConv::X86_VectorCall &&
1093       isHomogeneousAggregate(RetTy, Base, NumElts)) {
1094     // The LLVM struct type for such an aggregate should lower properly.
1095     return ABIArgInfo::getDirect();
1096   }
1097 
1098   if (const VectorType *VT = RetTy->getAs<VectorType>()) {
1099     // On Darwin, some vectors are returned in registers.
1100     if (IsDarwinVectorABI) {
1101       uint64_t Size = getContext().getTypeSize(RetTy);
1102 
1103       // 128-bit vectors are a special case; they are returned in
1104       // registers and we need to make sure to pick a type the LLVM
1105       // backend will like.
1106       if (Size == 128)
1107         return ABIArgInfo::getDirect(llvm::VectorType::get(
1108                   llvm::Type::getInt64Ty(getVMContext()), 2));
1109 
1110       // Always return in register if it fits in a general purpose
1111       // register, or if it is 64 bits and has a single element.
1112       if ((Size == 8 || Size == 16 || Size == 32) ||
1113           (Size == 64 && VT->getNumElements() == 1))
1114         return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
1115                                                             Size));
1116 
1117       return getIndirectReturnResult(RetTy, State);
1118     }
1119 
1120     return ABIArgInfo::getDirect();
1121   }
1122 
1123   if (isAggregateTypeForABI(RetTy)) {
1124     if (const RecordType *RT = RetTy->getAs<RecordType>()) {
1125       // Structures with flexible arrays are always indirect.
1126       if (RT->getDecl()->hasFlexibleArrayMember())
1127         return getIndirectReturnResult(RetTy, State);
1128     }
1129 
1130     // If specified, structs and unions are always indirect.
1131     if (!IsRetSmallStructInRegABI && !RetTy->isAnyComplexType())
1132       return getIndirectReturnResult(RetTy, State);
1133 
1134     // Small structures which are register sized are generally returned
1135     // in a register.
1136     if (shouldReturnTypeInRegister(RetTy, getContext())) {
1137       uint64_t Size = getContext().getTypeSize(RetTy);
1138 
1139       // As a special-case, if the struct is a "single-element" struct, and
1140       // the field is of type "float" or "double", return it in a
1141       // floating-point register. (MSVC does not apply this special case.)
1142       // We apply a similar transformation for pointer types to improve the
1143       // quality of the generated IR.
1144       if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext()))
1145         if ((!IsWin32StructABI && SeltTy->isRealFloatingType())
1146             || SeltTy->hasPointerRepresentation())
1147           return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
1148 
1149       // FIXME: We should be able to narrow this integer in cases with dead
1150       // padding.
1151       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),Size));
1152     }
1153 
1154     return getIndirectReturnResult(RetTy, State);
1155   }
1156 
1157   // Treat an enum type as its underlying type.
1158   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
1159     RetTy = EnumTy->getDecl()->getIntegerType();
1160 
1161   return (RetTy->isPromotableIntegerType() ?
1162           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
1163 }
1164 
isSSEVectorType(ASTContext & Context,QualType Ty)1165 static bool isSSEVectorType(ASTContext &Context, QualType Ty) {
1166   return Ty->getAs<VectorType>() && Context.getTypeSize(Ty) == 128;
1167 }
1168 
isRecordWithSSEVectorType(ASTContext & Context,QualType Ty)1169 static bool isRecordWithSSEVectorType(ASTContext &Context, QualType Ty) {
1170   const RecordType *RT = Ty->getAs<RecordType>();
1171   if (!RT)
1172     return 0;
1173   const RecordDecl *RD = RT->getDecl();
1174 
1175   // If this is a C++ record, check the bases first.
1176   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
1177     for (const auto &I : CXXRD->bases())
1178       if (!isRecordWithSSEVectorType(Context, I.getType()))
1179         return false;
1180 
1181   for (const auto *i : RD->fields()) {
1182     QualType FT = i->getType();
1183 
1184     if (isSSEVectorType(Context, FT))
1185       return true;
1186 
1187     if (isRecordWithSSEVectorType(Context, FT))
1188       return true;
1189   }
1190 
1191   return false;
1192 }
1193 
getTypeStackAlignInBytes(QualType Ty,unsigned Align) const1194 unsigned X86_32ABIInfo::getTypeStackAlignInBytes(QualType Ty,
1195                                                  unsigned Align) const {
1196   // Otherwise, if the alignment is less than or equal to the minimum ABI
1197   // alignment, just use the default; the backend will handle this.
1198   if (Align <= MinABIStackAlignInBytes)
1199     return 0; // Use default alignment.
1200 
1201   // On non-Darwin, the stack type alignment is always 4.
1202   if (!IsDarwinVectorABI) {
1203     // Set explicit alignment, since we may need to realign the top.
1204     return MinABIStackAlignInBytes;
1205   }
1206 
1207   // Otherwise, if the type contains an SSE vector type, the alignment is 16.
1208   if (Align >= 16 && (isSSEVectorType(getContext(), Ty) ||
1209                       isRecordWithSSEVectorType(getContext(), Ty)))
1210     return 16;
1211 
1212   return MinABIStackAlignInBytes;
1213 }
1214 
getIndirectResult(QualType Ty,bool ByVal,CCState & State) const1215 ABIArgInfo X86_32ABIInfo::getIndirectResult(QualType Ty, bool ByVal,
1216                                             CCState &State) const {
1217   if (!ByVal) {
1218     if (State.FreeRegs) {
1219       --State.FreeRegs; // Non-byval indirects just use one pointer.
1220       return getNaturalAlignIndirectInReg(Ty);
1221     }
1222     return getNaturalAlignIndirect(Ty, false);
1223   }
1224 
1225   // Compute the byval alignment.
1226   unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8;
1227   unsigned StackAlign = getTypeStackAlignInBytes(Ty, TypeAlign);
1228   if (StackAlign == 0)
1229     return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true);
1230 
1231   // If the stack alignment is less than the type alignment, realign the
1232   // argument.
1233   bool Realign = TypeAlign > StackAlign;
1234   return ABIArgInfo::getIndirect(CharUnits::fromQuantity(StackAlign),
1235                                  /*ByVal=*/true, Realign);
1236 }
1237 
classify(QualType Ty) const1238 X86_32ABIInfo::Class X86_32ABIInfo::classify(QualType Ty) const {
1239   const Type *T = isSingleElementStruct(Ty, getContext());
1240   if (!T)
1241     T = Ty.getTypePtr();
1242 
1243   if (const BuiltinType *BT = T->getAs<BuiltinType>()) {
1244     BuiltinType::Kind K = BT->getKind();
1245     if (K == BuiltinType::Float || K == BuiltinType::Double)
1246       return Float;
1247   }
1248   return Integer;
1249 }
1250 
shouldUseInReg(QualType Ty,CCState & State,bool & NeedsPadding) const1251 bool X86_32ABIInfo::shouldUseInReg(QualType Ty, CCState &State,
1252                                    bool &NeedsPadding) const {
1253   NeedsPadding = false;
1254   if (!IsSoftFloatABI) {
1255     Class C = classify(Ty);
1256     if (C == Float)
1257       return false;
1258   }
1259 
1260   unsigned Size = getContext().getTypeSize(Ty);
1261   unsigned SizeInRegs = (Size + 31) / 32;
1262 
1263   if (SizeInRegs == 0)
1264     return false;
1265 
1266   if (!IsMCUABI) {
1267     if (SizeInRegs > State.FreeRegs) {
1268       State.FreeRegs = 0;
1269       return false;
1270     }
1271   } else {
1272     // The MCU psABI allows passing parameters in-reg even if there are
1273     // earlier parameters that are passed on the stack. Also,
1274     // it does not allow passing >8-byte structs in-register,
1275     // even if there are 3 free registers available.
1276     if (SizeInRegs > State.FreeRegs || SizeInRegs > 2)
1277       return false;
1278   }
1279 
1280   State.FreeRegs -= SizeInRegs;
1281 
1282   if (State.CC == llvm::CallingConv::X86_FastCall ||
1283       State.CC == llvm::CallingConv::X86_VectorCall) {
1284     if (Size > 32)
1285       return false;
1286 
1287     if (Ty->isIntegralOrEnumerationType())
1288       return true;
1289 
1290     if (Ty->isPointerType())
1291       return true;
1292 
1293     if (Ty->isReferenceType())
1294       return true;
1295 
1296     if (State.FreeRegs)
1297       NeedsPadding = true;
1298 
1299     return false;
1300   }
1301 
1302   return true;
1303 }
1304 
classifyArgumentType(QualType Ty,CCState & State) const1305 ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty,
1306                                                CCState &State) const {
1307   // FIXME: Set alignment on indirect arguments.
1308 
1309   Ty = useFirstFieldIfTransparentUnion(Ty);
1310 
1311   // Check with the C++ ABI first.
1312   const RecordType *RT = Ty->getAs<RecordType>();
1313   if (RT) {
1314     CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI());
1315     if (RAA == CGCXXABI::RAA_Indirect) {
1316       return getIndirectResult(Ty, false, State);
1317     } else if (RAA == CGCXXABI::RAA_DirectInMemory) {
1318       // The field index doesn't matter, we'll fix it up later.
1319       return ABIArgInfo::getInAlloca(/*FieldIndex=*/0);
1320     }
1321   }
1322 
1323   // vectorcall adds the concept of a homogenous vector aggregate, similar
1324   // to other targets.
1325   const Type *Base = nullptr;
1326   uint64_t NumElts = 0;
1327   if (State.CC == llvm::CallingConv::X86_VectorCall &&
1328       isHomogeneousAggregate(Ty, Base, NumElts)) {
1329     if (State.FreeSSERegs >= NumElts) {
1330       State.FreeSSERegs -= NumElts;
1331       if (Ty->isBuiltinType() || Ty->isVectorType())
1332         return ABIArgInfo::getDirect();
1333       return ABIArgInfo::getExpand();
1334     }
1335     return getIndirectResult(Ty, /*ByVal=*/false, State);
1336   }
1337 
1338   if (isAggregateTypeForABI(Ty)) {
1339     if (RT) {
1340       // Structs are always byval on win32, regardless of what they contain.
1341       if (IsWin32StructABI)
1342         return getIndirectResult(Ty, true, State);
1343 
1344       // Structures with flexible arrays are always indirect.
1345       if (RT->getDecl()->hasFlexibleArrayMember())
1346         return getIndirectResult(Ty, true, State);
1347     }
1348 
1349     // Ignore empty structs/unions.
1350     if (isEmptyRecord(getContext(), Ty, true))
1351       return ABIArgInfo::getIgnore();
1352 
1353     llvm::LLVMContext &LLVMContext = getVMContext();
1354     llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext);
1355     bool NeedsPadding;
1356     if (shouldUseInReg(Ty, State, NeedsPadding)) {
1357       unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32;
1358       SmallVector<llvm::Type*, 3> Elements(SizeInRegs, Int32);
1359       llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements);
1360       return ABIArgInfo::getDirectInReg(Result);
1361     }
1362     llvm::IntegerType *PaddingType = NeedsPadding ? Int32 : nullptr;
1363 
1364     // Expand small (<= 128-bit) record types when we know that the stack layout
1365     // of those arguments will match the struct. This is important because the
1366     // LLVM backend isn't smart enough to remove byval, which inhibits many
1367     // optimizations.
1368     if (getContext().getTypeSize(Ty) <= 4*32 &&
1369         canExpandIndirectArgument(Ty, getContext()))
1370       return ABIArgInfo::getExpandWithPadding(
1371           State.CC == llvm::CallingConv::X86_FastCall ||
1372               State.CC == llvm::CallingConv::X86_VectorCall,
1373           PaddingType);
1374 
1375     return getIndirectResult(Ty, true, State);
1376   }
1377 
1378   if (const VectorType *VT = Ty->getAs<VectorType>()) {
1379     // On Darwin, some vectors are passed in memory, we handle this by passing
1380     // it as an i8/i16/i32/i64.
1381     if (IsDarwinVectorABI) {
1382       uint64_t Size = getContext().getTypeSize(Ty);
1383       if ((Size == 8 || Size == 16 || Size == 32) ||
1384           (Size == 64 && VT->getNumElements() == 1))
1385         return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
1386                                                             Size));
1387     }
1388 
1389     if (IsX86_MMXType(CGT.ConvertType(Ty)))
1390       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 64));
1391 
1392     return ABIArgInfo::getDirect();
1393   }
1394 
1395 
1396   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
1397     Ty = EnumTy->getDecl()->getIntegerType();
1398 
1399   bool NeedsPadding;
1400   bool InReg = shouldUseInReg(Ty, State, NeedsPadding);
1401 
1402   if (Ty->isPromotableIntegerType()) {
1403     if (InReg)
1404       return ABIArgInfo::getExtendInReg();
1405     return ABIArgInfo::getExtend();
1406   }
1407   if (InReg)
1408     return ABIArgInfo::getDirectInReg();
1409   return ABIArgInfo::getDirect();
1410 }
1411 
computeInfo(CGFunctionInfo & FI) const1412 void X86_32ABIInfo::computeInfo(CGFunctionInfo &FI) const {
1413   CCState State(FI.getCallingConvention());
1414   if (State.CC == llvm::CallingConv::X86_FastCall)
1415     State.FreeRegs = 2;
1416   else if (State.CC == llvm::CallingConv::X86_VectorCall) {
1417     State.FreeRegs = 2;
1418     State.FreeSSERegs = 6;
1419   } else if (FI.getHasRegParm())
1420     State.FreeRegs = FI.getRegParm();
1421   else if (IsMCUABI)
1422     State.FreeRegs = 3;
1423   else
1424     State.FreeRegs = DefaultNumRegisterParameters;
1425 
1426   if (!getCXXABI().classifyReturnType(FI)) {
1427     FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), State);
1428   } else if (FI.getReturnInfo().isIndirect()) {
1429     // The C++ ABI is not aware of register usage, so we have to check if the
1430     // return value was sret and put it in a register ourselves if appropriate.
1431     if (State.FreeRegs) {
1432       --State.FreeRegs;  // The sret parameter consumes a register.
1433       FI.getReturnInfo().setInReg(true);
1434     }
1435   }
1436 
1437   // The chain argument effectively gives us another free register.
1438   if (FI.isChainCall())
1439     ++State.FreeRegs;
1440 
1441   bool UsedInAlloca = false;
1442   for (auto &I : FI.arguments()) {
1443     I.info = classifyArgumentType(I.type, State);
1444     UsedInAlloca |= (I.info.getKind() == ABIArgInfo::InAlloca);
1445   }
1446 
1447   // If we needed to use inalloca for any argument, do a second pass and rewrite
1448   // all the memory arguments to use inalloca.
1449   if (UsedInAlloca)
1450     rewriteWithInAlloca(FI);
1451 }
1452 
1453 void
addFieldToArgStruct(SmallVector<llvm::Type *,6> & FrameFields,CharUnits & StackOffset,ABIArgInfo & Info,QualType Type) const1454 X86_32ABIInfo::addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields,
1455                                    CharUnits &StackOffset, ABIArgInfo &Info,
1456                                    QualType Type) const {
1457   // Arguments are always 4-byte-aligned.
1458   CharUnits FieldAlign = CharUnits::fromQuantity(4);
1459 
1460   assert(StackOffset.isMultipleOf(FieldAlign) && "unaligned inalloca struct");
1461   Info = ABIArgInfo::getInAlloca(FrameFields.size());
1462   FrameFields.push_back(CGT.ConvertTypeForMem(Type));
1463   StackOffset += getContext().getTypeSizeInChars(Type);
1464 
1465   // Insert padding bytes to respect alignment.
1466   CharUnits FieldEnd = StackOffset;
1467   StackOffset = FieldEnd.RoundUpToAlignment(FieldAlign);
1468   if (StackOffset != FieldEnd) {
1469     CharUnits NumBytes = StackOffset - FieldEnd;
1470     llvm::Type *Ty = llvm::Type::getInt8Ty(getVMContext());
1471     Ty = llvm::ArrayType::get(Ty, NumBytes.getQuantity());
1472     FrameFields.push_back(Ty);
1473   }
1474 }
1475 
isArgInAlloca(const ABIArgInfo & Info)1476 static bool isArgInAlloca(const ABIArgInfo &Info) {
1477   // Leave ignored and inreg arguments alone.
1478   switch (Info.getKind()) {
1479   case ABIArgInfo::InAlloca:
1480     return true;
1481   case ABIArgInfo::Indirect:
1482     assert(Info.getIndirectByVal());
1483     return true;
1484   case ABIArgInfo::Ignore:
1485     return false;
1486   case ABIArgInfo::Direct:
1487   case ABIArgInfo::Extend:
1488   case ABIArgInfo::Expand:
1489     if (Info.getInReg())
1490       return false;
1491     return true;
1492   }
1493   llvm_unreachable("invalid enum");
1494 }
1495 
rewriteWithInAlloca(CGFunctionInfo & FI) const1496 void X86_32ABIInfo::rewriteWithInAlloca(CGFunctionInfo &FI) const {
1497   assert(IsWin32StructABI && "inalloca only supported on win32");
1498 
1499   // Build a packed struct type for all of the arguments in memory.
1500   SmallVector<llvm::Type *, 6> FrameFields;
1501 
1502   // The stack alignment is always 4.
1503   CharUnits StackAlign = CharUnits::fromQuantity(4);
1504 
1505   CharUnits StackOffset;
1506   CGFunctionInfo::arg_iterator I = FI.arg_begin(), E = FI.arg_end();
1507 
1508   // Put 'this' into the struct before 'sret', if necessary.
1509   bool IsThisCall =
1510       FI.getCallingConvention() == llvm::CallingConv::X86_ThisCall;
1511   ABIArgInfo &Ret = FI.getReturnInfo();
1512   if (Ret.isIndirect() && Ret.isSRetAfterThis() && !IsThisCall &&
1513       isArgInAlloca(I->info)) {
1514     addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type);
1515     ++I;
1516   }
1517 
1518   // Put the sret parameter into the inalloca struct if it's in memory.
1519   if (Ret.isIndirect() && !Ret.getInReg()) {
1520     CanQualType PtrTy = getContext().getPointerType(FI.getReturnType());
1521     addFieldToArgStruct(FrameFields, StackOffset, Ret, PtrTy);
1522     // On Windows, the hidden sret parameter is always returned in eax.
1523     Ret.setInAllocaSRet(IsWin32StructABI);
1524   }
1525 
1526   // Skip the 'this' parameter in ecx.
1527   if (IsThisCall)
1528     ++I;
1529 
1530   // Put arguments passed in memory into the struct.
1531   for (; I != E; ++I) {
1532     if (isArgInAlloca(I->info))
1533       addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type);
1534   }
1535 
1536   FI.setArgStruct(llvm::StructType::get(getVMContext(), FrameFields,
1537                                         /*isPacked=*/true),
1538                   StackAlign);
1539 }
1540 
EmitVAArg(CodeGenFunction & CGF,Address VAListAddr,QualType Ty) const1541 Address X86_32ABIInfo::EmitVAArg(CodeGenFunction &CGF,
1542                                  Address VAListAddr, QualType Ty) const {
1543 
1544   auto TypeInfo = getContext().getTypeInfoInChars(Ty);
1545 
1546   // x86-32 changes the alignment of certain arguments on the stack.
1547   //
1548   // Just messing with TypeInfo like this works because we never pass
1549   // anything indirectly.
1550   TypeInfo.second = CharUnits::fromQuantity(
1551                 getTypeStackAlignInBytes(Ty, TypeInfo.second.getQuantity()));
1552 
1553   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false,
1554                           TypeInfo, CharUnits::fromQuantity(4),
1555                           /*AllowHigherAlign*/ true);
1556 }
1557 
isStructReturnInRegABI(const llvm::Triple & Triple,const CodeGenOptions & Opts)1558 bool X86_32TargetCodeGenInfo::isStructReturnInRegABI(
1559     const llvm::Triple &Triple, const CodeGenOptions &Opts) {
1560   assert(Triple.getArch() == llvm::Triple::x86);
1561 
1562   switch (Opts.getStructReturnConvention()) {
1563   case CodeGenOptions::SRCK_Default:
1564     break;
1565   case CodeGenOptions::SRCK_OnStack:  // -fpcc-struct-return
1566     return false;
1567   case CodeGenOptions::SRCK_InRegs:  // -freg-struct-return
1568     return true;
1569   }
1570 
1571   if (Triple.isOSDarwin() || Triple.isOSIAMCU())
1572     return true;
1573 
1574   switch (Triple.getOS()) {
1575   case llvm::Triple::DragonFly:
1576   case llvm::Triple::FreeBSD:
1577   case llvm::Triple::OpenBSD:
1578   case llvm::Triple::Bitrig:
1579   case llvm::Triple::Win32:
1580     return true;
1581   default:
1582     return false;
1583   }
1584 }
1585 
setTargetAttributes(const Decl * D,llvm::GlobalValue * GV,CodeGen::CodeGenModule & CGM) const1586 void X86_32TargetCodeGenInfo::setTargetAttributes(const Decl *D,
1587                                                   llvm::GlobalValue *GV,
1588                                             CodeGen::CodeGenModule &CGM) const {
1589   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
1590     if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
1591       // Get the LLVM function.
1592       llvm::Function *Fn = cast<llvm::Function>(GV);
1593 
1594       // Now add the 'alignstack' attribute with a value of 16.
1595       llvm::AttrBuilder B;
1596       B.addStackAlignmentAttr(16);
1597       Fn->addAttributes(llvm::AttributeSet::FunctionIndex,
1598                       llvm::AttributeSet::get(CGM.getLLVMContext(),
1599                                               llvm::AttributeSet::FunctionIndex,
1600                                               B));
1601     }
1602   }
1603 }
1604 
initDwarfEHRegSizeTable(CodeGen::CodeGenFunction & CGF,llvm::Value * Address) const1605 bool X86_32TargetCodeGenInfo::initDwarfEHRegSizeTable(
1606                                                CodeGen::CodeGenFunction &CGF,
1607                                                llvm::Value *Address) const {
1608   CodeGen::CGBuilderTy &Builder = CGF.Builder;
1609 
1610   llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
1611 
1612   // 0-7 are the eight integer registers;  the order is different
1613   //   on Darwin (for EH), but the range is the same.
1614   // 8 is %eip.
1615   AssignToArrayRange(Builder, Address, Four8, 0, 8);
1616 
1617   if (CGF.CGM.getTarget().getTriple().isOSDarwin()) {
1618     // 12-16 are st(0..4).  Not sure why we stop at 4.
1619     // These have size 16, which is sizeof(long double) on
1620     // platforms with 8-byte alignment for that type.
1621     llvm::Value *Sixteen8 = llvm::ConstantInt::get(CGF.Int8Ty, 16);
1622     AssignToArrayRange(Builder, Address, Sixteen8, 12, 16);
1623 
1624   } else {
1625     // 9 is %eflags, which doesn't get a size on Darwin for some
1626     // reason.
1627     Builder.CreateAlignedStore(
1628         Four8, Builder.CreateConstInBoundsGEP1_32(CGF.Int8Ty, Address, 9),
1629                                CharUnits::One());
1630 
1631     // 11-16 are st(0..5).  Not sure why we stop at 5.
1632     // These have size 12, which is sizeof(long double) on
1633     // platforms with 4-byte alignment for that type.
1634     llvm::Value *Twelve8 = llvm::ConstantInt::get(CGF.Int8Ty, 12);
1635     AssignToArrayRange(Builder, Address, Twelve8, 11, 16);
1636   }
1637 
1638   return false;
1639 }
1640 
1641 //===----------------------------------------------------------------------===//
1642 // X86-64 ABI Implementation
1643 //===----------------------------------------------------------------------===//
1644 
1645 
1646 namespace {
1647 /// The AVX ABI level for X86 targets.
1648 enum class X86AVXABILevel {
1649   None,
1650   AVX,
1651   AVX512
1652 };
1653 
1654 /// \p returns the size in bits of the largest (native) vector for \p AVXLevel.
getNativeVectorSizeForAVXABI(X86AVXABILevel AVXLevel)1655 static unsigned getNativeVectorSizeForAVXABI(X86AVXABILevel AVXLevel) {
1656   switch (AVXLevel) {
1657   case X86AVXABILevel::AVX512:
1658     return 512;
1659   case X86AVXABILevel::AVX:
1660     return 256;
1661   case X86AVXABILevel::None:
1662     return 128;
1663   }
1664   llvm_unreachable("Unknown AVXLevel");
1665 }
1666 
1667 /// X86_64ABIInfo - The X86_64 ABI information.
1668 class X86_64ABIInfo : public ABIInfo {
1669   enum Class {
1670     Integer = 0,
1671     SSE,
1672     SSEUp,
1673     X87,
1674     X87Up,
1675     ComplexX87,
1676     NoClass,
1677     Memory
1678   };
1679 
1680   /// merge - Implement the X86_64 ABI merging algorithm.
1681   ///
1682   /// Merge an accumulating classification \arg Accum with a field
1683   /// classification \arg Field.
1684   ///
1685   /// \param Accum - The accumulating classification. This should
1686   /// always be either NoClass or the result of a previous merge
1687   /// call. In addition, this should never be Memory (the caller
1688   /// should just return Memory for the aggregate).
1689   static Class merge(Class Accum, Class Field);
1690 
1691   /// postMerge - Implement the X86_64 ABI post merging algorithm.
1692   ///
1693   /// Post merger cleanup, reduces a malformed Hi and Lo pair to
1694   /// final MEMORY or SSE classes when necessary.
1695   ///
1696   /// \param AggregateSize - The size of the current aggregate in
1697   /// the classification process.
1698   ///
1699   /// \param Lo - The classification for the parts of the type
1700   /// residing in the low word of the containing object.
1701   ///
1702   /// \param Hi - The classification for the parts of the type
1703   /// residing in the higher words of the containing object.
1704   ///
1705   void postMerge(unsigned AggregateSize, Class &Lo, Class &Hi) const;
1706 
1707   /// classify - Determine the x86_64 register classes in which the
1708   /// given type T should be passed.
1709   ///
1710   /// \param Lo - The classification for the parts of the type
1711   /// residing in the low word of the containing object.
1712   ///
1713   /// \param Hi - The classification for the parts of the type
1714   /// residing in the high word of the containing object.
1715   ///
1716   /// \param OffsetBase - The bit offset of this type in the
1717   /// containing object.  Some parameters are classified different
1718   /// depending on whether they straddle an eightbyte boundary.
1719   ///
1720   /// \param isNamedArg - Whether the argument in question is a "named"
1721   /// argument, as used in AMD64-ABI 3.5.7.
1722   ///
1723   /// If a word is unused its result will be NoClass; if a type should
1724   /// be passed in Memory then at least the classification of \arg Lo
1725   /// will be Memory.
1726   ///
1727   /// The \arg Lo class will be NoClass iff the argument is ignored.
1728   ///
1729   /// If the \arg Lo class is ComplexX87, then the \arg Hi class will
1730   /// also be ComplexX87.
1731   void classify(QualType T, uint64_t OffsetBase, Class &Lo, Class &Hi,
1732                 bool isNamedArg) const;
1733 
1734   llvm::Type *GetByteVectorType(QualType Ty) const;
1735   llvm::Type *GetSSETypeAtOffset(llvm::Type *IRType,
1736                                  unsigned IROffset, QualType SourceTy,
1737                                  unsigned SourceOffset) const;
1738   llvm::Type *GetINTEGERTypeAtOffset(llvm::Type *IRType,
1739                                      unsigned IROffset, QualType SourceTy,
1740                                      unsigned SourceOffset) const;
1741 
1742   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
1743   /// such that the argument will be returned in memory.
1744   ABIArgInfo getIndirectReturnResult(QualType Ty) const;
1745 
1746   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
1747   /// such that the argument will be passed in memory.
1748   ///
1749   /// \param freeIntRegs - The number of free integer registers remaining
1750   /// available.
1751   ABIArgInfo getIndirectResult(QualType Ty, unsigned freeIntRegs) const;
1752 
1753   ABIArgInfo classifyReturnType(QualType RetTy) const;
1754 
1755   ABIArgInfo classifyArgumentType(QualType Ty,
1756                                   unsigned freeIntRegs,
1757                                   unsigned &neededInt,
1758                                   unsigned &neededSSE,
1759                                   bool isNamedArg) const;
1760 
1761   bool IsIllegalVectorType(QualType Ty) const;
1762 
1763   /// The 0.98 ABI revision clarified a lot of ambiguities,
1764   /// unfortunately in ways that were not always consistent with
1765   /// certain previous compilers.  In particular, platforms which
1766   /// required strict binary compatibility with older versions of GCC
1767   /// may need to exempt themselves.
honorsRevision0_98() const1768   bool honorsRevision0_98() const {
1769     return !getTarget().getTriple().isOSDarwin();
1770   }
1771 
1772   X86AVXABILevel AVXLevel;
1773   // Some ABIs (e.g. X32 ABI and Native Client OS) use 32 bit pointers on
1774   // 64-bit hardware.
1775   bool Has64BitPointers;
1776 
1777 public:
X86_64ABIInfo(CodeGen::CodeGenTypes & CGT,X86AVXABILevel AVXLevel)1778   X86_64ABIInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) :
1779       ABIInfo(CGT), AVXLevel(AVXLevel),
1780       Has64BitPointers(CGT.getDataLayout().getPointerSize(0) == 8) {
1781   }
1782 
isPassedUsingAVXType(QualType type) const1783   bool isPassedUsingAVXType(QualType type) const {
1784     unsigned neededInt, neededSSE;
1785     // The freeIntRegs argument doesn't matter here.
1786     ABIArgInfo info = classifyArgumentType(type, 0, neededInt, neededSSE,
1787                                            /*isNamedArg*/true);
1788     if (info.isDirect()) {
1789       llvm::Type *ty = info.getCoerceToType();
1790       if (llvm::VectorType *vectorTy = dyn_cast_or_null<llvm::VectorType>(ty))
1791         return (vectorTy->getBitWidth() > 128);
1792     }
1793     return false;
1794   }
1795 
1796   void computeInfo(CGFunctionInfo &FI) const override;
1797 
1798   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
1799                     QualType Ty) const override;
1800   Address EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
1801                       QualType Ty) const override;
1802 
has64BitPointers() const1803   bool has64BitPointers() const {
1804     return Has64BitPointers;
1805   }
1806 };
1807 
1808 /// WinX86_64ABIInfo - The Windows X86_64 ABI information.
1809 class WinX86_64ABIInfo : public ABIInfo {
1810 public:
WinX86_64ABIInfo(CodeGen::CodeGenTypes & CGT)1811   WinX86_64ABIInfo(CodeGen::CodeGenTypes &CGT)
1812       : ABIInfo(CGT),
1813         IsMingw64(getTarget().getTriple().isWindowsGNUEnvironment()) {}
1814 
1815   void computeInfo(CGFunctionInfo &FI) const override;
1816 
1817   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
1818                     QualType Ty) const override;
1819 
isHomogeneousAggregateBaseType(QualType Ty) const1820   bool isHomogeneousAggregateBaseType(QualType Ty) const override {
1821     // FIXME: Assumes vectorcall is in use.
1822     return isX86VectorTypeForVectorCall(getContext(), Ty);
1823   }
1824 
isHomogeneousAggregateSmallEnough(const Type * Ty,uint64_t NumMembers) const1825   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
1826                                          uint64_t NumMembers) const override {
1827     // FIXME: Assumes vectorcall is in use.
1828     return isX86VectorCallAggregateSmallEnough(NumMembers);
1829   }
1830 
1831 private:
1832   ABIArgInfo classify(QualType Ty, unsigned &FreeSSERegs,
1833                       bool IsReturnType) const;
1834 
1835   bool IsMingw64;
1836 };
1837 
1838 class X86_64TargetCodeGenInfo : public TargetCodeGenInfo {
1839 public:
X86_64TargetCodeGenInfo(CodeGen::CodeGenTypes & CGT,X86AVXABILevel AVXLevel)1840   X86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel)
1841       : TargetCodeGenInfo(new X86_64ABIInfo(CGT, AVXLevel)) {}
1842 
getABIInfo() const1843   const X86_64ABIInfo &getABIInfo() const {
1844     return static_cast<const X86_64ABIInfo&>(TargetCodeGenInfo::getABIInfo());
1845   }
1846 
getDwarfEHStackPointer(CodeGen::CodeGenModule & CGM) const1847   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
1848     return 7;
1849   }
1850 
initDwarfEHRegSizeTable(CodeGen::CodeGenFunction & CGF,llvm::Value * Address) const1851   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
1852                                llvm::Value *Address) const override {
1853     llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8);
1854 
1855     // 0-15 are the 16 integer registers.
1856     // 16 is %rip.
1857     AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16);
1858     return false;
1859   }
1860 
adjustInlineAsmType(CodeGen::CodeGenFunction & CGF,StringRef Constraint,llvm::Type * Ty) const1861   llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
1862                                   StringRef Constraint,
1863                                   llvm::Type* Ty) const override {
1864     return X86AdjustInlineAsmType(CGF, Constraint, Ty);
1865   }
1866 
isNoProtoCallVariadic(const CallArgList & args,const FunctionNoProtoType * fnType) const1867   bool isNoProtoCallVariadic(const CallArgList &args,
1868                              const FunctionNoProtoType *fnType) const override {
1869     // The default CC on x86-64 sets %al to the number of SSA
1870     // registers used, and GCC sets this when calling an unprototyped
1871     // function, so we override the default behavior.  However, don't do
1872     // that when AVX types are involved: the ABI explicitly states it is
1873     // undefined, and it doesn't work in practice because of how the ABI
1874     // defines varargs anyway.
1875     if (fnType->getCallConv() == CC_C) {
1876       bool HasAVXType = false;
1877       for (CallArgList::const_iterator
1878              it = args.begin(), ie = args.end(); it != ie; ++it) {
1879         if (getABIInfo().isPassedUsingAVXType(it->Ty)) {
1880           HasAVXType = true;
1881           break;
1882         }
1883       }
1884 
1885       if (!HasAVXType)
1886         return true;
1887     }
1888 
1889     return TargetCodeGenInfo::isNoProtoCallVariadic(args, fnType);
1890   }
1891 
1892   llvm::Constant *
getUBSanFunctionSignature(CodeGen::CodeGenModule & CGM) const1893   getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override {
1894     unsigned Sig;
1895     if (getABIInfo().has64BitPointers())
1896       Sig = (0xeb << 0) |  // jmp rel8
1897             (0x0a << 8) |  //           .+0x0c
1898             ('F' << 16) |
1899             ('T' << 24);
1900     else
1901       Sig = (0xeb << 0) |  // jmp rel8
1902             (0x06 << 8) |  //           .+0x08
1903             ('F' << 16) |
1904             ('T' << 24);
1905     return llvm::ConstantInt::get(CGM.Int32Ty, Sig);
1906   }
1907 };
1908 
1909 class PS4TargetCodeGenInfo : public X86_64TargetCodeGenInfo {
1910 public:
PS4TargetCodeGenInfo(CodeGen::CodeGenTypes & CGT,X86AVXABILevel AVXLevel)1911   PS4TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel)
1912     : X86_64TargetCodeGenInfo(CGT, AVXLevel) {}
1913 
getDependentLibraryOption(llvm::StringRef Lib,llvm::SmallString<24> & Opt) const1914   void getDependentLibraryOption(llvm::StringRef Lib,
1915                                  llvm::SmallString<24> &Opt) const override {
1916     Opt = "\01";
1917     // If the argument contains a space, enclose it in quotes.
1918     if (Lib.find(" ") != StringRef::npos)
1919       Opt += "\"" + Lib.str() + "\"";
1920     else
1921       Opt += Lib;
1922   }
1923 };
1924 
qualifyWindowsLibrary(llvm::StringRef Lib)1925 static std::string qualifyWindowsLibrary(llvm::StringRef Lib) {
1926   // If the argument does not end in .lib, automatically add the suffix.
1927   // If the argument contains a space, enclose it in quotes.
1928   // This matches the behavior of MSVC.
1929   bool Quote = (Lib.find(" ") != StringRef::npos);
1930   std::string ArgStr = Quote ? "\"" : "";
1931   ArgStr += Lib;
1932   if (!Lib.endswith_lower(".lib"))
1933     ArgStr += ".lib";
1934   ArgStr += Quote ? "\"" : "";
1935   return ArgStr;
1936 }
1937 
1938 class WinX86_32TargetCodeGenInfo : public X86_32TargetCodeGenInfo {
1939 public:
WinX86_32TargetCodeGenInfo(CodeGen::CodeGenTypes & CGT,bool DarwinVectorABI,bool RetSmallStructInRegABI,bool Win32StructABI,unsigned NumRegisterParameters)1940   WinX86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT,
1941         bool DarwinVectorABI, bool RetSmallStructInRegABI, bool Win32StructABI,
1942         unsigned NumRegisterParameters)
1943     : X86_32TargetCodeGenInfo(CGT, DarwinVectorABI, RetSmallStructInRegABI,
1944         Win32StructABI, NumRegisterParameters, false) {}
1945 
1946   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
1947                            CodeGen::CodeGenModule &CGM) const override;
1948 
getDependentLibraryOption(llvm::StringRef Lib,llvm::SmallString<24> & Opt) const1949   void getDependentLibraryOption(llvm::StringRef Lib,
1950                                  llvm::SmallString<24> &Opt) const override {
1951     Opt = "/DEFAULTLIB:";
1952     Opt += qualifyWindowsLibrary(Lib);
1953   }
1954 
getDetectMismatchOption(llvm::StringRef Name,llvm::StringRef Value,llvm::SmallString<32> & Opt) const1955   void getDetectMismatchOption(llvm::StringRef Name,
1956                                llvm::StringRef Value,
1957                                llvm::SmallString<32> &Opt) const override {
1958     Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
1959   }
1960 };
1961 
addStackProbeSizeTargetAttribute(const Decl * D,llvm::GlobalValue * GV,CodeGen::CodeGenModule & CGM)1962 static void addStackProbeSizeTargetAttribute(const Decl *D,
1963                                              llvm::GlobalValue *GV,
1964                                              CodeGen::CodeGenModule &CGM) {
1965   if (D && isa<FunctionDecl>(D)) {
1966     if (CGM.getCodeGenOpts().StackProbeSize != 4096) {
1967       llvm::Function *Fn = cast<llvm::Function>(GV);
1968 
1969       Fn->addFnAttr("stack-probe-size",
1970                     llvm::utostr(CGM.getCodeGenOpts().StackProbeSize));
1971     }
1972   }
1973 }
1974 
setTargetAttributes(const Decl * D,llvm::GlobalValue * GV,CodeGen::CodeGenModule & CGM) const1975 void WinX86_32TargetCodeGenInfo::setTargetAttributes(const Decl *D,
1976                                                      llvm::GlobalValue *GV,
1977                                             CodeGen::CodeGenModule &CGM) const {
1978   X86_32TargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
1979 
1980   addStackProbeSizeTargetAttribute(D, GV, CGM);
1981 }
1982 
1983 class WinX86_64TargetCodeGenInfo : public TargetCodeGenInfo {
1984 public:
WinX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes & CGT,X86AVXABILevel AVXLevel)1985   WinX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT,
1986                              X86AVXABILevel AVXLevel)
1987       : TargetCodeGenInfo(new WinX86_64ABIInfo(CGT)) {}
1988 
1989   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
1990                            CodeGen::CodeGenModule &CGM) const override;
1991 
getDwarfEHStackPointer(CodeGen::CodeGenModule & CGM) const1992   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
1993     return 7;
1994   }
1995 
initDwarfEHRegSizeTable(CodeGen::CodeGenFunction & CGF,llvm::Value * Address) const1996   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
1997                                llvm::Value *Address) const override {
1998     llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8);
1999 
2000     // 0-15 are the 16 integer registers.
2001     // 16 is %rip.
2002     AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16);
2003     return false;
2004   }
2005 
getDependentLibraryOption(llvm::StringRef Lib,llvm::SmallString<24> & Opt) const2006   void getDependentLibraryOption(llvm::StringRef Lib,
2007                                  llvm::SmallString<24> &Opt) const override {
2008     Opt = "/DEFAULTLIB:";
2009     Opt += qualifyWindowsLibrary(Lib);
2010   }
2011 
getDetectMismatchOption(llvm::StringRef Name,llvm::StringRef Value,llvm::SmallString<32> & Opt) const2012   void getDetectMismatchOption(llvm::StringRef Name,
2013                                llvm::StringRef Value,
2014                                llvm::SmallString<32> &Opt) const override {
2015     Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
2016   }
2017 };
2018 
setTargetAttributes(const Decl * D,llvm::GlobalValue * GV,CodeGen::CodeGenModule & CGM) const2019 void WinX86_64TargetCodeGenInfo::setTargetAttributes(const Decl *D,
2020                                                      llvm::GlobalValue *GV,
2021                                             CodeGen::CodeGenModule &CGM) const {
2022   TargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
2023 
2024   addStackProbeSizeTargetAttribute(D, GV, CGM);
2025 }
2026 }
2027 
postMerge(unsigned AggregateSize,Class & Lo,Class & Hi) const2028 void X86_64ABIInfo::postMerge(unsigned AggregateSize, Class &Lo,
2029                               Class &Hi) const {
2030   // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done:
2031   //
2032   // (a) If one of the classes is Memory, the whole argument is passed in
2033   //     memory.
2034   //
2035   // (b) If X87UP is not preceded by X87, the whole argument is passed in
2036   //     memory.
2037   //
2038   // (c) If the size of the aggregate exceeds two eightbytes and the first
2039   //     eightbyte isn't SSE or any other eightbyte isn't SSEUP, the whole
2040   //     argument is passed in memory. NOTE: This is necessary to keep the
2041   //     ABI working for processors that don't support the __m256 type.
2042   //
2043   // (d) If SSEUP is not preceded by SSE or SSEUP, it is converted to SSE.
2044   //
2045   // Some of these are enforced by the merging logic.  Others can arise
2046   // only with unions; for example:
2047   //   union { _Complex double; unsigned; }
2048   //
2049   // Note that clauses (b) and (c) were added in 0.98.
2050   //
2051   if (Hi == Memory)
2052     Lo = Memory;
2053   if (Hi == X87Up && Lo != X87 && honorsRevision0_98())
2054     Lo = Memory;
2055   if (AggregateSize > 128 && (Lo != SSE || Hi != SSEUp))
2056     Lo = Memory;
2057   if (Hi == SSEUp && Lo != SSE)
2058     Hi = SSE;
2059 }
2060 
merge(Class Accum,Class Field)2061 X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum, Class Field) {
2062   // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is
2063   // classified recursively so that always two fields are
2064   // considered. The resulting class is calculated according to
2065   // the classes of the fields in the eightbyte:
2066   //
2067   // (a) If both classes are equal, this is the resulting class.
2068   //
2069   // (b) If one of the classes is NO_CLASS, the resulting class is
2070   // the other class.
2071   //
2072   // (c) If one of the classes is MEMORY, the result is the MEMORY
2073   // class.
2074   //
2075   // (d) If one of the classes is INTEGER, the result is the
2076   // INTEGER.
2077   //
2078   // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class,
2079   // MEMORY is used as class.
2080   //
2081   // (f) Otherwise class SSE is used.
2082 
2083   // Accum should never be memory (we should have returned) or
2084   // ComplexX87 (because this cannot be passed in a structure).
2085   assert((Accum != Memory && Accum != ComplexX87) &&
2086          "Invalid accumulated classification during merge.");
2087   if (Accum == Field || Field == NoClass)
2088     return Accum;
2089   if (Field == Memory)
2090     return Memory;
2091   if (Accum == NoClass)
2092     return Field;
2093   if (Accum == Integer || Field == Integer)
2094     return Integer;
2095   if (Field == X87 || Field == X87Up || Field == ComplexX87 ||
2096       Accum == X87 || Accum == X87Up)
2097     return Memory;
2098   return SSE;
2099 }
2100 
classify(QualType Ty,uint64_t OffsetBase,Class & Lo,Class & Hi,bool isNamedArg) const2101 void X86_64ABIInfo::classify(QualType Ty, uint64_t OffsetBase,
2102                              Class &Lo, Class &Hi, bool isNamedArg) const {
2103   // FIXME: This code can be simplified by introducing a simple value class for
2104   // Class pairs with appropriate constructor methods for the various
2105   // situations.
2106 
2107   // FIXME: Some of the split computations are wrong; unaligned vectors
2108   // shouldn't be passed in registers for example, so there is no chance they
2109   // can straddle an eightbyte. Verify & simplify.
2110 
2111   Lo = Hi = NoClass;
2112 
2113   Class &Current = OffsetBase < 64 ? Lo : Hi;
2114   Current = Memory;
2115 
2116   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
2117     BuiltinType::Kind k = BT->getKind();
2118 
2119     if (k == BuiltinType::Void) {
2120       Current = NoClass;
2121     } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) {
2122       Lo = Integer;
2123       Hi = Integer;
2124     } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) {
2125       Current = Integer;
2126     } else if (k == BuiltinType::Float || k == BuiltinType::Double) {
2127       Current = SSE;
2128     } else if (k == BuiltinType::LongDouble) {
2129       const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat();
2130       if (LDF == &llvm::APFloat::IEEEquad) {
2131         Lo = SSE;
2132         Hi = SSEUp;
2133       } else if (LDF == &llvm::APFloat::x87DoubleExtended) {
2134         Lo = X87;
2135         Hi = X87Up;
2136       } else if (LDF == &llvm::APFloat::IEEEdouble) {
2137         Current = SSE;
2138       } else
2139         llvm_unreachable("unexpected long double representation!");
2140     }
2141     // FIXME: _Decimal32 and _Decimal64 are SSE.
2142     // FIXME: _float128 and _Decimal128 are (SSE, SSEUp).
2143     return;
2144   }
2145 
2146   if (const EnumType *ET = Ty->getAs<EnumType>()) {
2147     // Classify the underlying integer type.
2148     classify(ET->getDecl()->getIntegerType(), OffsetBase, Lo, Hi, isNamedArg);
2149     return;
2150   }
2151 
2152   if (Ty->hasPointerRepresentation()) {
2153     Current = Integer;
2154     return;
2155   }
2156 
2157   if (Ty->isMemberPointerType()) {
2158     if (Ty->isMemberFunctionPointerType()) {
2159       if (Has64BitPointers) {
2160         // If Has64BitPointers, this is an {i64, i64}, so classify both
2161         // Lo and Hi now.
2162         Lo = Hi = Integer;
2163       } else {
2164         // Otherwise, with 32-bit pointers, this is an {i32, i32}. If that
2165         // straddles an eightbyte boundary, Hi should be classified as well.
2166         uint64_t EB_FuncPtr = (OffsetBase) / 64;
2167         uint64_t EB_ThisAdj = (OffsetBase + 64 - 1) / 64;
2168         if (EB_FuncPtr != EB_ThisAdj) {
2169           Lo = Hi = Integer;
2170         } else {
2171           Current = Integer;
2172         }
2173       }
2174     } else {
2175       Current = Integer;
2176     }
2177     return;
2178   }
2179 
2180   if (const VectorType *VT = Ty->getAs<VectorType>()) {
2181     uint64_t Size = getContext().getTypeSize(VT);
2182     if (Size == 1 || Size == 8 || Size == 16 || Size == 32) {
2183       // gcc passes the following as integer:
2184       // 4 bytes - <4 x char>, <2 x short>, <1 x int>, <1 x float>
2185       // 2 bytes - <2 x char>, <1 x short>
2186       // 1 byte  - <1 x char>
2187       Current = Integer;
2188 
2189       // If this type crosses an eightbyte boundary, it should be
2190       // split.
2191       uint64_t EB_Lo = (OffsetBase) / 64;
2192       uint64_t EB_Hi = (OffsetBase + Size - 1) / 64;
2193       if (EB_Lo != EB_Hi)
2194         Hi = Lo;
2195     } else if (Size == 64) {
2196       // gcc passes <1 x double> in memory. :(
2197       if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::Double))
2198         return;
2199 
2200       // gcc passes <1 x long long> as INTEGER.
2201       if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::LongLong) ||
2202           VT->getElementType()->isSpecificBuiltinType(BuiltinType::ULongLong) ||
2203           VT->getElementType()->isSpecificBuiltinType(BuiltinType::Long) ||
2204           VT->getElementType()->isSpecificBuiltinType(BuiltinType::ULong))
2205         Current = Integer;
2206       else
2207         Current = SSE;
2208 
2209       // If this type crosses an eightbyte boundary, it should be
2210       // split.
2211       if (OffsetBase && OffsetBase != 64)
2212         Hi = Lo;
2213     } else if (Size == 128 ||
2214                (isNamedArg && Size <= getNativeVectorSizeForAVXABI(AVXLevel))) {
2215       // Arguments of 256-bits are split into four eightbyte chunks. The
2216       // least significant one belongs to class SSE and all the others to class
2217       // SSEUP. The original Lo and Hi design considers that types can't be
2218       // greater than 128-bits, so a 64-bit split in Hi and Lo makes sense.
2219       // This design isn't correct for 256-bits, but since there're no cases
2220       // where the upper parts would need to be inspected, avoid adding
2221       // complexity and just consider Hi to match the 64-256 part.
2222       //
2223       // Note that per 3.5.7 of AMD64-ABI, 256-bit args are only passed in
2224       // registers if they are "named", i.e. not part of the "..." of a
2225       // variadic function.
2226       //
2227       // Similarly, per 3.2.3. of the AVX512 draft, 512-bits ("named") args are
2228       // split into eight eightbyte chunks, one SSE and seven SSEUP.
2229       Lo = SSE;
2230       Hi = SSEUp;
2231     }
2232     return;
2233   }
2234 
2235   if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
2236     QualType ET = getContext().getCanonicalType(CT->getElementType());
2237 
2238     uint64_t Size = getContext().getTypeSize(Ty);
2239     if (ET->isIntegralOrEnumerationType()) {
2240       if (Size <= 64)
2241         Current = Integer;
2242       else if (Size <= 128)
2243         Lo = Hi = Integer;
2244     } else if (ET == getContext().FloatTy) {
2245       Current = SSE;
2246     } else if (ET == getContext().DoubleTy) {
2247       Lo = Hi = SSE;
2248     } else if (ET == getContext().LongDoubleTy) {
2249       const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat();
2250       if (LDF == &llvm::APFloat::IEEEquad)
2251         Current = Memory;
2252       else if (LDF == &llvm::APFloat::x87DoubleExtended)
2253         Current = ComplexX87;
2254       else if (LDF == &llvm::APFloat::IEEEdouble)
2255         Lo = Hi = SSE;
2256       else
2257         llvm_unreachable("unexpected long double representation!");
2258     }
2259 
2260     // If this complex type crosses an eightbyte boundary then it
2261     // should be split.
2262     uint64_t EB_Real = (OffsetBase) / 64;
2263     uint64_t EB_Imag = (OffsetBase + getContext().getTypeSize(ET)) / 64;
2264     if (Hi == NoClass && EB_Real != EB_Imag)
2265       Hi = Lo;
2266 
2267     return;
2268   }
2269 
2270   if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
2271     // Arrays are treated like structures.
2272 
2273     uint64_t Size = getContext().getTypeSize(Ty);
2274 
2275     // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
2276     // than four eightbytes, ..., it has class MEMORY.
2277     if (Size > 256)
2278       return;
2279 
2280     // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned
2281     // fields, it has class MEMORY.
2282     //
2283     // Only need to check alignment of array base.
2284     if (OffsetBase % getContext().getTypeAlign(AT->getElementType()))
2285       return;
2286 
2287     // Otherwise implement simplified merge. We could be smarter about
2288     // this, but it isn't worth it and would be harder to verify.
2289     Current = NoClass;
2290     uint64_t EltSize = getContext().getTypeSize(AT->getElementType());
2291     uint64_t ArraySize = AT->getSize().getZExtValue();
2292 
2293     // The only case a 256-bit wide vector could be used is when the array
2294     // contains a single 256-bit element. Since Lo and Hi logic isn't extended
2295     // to work for sizes wider than 128, early check and fallback to memory.
2296     if (Size > 128 && EltSize != 256)
2297       return;
2298 
2299     for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) {
2300       Class FieldLo, FieldHi;
2301       classify(AT->getElementType(), Offset, FieldLo, FieldHi, isNamedArg);
2302       Lo = merge(Lo, FieldLo);
2303       Hi = merge(Hi, FieldHi);
2304       if (Lo == Memory || Hi == Memory)
2305         break;
2306     }
2307 
2308     postMerge(Size, Lo, Hi);
2309     assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification.");
2310     return;
2311   }
2312 
2313   if (const RecordType *RT = Ty->getAs<RecordType>()) {
2314     uint64_t Size = getContext().getTypeSize(Ty);
2315 
2316     // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
2317     // than four eightbytes, ..., it has class MEMORY.
2318     if (Size > 256)
2319       return;
2320 
2321     // AMD64-ABI 3.2.3p2: Rule 2. If a C++ object has either a non-trivial
2322     // copy constructor or a non-trivial destructor, it is passed by invisible
2323     // reference.
2324     if (getRecordArgABI(RT, getCXXABI()))
2325       return;
2326 
2327     const RecordDecl *RD = RT->getDecl();
2328 
2329     // Assume variable sized types are passed in memory.
2330     if (RD->hasFlexibleArrayMember())
2331       return;
2332 
2333     const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
2334 
2335     // Reset Lo class, this will be recomputed.
2336     Current = NoClass;
2337 
2338     // If this is a C++ record, classify the bases first.
2339     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
2340       for (const auto &I : CXXRD->bases()) {
2341         assert(!I.isVirtual() && !I.getType()->isDependentType() &&
2342                "Unexpected base class!");
2343         const CXXRecordDecl *Base =
2344           cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl());
2345 
2346         // Classify this field.
2347         //
2348         // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate exceeds a
2349         // single eightbyte, each is classified separately. Each eightbyte gets
2350         // initialized to class NO_CLASS.
2351         Class FieldLo, FieldHi;
2352         uint64_t Offset =
2353           OffsetBase + getContext().toBits(Layout.getBaseClassOffset(Base));
2354         classify(I.getType(), Offset, FieldLo, FieldHi, isNamedArg);
2355         Lo = merge(Lo, FieldLo);
2356         Hi = merge(Hi, FieldHi);
2357         if (Lo == Memory || Hi == Memory) {
2358           postMerge(Size, Lo, Hi);
2359           return;
2360         }
2361       }
2362     }
2363 
2364     // Classify the fields one at a time, merging the results.
2365     unsigned idx = 0;
2366     for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
2367            i != e; ++i, ++idx) {
2368       uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
2369       bool BitField = i->isBitField();
2370 
2371       // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger than
2372       // four eightbytes, or it contains unaligned fields, it has class MEMORY.
2373       //
2374       // The only case a 256-bit wide vector could be used is when the struct
2375       // contains a single 256-bit element. Since Lo and Hi logic isn't extended
2376       // to work for sizes wider than 128, early check and fallback to memory.
2377       //
2378       if (Size > 128 && getContext().getTypeSize(i->getType()) != 256) {
2379         Lo = Memory;
2380         postMerge(Size, Lo, Hi);
2381         return;
2382       }
2383       // Note, skip this test for bit-fields, see below.
2384       if (!BitField && Offset % getContext().getTypeAlign(i->getType())) {
2385         Lo = Memory;
2386         postMerge(Size, Lo, Hi);
2387         return;
2388       }
2389 
2390       // Classify this field.
2391       //
2392       // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate
2393       // exceeds a single eightbyte, each is classified
2394       // separately. Each eightbyte gets initialized to class
2395       // NO_CLASS.
2396       Class FieldLo, FieldHi;
2397 
2398       // Bit-fields require special handling, they do not force the
2399       // structure to be passed in memory even if unaligned, and
2400       // therefore they can straddle an eightbyte.
2401       if (BitField) {
2402         // Ignore padding bit-fields.
2403         if (i->isUnnamedBitfield())
2404           continue;
2405 
2406         uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
2407         uint64_t Size = i->getBitWidthValue(getContext());
2408 
2409         uint64_t EB_Lo = Offset / 64;
2410         uint64_t EB_Hi = (Offset + Size - 1) / 64;
2411 
2412         if (EB_Lo) {
2413           assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes.");
2414           FieldLo = NoClass;
2415           FieldHi = Integer;
2416         } else {
2417           FieldLo = Integer;
2418           FieldHi = EB_Hi ? Integer : NoClass;
2419         }
2420       } else
2421         classify(i->getType(), Offset, FieldLo, FieldHi, isNamedArg);
2422       Lo = merge(Lo, FieldLo);
2423       Hi = merge(Hi, FieldHi);
2424       if (Lo == Memory || Hi == Memory)
2425         break;
2426     }
2427 
2428     postMerge(Size, Lo, Hi);
2429   }
2430 }
2431 
getIndirectReturnResult(QualType Ty) const2432 ABIArgInfo X86_64ABIInfo::getIndirectReturnResult(QualType Ty) const {
2433   // If this is a scalar LLVM value then assume LLVM will pass it in the right
2434   // place naturally.
2435   if (!isAggregateTypeForABI(Ty)) {
2436     // Treat an enum type as its underlying type.
2437     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
2438       Ty = EnumTy->getDecl()->getIntegerType();
2439 
2440     return (Ty->isPromotableIntegerType() ?
2441             ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
2442   }
2443 
2444   return getNaturalAlignIndirect(Ty);
2445 }
2446 
IsIllegalVectorType(QualType Ty) const2447 bool X86_64ABIInfo::IsIllegalVectorType(QualType Ty) const {
2448   if (const VectorType *VecTy = Ty->getAs<VectorType>()) {
2449     uint64_t Size = getContext().getTypeSize(VecTy);
2450     unsigned LargestVector = getNativeVectorSizeForAVXABI(AVXLevel);
2451     if (Size <= 64 || Size > LargestVector)
2452       return true;
2453   }
2454 
2455   return false;
2456 }
2457 
getIndirectResult(QualType Ty,unsigned freeIntRegs) const2458 ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty,
2459                                             unsigned freeIntRegs) const {
2460   // If this is a scalar LLVM value then assume LLVM will pass it in the right
2461   // place naturally.
2462   //
2463   // This assumption is optimistic, as there could be free registers available
2464   // when we need to pass this argument in memory, and LLVM could try to pass
2465   // the argument in the free register. This does not seem to happen currently,
2466   // but this code would be much safer if we could mark the argument with
2467   // 'onstack'. See PR12193.
2468   if (!isAggregateTypeForABI(Ty) && !IsIllegalVectorType(Ty)) {
2469     // Treat an enum type as its underlying type.
2470     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
2471       Ty = EnumTy->getDecl()->getIntegerType();
2472 
2473     return (Ty->isPromotableIntegerType() ?
2474             ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
2475   }
2476 
2477   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
2478     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
2479 
2480   // Compute the byval alignment. We specify the alignment of the byval in all
2481   // cases so that the mid-level optimizer knows the alignment of the byval.
2482   unsigned Align = std::max(getContext().getTypeAlign(Ty) / 8, 8U);
2483 
2484   // Attempt to avoid passing indirect results using byval when possible. This
2485   // is important for good codegen.
2486   //
2487   // We do this by coercing the value into a scalar type which the backend can
2488   // handle naturally (i.e., without using byval).
2489   //
2490   // For simplicity, we currently only do this when we have exhausted all of the
2491   // free integer registers. Doing this when there are free integer registers
2492   // would require more care, as we would have to ensure that the coerced value
2493   // did not claim the unused register. That would require either reording the
2494   // arguments to the function (so that any subsequent inreg values came first),
2495   // or only doing this optimization when there were no following arguments that
2496   // might be inreg.
2497   //
2498   // We currently expect it to be rare (particularly in well written code) for
2499   // arguments to be passed on the stack when there are still free integer
2500   // registers available (this would typically imply large structs being passed
2501   // by value), so this seems like a fair tradeoff for now.
2502   //
2503   // We can revisit this if the backend grows support for 'onstack' parameter
2504   // attributes. See PR12193.
2505   if (freeIntRegs == 0) {
2506     uint64_t Size = getContext().getTypeSize(Ty);
2507 
2508     // If this type fits in an eightbyte, coerce it into the matching integral
2509     // type, which will end up on the stack (with alignment 8).
2510     if (Align == 8 && Size <= 64)
2511       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
2512                                                           Size));
2513   }
2514 
2515   return ABIArgInfo::getIndirect(CharUnits::fromQuantity(Align));
2516 }
2517 
2518 /// The ABI specifies that a value should be passed in a full vector XMM/YMM
2519 /// register. Pick an LLVM IR type that will be passed as a vector register.
GetByteVectorType(QualType Ty) const2520 llvm::Type *X86_64ABIInfo::GetByteVectorType(QualType Ty) const {
2521   // Wrapper structs/arrays that only contain vectors are passed just like
2522   // vectors; strip them off if present.
2523   if (const Type *InnerTy = isSingleElementStruct(Ty, getContext()))
2524     Ty = QualType(InnerTy, 0);
2525 
2526   llvm::Type *IRType = CGT.ConvertType(Ty);
2527   if (isa<llvm::VectorType>(IRType) ||
2528       IRType->getTypeID() == llvm::Type::FP128TyID)
2529     return IRType;
2530 
2531   // We couldn't find the preferred IR vector type for 'Ty'.
2532   uint64_t Size = getContext().getTypeSize(Ty);
2533   assert((Size == 128 || Size == 256) && "Invalid type found!");
2534 
2535   // Return a LLVM IR vector type based on the size of 'Ty'.
2536   return llvm::VectorType::get(llvm::Type::getDoubleTy(getVMContext()),
2537                                Size / 64);
2538 }
2539 
2540 /// BitsContainNoUserData - Return true if the specified [start,end) bit range
2541 /// is known to either be off the end of the specified type or being in
2542 /// alignment padding.  The user type specified is known to be at most 128 bits
2543 /// in size, and have passed through X86_64ABIInfo::classify with a successful
2544 /// classification that put one of the two halves in the INTEGER class.
2545 ///
2546 /// It is conservatively correct to return false.
BitsContainNoUserData(QualType Ty,unsigned StartBit,unsigned EndBit,ASTContext & Context)2547 static bool BitsContainNoUserData(QualType Ty, unsigned StartBit,
2548                                   unsigned EndBit, ASTContext &Context) {
2549   // If the bytes being queried are off the end of the type, there is no user
2550   // data hiding here.  This handles analysis of builtins, vectors and other
2551   // types that don't contain interesting padding.
2552   unsigned TySize = (unsigned)Context.getTypeSize(Ty);
2553   if (TySize <= StartBit)
2554     return true;
2555 
2556   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
2557     unsigned EltSize = (unsigned)Context.getTypeSize(AT->getElementType());
2558     unsigned NumElts = (unsigned)AT->getSize().getZExtValue();
2559 
2560     // Check each element to see if the element overlaps with the queried range.
2561     for (unsigned i = 0; i != NumElts; ++i) {
2562       // If the element is after the span we care about, then we're done..
2563       unsigned EltOffset = i*EltSize;
2564       if (EltOffset >= EndBit) break;
2565 
2566       unsigned EltStart = EltOffset < StartBit ? StartBit-EltOffset :0;
2567       if (!BitsContainNoUserData(AT->getElementType(), EltStart,
2568                                  EndBit-EltOffset, Context))
2569         return false;
2570     }
2571     // If it overlaps no elements, then it is safe to process as padding.
2572     return true;
2573   }
2574 
2575   if (const RecordType *RT = Ty->getAs<RecordType>()) {
2576     const RecordDecl *RD = RT->getDecl();
2577     const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
2578 
2579     // If this is a C++ record, check the bases first.
2580     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
2581       for (const auto &I : CXXRD->bases()) {
2582         assert(!I.isVirtual() && !I.getType()->isDependentType() &&
2583                "Unexpected base class!");
2584         const CXXRecordDecl *Base =
2585           cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl());
2586 
2587         // If the base is after the span we care about, ignore it.
2588         unsigned BaseOffset = Context.toBits(Layout.getBaseClassOffset(Base));
2589         if (BaseOffset >= EndBit) continue;
2590 
2591         unsigned BaseStart = BaseOffset < StartBit ? StartBit-BaseOffset :0;
2592         if (!BitsContainNoUserData(I.getType(), BaseStart,
2593                                    EndBit-BaseOffset, Context))
2594           return false;
2595       }
2596     }
2597 
2598     // Verify that no field has data that overlaps the region of interest.  Yes
2599     // this could be sped up a lot by being smarter about queried fields,
2600     // however we're only looking at structs up to 16 bytes, so we don't care
2601     // much.
2602     unsigned idx = 0;
2603     for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
2604          i != e; ++i, ++idx) {
2605       unsigned FieldOffset = (unsigned)Layout.getFieldOffset(idx);
2606 
2607       // If we found a field after the region we care about, then we're done.
2608       if (FieldOffset >= EndBit) break;
2609 
2610       unsigned FieldStart = FieldOffset < StartBit ? StartBit-FieldOffset :0;
2611       if (!BitsContainNoUserData(i->getType(), FieldStart, EndBit-FieldOffset,
2612                                  Context))
2613         return false;
2614     }
2615 
2616     // If nothing in this record overlapped the area of interest, then we're
2617     // clean.
2618     return true;
2619   }
2620 
2621   return false;
2622 }
2623 
2624 /// ContainsFloatAtOffset - Return true if the specified LLVM IR type has a
2625 /// float member at the specified offset.  For example, {int,{float}} has a
2626 /// float at offset 4.  It is conservatively correct for this routine to return
2627 /// false.
ContainsFloatAtOffset(llvm::Type * IRType,unsigned IROffset,const llvm::DataLayout & TD)2628 static bool ContainsFloatAtOffset(llvm::Type *IRType, unsigned IROffset,
2629                                   const llvm::DataLayout &TD) {
2630   // Base case if we find a float.
2631   if (IROffset == 0 && IRType->isFloatTy())
2632     return true;
2633 
2634   // If this is a struct, recurse into the field at the specified offset.
2635   if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
2636     const llvm::StructLayout *SL = TD.getStructLayout(STy);
2637     unsigned Elt = SL->getElementContainingOffset(IROffset);
2638     IROffset -= SL->getElementOffset(Elt);
2639     return ContainsFloatAtOffset(STy->getElementType(Elt), IROffset, TD);
2640   }
2641 
2642   // If this is an array, recurse into the field at the specified offset.
2643   if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
2644     llvm::Type *EltTy = ATy->getElementType();
2645     unsigned EltSize = TD.getTypeAllocSize(EltTy);
2646     IROffset -= IROffset/EltSize*EltSize;
2647     return ContainsFloatAtOffset(EltTy, IROffset, TD);
2648   }
2649 
2650   return false;
2651 }
2652 
2653 
2654 /// GetSSETypeAtOffset - Return a type that will be passed by the backend in the
2655 /// low 8 bytes of an XMM register, corresponding to the SSE class.
2656 llvm::Type *X86_64ABIInfo::
GetSSETypeAtOffset(llvm::Type * IRType,unsigned IROffset,QualType SourceTy,unsigned SourceOffset) const2657 GetSSETypeAtOffset(llvm::Type *IRType, unsigned IROffset,
2658                    QualType SourceTy, unsigned SourceOffset) const {
2659   // The only three choices we have are either double, <2 x float>, or float. We
2660   // pass as float if the last 4 bytes is just padding.  This happens for
2661   // structs that contain 3 floats.
2662   if (BitsContainNoUserData(SourceTy, SourceOffset*8+32,
2663                             SourceOffset*8+64, getContext()))
2664     return llvm::Type::getFloatTy(getVMContext());
2665 
2666   // We want to pass as <2 x float> if the LLVM IR type contains a float at
2667   // offset+0 and offset+4.  Walk the LLVM IR type to find out if this is the
2668   // case.
2669   if (ContainsFloatAtOffset(IRType, IROffset, getDataLayout()) &&
2670       ContainsFloatAtOffset(IRType, IROffset+4, getDataLayout()))
2671     return llvm::VectorType::get(llvm::Type::getFloatTy(getVMContext()), 2);
2672 
2673   return llvm::Type::getDoubleTy(getVMContext());
2674 }
2675 
2676 
2677 /// GetINTEGERTypeAtOffset - The ABI specifies that a value should be passed in
2678 /// an 8-byte GPR.  This means that we either have a scalar or we are talking
2679 /// about the high or low part of an up-to-16-byte struct.  This routine picks
2680 /// the best LLVM IR type to represent this, which may be i64 or may be anything
2681 /// else that the backend will pass in a GPR that works better (e.g. i8, %foo*,
2682 /// etc).
2683 ///
2684 /// PrefType is an LLVM IR type that corresponds to (part of) the IR type for
2685 /// the source type.  IROffset is an offset in bytes into the LLVM IR type that
2686 /// the 8-byte value references.  PrefType may be null.
2687 ///
2688 /// SourceTy is the source-level type for the entire argument.  SourceOffset is
2689 /// an offset into this that we're processing (which is always either 0 or 8).
2690 ///
2691 llvm::Type *X86_64ABIInfo::
GetINTEGERTypeAtOffset(llvm::Type * IRType,unsigned IROffset,QualType SourceTy,unsigned SourceOffset) const2692 GetINTEGERTypeAtOffset(llvm::Type *IRType, unsigned IROffset,
2693                        QualType SourceTy, unsigned SourceOffset) const {
2694   // If we're dealing with an un-offset LLVM IR type, then it means that we're
2695   // returning an 8-byte unit starting with it.  See if we can safely use it.
2696   if (IROffset == 0) {
2697     // Pointers and int64's always fill the 8-byte unit.
2698     if ((isa<llvm::PointerType>(IRType) && Has64BitPointers) ||
2699         IRType->isIntegerTy(64))
2700       return IRType;
2701 
2702     // If we have a 1/2/4-byte integer, we can use it only if the rest of the
2703     // goodness in the source type is just tail padding.  This is allowed to
2704     // kick in for struct {double,int} on the int, but not on
2705     // struct{double,int,int} because we wouldn't return the second int.  We
2706     // have to do this analysis on the source type because we can't depend on
2707     // unions being lowered a specific way etc.
2708     if (IRType->isIntegerTy(8) || IRType->isIntegerTy(16) ||
2709         IRType->isIntegerTy(32) ||
2710         (isa<llvm::PointerType>(IRType) && !Has64BitPointers)) {
2711       unsigned BitWidth = isa<llvm::PointerType>(IRType) ? 32 :
2712           cast<llvm::IntegerType>(IRType)->getBitWidth();
2713 
2714       if (BitsContainNoUserData(SourceTy, SourceOffset*8+BitWidth,
2715                                 SourceOffset*8+64, getContext()))
2716         return IRType;
2717     }
2718   }
2719 
2720   if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
2721     // If this is a struct, recurse into the field at the specified offset.
2722     const llvm::StructLayout *SL = getDataLayout().getStructLayout(STy);
2723     if (IROffset < SL->getSizeInBytes()) {
2724       unsigned FieldIdx = SL->getElementContainingOffset(IROffset);
2725       IROffset -= SL->getElementOffset(FieldIdx);
2726 
2727       return GetINTEGERTypeAtOffset(STy->getElementType(FieldIdx), IROffset,
2728                                     SourceTy, SourceOffset);
2729     }
2730   }
2731 
2732   if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
2733     llvm::Type *EltTy = ATy->getElementType();
2734     unsigned EltSize = getDataLayout().getTypeAllocSize(EltTy);
2735     unsigned EltOffset = IROffset/EltSize*EltSize;
2736     return GetINTEGERTypeAtOffset(EltTy, IROffset-EltOffset, SourceTy,
2737                                   SourceOffset);
2738   }
2739 
2740   // Okay, we don't have any better idea of what to pass, so we pass this in an
2741   // integer register that isn't too big to fit the rest of the struct.
2742   unsigned TySizeInBytes =
2743     (unsigned)getContext().getTypeSizeInChars(SourceTy).getQuantity();
2744 
2745   assert(TySizeInBytes != SourceOffset && "Empty field?");
2746 
2747   // It is always safe to classify this as an integer type up to i64 that
2748   // isn't larger than the structure.
2749   return llvm::IntegerType::get(getVMContext(),
2750                                 std::min(TySizeInBytes-SourceOffset, 8U)*8);
2751 }
2752 
2753 
2754 /// GetX86_64ByValArgumentPair - Given a high and low type that can ideally
2755 /// be used as elements of a two register pair to pass or return, return a
2756 /// first class aggregate to represent them.  For example, if the low part of
2757 /// a by-value argument should be passed as i32* and the high part as float,
2758 /// return {i32*, float}.
2759 static llvm::Type *
GetX86_64ByValArgumentPair(llvm::Type * Lo,llvm::Type * Hi,const llvm::DataLayout & TD)2760 GetX86_64ByValArgumentPair(llvm::Type *Lo, llvm::Type *Hi,
2761                            const llvm::DataLayout &TD) {
2762   // In order to correctly satisfy the ABI, we need to the high part to start
2763   // at offset 8.  If the high and low parts we inferred are both 4-byte types
2764   // (e.g. i32 and i32) then the resultant struct type ({i32,i32}) won't have
2765   // the second element at offset 8.  Check for this:
2766   unsigned LoSize = (unsigned)TD.getTypeAllocSize(Lo);
2767   unsigned HiAlign = TD.getABITypeAlignment(Hi);
2768   unsigned HiStart = llvm::RoundUpToAlignment(LoSize, HiAlign);
2769   assert(HiStart != 0 && HiStart <= 8 && "Invalid x86-64 argument pair!");
2770 
2771   // To handle this, we have to increase the size of the low part so that the
2772   // second element will start at an 8 byte offset.  We can't increase the size
2773   // of the second element because it might make us access off the end of the
2774   // struct.
2775   if (HiStart != 8) {
2776     // There are usually two sorts of types the ABI generation code can produce
2777     // for the low part of a pair that aren't 8 bytes in size: float or
2778     // i8/i16/i32.  This can also include pointers when they are 32-bit (X32 and
2779     // NaCl).
2780     // Promote these to a larger type.
2781     if (Lo->isFloatTy())
2782       Lo = llvm::Type::getDoubleTy(Lo->getContext());
2783     else {
2784       assert((Lo->isIntegerTy() || Lo->isPointerTy())
2785              && "Invalid/unknown lo type");
2786       Lo = llvm::Type::getInt64Ty(Lo->getContext());
2787     }
2788   }
2789 
2790   llvm::StructType *Result = llvm::StructType::get(Lo, Hi, nullptr);
2791 
2792 
2793   // Verify that the second element is at an 8-byte offset.
2794   assert(TD.getStructLayout(Result)->getElementOffset(1) == 8 &&
2795          "Invalid x86-64 argument pair!");
2796   return Result;
2797 }
2798 
2799 ABIArgInfo X86_64ABIInfo::
classifyReturnType(QualType RetTy) const2800 classifyReturnType(QualType RetTy) const {
2801   // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the
2802   // classification algorithm.
2803   X86_64ABIInfo::Class Lo, Hi;
2804   classify(RetTy, 0, Lo, Hi, /*isNamedArg*/ true);
2805 
2806   // Check some invariants.
2807   assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
2808   assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
2809 
2810   llvm::Type *ResType = nullptr;
2811   switch (Lo) {
2812   case NoClass:
2813     if (Hi == NoClass)
2814       return ABIArgInfo::getIgnore();
2815     // If the low part is just padding, it takes no register, leave ResType
2816     // null.
2817     assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
2818            "Unknown missing lo part");
2819     break;
2820 
2821   case SSEUp:
2822   case X87Up:
2823     llvm_unreachable("Invalid classification for lo word.");
2824 
2825     // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via
2826     // hidden argument.
2827   case Memory:
2828     return getIndirectReturnResult(RetTy);
2829 
2830     // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next
2831     // available register of the sequence %rax, %rdx is used.
2832   case Integer:
2833     ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0);
2834 
2835     // If we have a sign or zero extended integer, make sure to return Extend
2836     // so that the parameter gets the right LLVM IR attributes.
2837     if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
2838       // Treat an enum type as its underlying type.
2839       if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
2840         RetTy = EnumTy->getDecl()->getIntegerType();
2841 
2842       if (RetTy->isIntegralOrEnumerationType() &&
2843           RetTy->isPromotableIntegerType())
2844         return ABIArgInfo::getExtend();
2845     }
2846     break;
2847 
2848     // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next
2849     // available SSE register of the sequence %xmm0, %xmm1 is used.
2850   case SSE:
2851     ResType = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0);
2852     break;
2853 
2854     // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is
2855     // returned on the X87 stack in %st0 as 80-bit x87 number.
2856   case X87:
2857     ResType = llvm::Type::getX86_FP80Ty(getVMContext());
2858     break;
2859 
2860     // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real
2861     // part of the value is returned in %st0 and the imaginary part in
2862     // %st1.
2863   case ComplexX87:
2864     assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification.");
2865     ResType = llvm::StructType::get(llvm::Type::getX86_FP80Ty(getVMContext()),
2866                                     llvm::Type::getX86_FP80Ty(getVMContext()),
2867                                     nullptr);
2868     break;
2869   }
2870 
2871   llvm::Type *HighPart = nullptr;
2872   switch (Hi) {
2873     // Memory was handled previously and X87 should
2874     // never occur as a hi class.
2875   case Memory:
2876   case X87:
2877     llvm_unreachable("Invalid classification for hi word.");
2878 
2879   case ComplexX87: // Previously handled.
2880   case NoClass:
2881     break;
2882 
2883   case Integer:
2884     HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
2885     if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
2886       return ABIArgInfo::getDirect(HighPart, 8);
2887     break;
2888   case SSE:
2889     HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
2890     if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
2891       return ABIArgInfo::getDirect(HighPart, 8);
2892     break;
2893 
2894     // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte
2895     // is passed in the next available eightbyte chunk if the last used
2896     // vector register.
2897     //
2898     // SSEUP should always be preceded by SSE, just widen.
2899   case SSEUp:
2900     assert(Lo == SSE && "Unexpected SSEUp classification.");
2901     ResType = GetByteVectorType(RetTy);
2902     break;
2903 
2904     // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is
2905     // returned together with the previous X87 value in %st0.
2906   case X87Up:
2907     // If X87Up is preceded by X87, we don't need to do
2908     // anything. However, in some cases with unions it may not be
2909     // preceded by X87. In such situations we follow gcc and pass the
2910     // extra bits in an SSE reg.
2911     if (Lo != X87) {
2912       HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
2913       if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
2914         return ABIArgInfo::getDirect(HighPart, 8);
2915     }
2916     break;
2917   }
2918 
2919   // If a high part was specified, merge it together with the low part.  It is
2920   // known to pass in the high eightbyte of the result.  We do this by forming a
2921   // first class struct aggregate with the high and low part: {low, high}
2922   if (HighPart)
2923     ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout());
2924 
2925   return ABIArgInfo::getDirect(ResType);
2926 }
2927 
classifyArgumentType(QualType Ty,unsigned freeIntRegs,unsigned & neededInt,unsigned & neededSSE,bool isNamedArg) const2928 ABIArgInfo X86_64ABIInfo::classifyArgumentType(
2929   QualType Ty, unsigned freeIntRegs, unsigned &neededInt, unsigned &neededSSE,
2930   bool isNamedArg)
2931   const
2932 {
2933   Ty = useFirstFieldIfTransparentUnion(Ty);
2934 
2935   X86_64ABIInfo::Class Lo, Hi;
2936   classify(Ty, 0, Lo, Hi, isNamedArg);
2937 
2938   // Check some invariants.
2939   // FIXME: Enforce these by construction.
2940   assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
2941   assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
2942 
2943   neededInt = 0;
2944   neededSSE = 0;
2945   llvm::Type *ResType = nullptr;
2946   switch (Lo) {
2947   case NoClass:
2948     if (Hi == NoClass)
2949       return ABIArgInfo::getIgnore();
2950     // If the low part is just padding, it takes no register, leave ResType
2951     // null.
2952     assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
2953            "Unknown missing lo part");
2954     break;
2955 
2956     // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument
2957     // on the stack.
2958   case Memory:
2959 
2960     // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or
2961     // COMPLEX_X87, it is passed in memory.
2962   case X87:
2963   case ComplexX87:
2964     if (getRecordArgABI(Ty, getCXXABI()) == CGCXXABI::RAA_Indirect)
2965       ++neededInt;
2966     return getIndirectResult(Ty, freeIntRegs);
2967 
2968   case SSEUp:
2969   case X87Up:
2970     llvm_unreachable("Invalid classification for lo word.");
2971 
2972     // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next
2973     // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8
2974     // and %r9 is used.
2975   case Integer:
2976     ++neededInt;
2977 
2978     // Pick an 8-byte type based on the preferred type.
2979     ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 0, Ty, 0);
2980 
2981     // If we have a sign or zero extended integer, make sure to return Extend
2982     // so that the parameter gets the right LLVM IR attributes.
2983     if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
2984       // Treat an enum type as its underlying type.
2985       if (const EnumType *EnumTy = Ty->getAs<EnumType>())
2986         Ty = EnumTy->getDecl()->getIntegerType();
2987 
2988       if (Ty->isIntegralOrEnumerationType() &&
2989           Ty->isPromotableIntegerType())
2990         return ABIArgInfo::getExtend();
2991     }
2992 
2993     break;
2994 
2995     // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next
2996     // available SSE register is used, the registers are taken in the
2997     // order from %xmm0 to %xmm7.
2998   case SSE: {
2999     llvm::Type *IRType = CGT.ConvertType(Ty);
3000     ResType = GetSSETypeAtOffset(IRType, 0, Ty, 0);
3001     ++neededSSE;
3002     break;
3003   }
3004   }
3005 
3006   llvm::Type *HighPart = nullptr;
3007   switch (Hi) {
3008     // Memory was handled previously, ComplexX87 and X87 should
3009     // never occur as hi classes, and X87Up must be preceded by X87,
3010     // which is passed in memory.
3011   case Memory:
3012   case X87:
3013   case ComplexX87:
3014     llvm_unreachable("Invalid classification for hi word.");
3015 
3016   case NoClass: break;
3017 
3018   case Integer:
3019     ++neededInt;
3020     // Pick an 8-byte type based on the preferred type.
3021     HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8);
3022 
3023     if (Lo == NoClass)  // Pass HighPart at offset 8 in memory.
3024       return ABIArgInfo::getDirect(HighPart, 8);
3025     break;
3026 
3027     // X87Up generally doesn't occur here (long double is passed in
3028     // memory), except in situations involving unions.
3029   case X87Up:
3030   case SSE:
3031     HighPart = GetSSETypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8);
3032 
3033     if (Lo == NoClass)  // Pass HighPart at offset 8 in memory.
3034       return ABIArgInfo::getDirect(HighPart, 8);
3035 
3036     ++neededSSE;
3037     break;
3038 
3039     // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the
3040     // eightbyte is passed in the upper half of the last used SSE
3041     // register.  This only happens when 128-bit vectors are passed.
3042   case SSEUp:
3043     assert(Lo == SSE && "Unexpected SSEUp classification");
3044     ResType = GetByteVectorType(Ty);
3045     break;
3046   }
3047 
3048   // If a high part was specified, merge it together with the low part.  It is
3049   // known to pass in the high eightbyte of the result.  We do this by forming a
3050   // first class struct aggregate with the high and low part: {low, high}
3051   if (HighPart)
3052     ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout());
3053 
3054   return ABIArgInfo::getDirect(ResType);
3055 }
3056 
computeInfo(CGFunctionInfo & FI) const3057 void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
3058 
3059   if (!getCXXABI().classifyReturnType(FI))
3060     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
3061 
3062   // Keep track of the number of assigned registers.
3063   unsigned freeIntRegs = 6, freeSSERegs = 8;
3064 
3065   // If the return value is indirect, then the hidden argument is consuming one
3066   // integer register.
3067   if (FI.getReturnInfo().isIndirect())
3068     --freeIntRegs;
3069 
3070   // The chain argument effectively gives us another free register.
3071   if (FI.isChainCall())
3072     ++freeIntRegs;
3073 
3074   unsigned NumRequiredArgs = FI.getNumRequiredArgs();
3075   // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers
3076   // get assigned (in left-to-right order) for passing as follows...
3077   unsigned ArgNo = 0;
3078   for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
3079        it != ie; ++it, ++ArgNo) {
3080     bool IsNamedArg = ArgNo < NumRequiredArgs;
3081 
3082     unsigned neededInt, neededSSE;
3083     it->info = classifyArgumentType(it->type, freeIntRegs, neededInt,
3084                                     neededSSE, IsNamedArg);
3085 
3086     // AMD64-ABI 3.2.3p3: If there are no registers available for any
3087     // eightbyte of an argument, the whole argument is passed on the
3088     // stack. If registers have already been assigned for some
3089     // eightbytes of such an argument, the assignments get reverted.
3090     if (freeIntRegs >= neededInt && freeSSERegs >= neededSSE) {
3091       freeIntRegs -= neededInt;
3092       freeSSERegs -= neededSSE;
3093     } else {
3094       it->info = getIndirectResult(it->type, freeIntRegs);
3095     }
3096   }
3097 }
3098 
EmitX86_64VAArgFromMemory(CodeGenFunction & CGF,Address VAListAddr,QualType Ty)3099 static Address EmitX86_64VAArgFromMemory(CodeGenFunction &CGF,
3100                                          Address VAListAddr, QualType Ty) {
3101   Address overflow_arg_area_p = CGF.Builder.CreateStructGEP(
3102       VAListAddr, 2, CharUnits::fromQuantity(8), "overflow_arg_area_p");
3103   llvm::Value *overflow_arg_area =
3104     CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area");
3105 
3106   // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16
3107   // byte boundary if alignment needed by type exceeds 8 byte boundary.
3108   // It isn't stated explicitly in the standard, but in practice we use
3109   // alignment greater than 16 where necessary.
3110   CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty);
3111   if (Align > CharUnits::fromQuantity(8)) {
3112     overflow_arg_area = emitRoundPointerUpToAlignment(CGF, overflow_arg_area,
3113                                                       Align);
3114   }
3115 
3116   // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area.
3117   llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
3118   llvm::Value *Res =
3119     CGF.Builder.CreateBitCast(overflow_arg_area,
3120                               llvm::PointerType::getUnqual(LTy));
3121 
3122   // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to:
3123   // l->overflow_arg_area + sizeof(type).
3124   // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to
3125   // an 8 byte boundary.
3126 
3127   uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8;
3128   llvm::Value *Offset =
3129       llvm::ConstantInt::get(CGF.Int32Ty, (SizeInBytes + 7)  & ~7);
3130   overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset,
3131                                             "overflow_arg_area.next");
3132   CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p);
3133 
3134   // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type.
3135   return Address(Res, Align);
3136 }
3137 
EmitVAArg(CodeGenFunction & CGF,Address VAListAddr,QualType Ty) const3138 Address X86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
3139                                  QualType Ty) const {
3140   // Assume that va_list type is correct; should be pointer to LLVM type:
3141   // struct {
3142   //   i32 gp_offset;
3143   //   i32 fp_offset;
3144   //   i8* overflow_arg_area;
3145   //   i8* reg_save_area;
3146   // };
3147   unsigned neededInt, neededSSE;
3148 
3149   Ty = getContext().getCanonicalType(Ty);
3150   ABIArgInfo AI = classifyArgumentType(Ty, 0, neededInt, neededSSE,
3151                                        /*isNamedArg*/false);
3152 
3153   // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed
3154   // in the registers. If not go to step 7.
3155   if (!neededInt && !neededSSE)
3156     return EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty);
3157 
3158   // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of
3159   // general purpose registers needed to pass type and num_fp to hold
3160   // the number of floating point registers needed.
3161 
3162   // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into
3163   // registers. In the case: l->gp_offset > 48 - num_gp * 8 or
3164   // l->fp_offset > 304 - num_fp * 16 go to step 7.
3165   //
3166   // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of
3167   // register save space).
3168 
3169   llvm::Value *InRegs = nullptr;
3170   Address gp_offset_p = Address::invalid(), fp_offset_p = Address::invalid();
3171   llvm::Value *gp_offset = nullptr, *fp_offset = nullptr;
3172   if (neededInt) {
3173     gp_offset_p =
3174         CGF.Builder.CreateStructGEP(VAListAddr, 0, CharUnits::Zero(),
3175                                     "gp_offset_p");
3176     gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset");
3177     InRegs = llvm::ConstantInt::get(CGF.Int32Ty, 48 - neededInt * 8);
3178     InRegs = CGF.Builder.CreateICmpULE(gp_offset, InRegs, "fits_in_gp");
3179   }
3180 
3181   if (neededSSE) {
3182     fp_offset_p =
3183         CGF.Builder.CreateStructGEP(VAListAddr, 1, CharUnits::fromQuantity(4),
3184                                     "fp_offset_p");
3185     fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset");
3186     llvm::Value *FitsInFP =
3187       llvm::ConstantInt::get(CGF.Int32Ty, 176 - neededSSE * 16);
3188     FitsInFP = CGF.Builder.CreateICmpULE(fp_offset, FitsInFP, "fits_in_fp");
3189     InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP;
3190   }
3191 
3192   llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
3193   llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem");
3194   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
3195   CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock);
3196 
3197   // Emit code to load the value if it was passed in registers.
3198 
3199   CGF.EmitBlock(InRegBlock);
3200 
3201   // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with
3202   // an offset of l->gp_offset and/or l->fp_offset. This may require
3203   // copying to a temporary location in case the parameter is passed
3204   // in different register classes or requires an alignment greater
3205   // than 8 for general purpose registers and 16 for XMM registers.
3206   //
3207   // FIXME: This really results in shameful code when we end up needing to
3208   // collect arguments from different places; often what should result in a
3209   // simple assembling of a structure from scattered addresses has many more
3210   // loads than necessary. Can we clean this up?
3211   llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
3212   llvm::Value *RegSaveArea = CGF.Builder.CreateLoad(
3213       CGF.Builder.CreateStructGEP(VAListAddr, 3, CharUnits::fromQuantity(16)),
3214                                   "reg_save_area");
3215 
3216   Address RegAddr = Address::invalid();
3217   if (neededInt && neededSSE) {
3218     // FIXME: Cleanup.
3219     assert(AI.isDirect() && "Unexpected ABI info for mixed regs");
3220     llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType());
3221     Address Tmp = CGF.CreateMemTemp(Ty);
3222     Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST);
3223     assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs");
3224     llvm::Type *TyLo = ST->getElementType(0);
3225     llvm::Type *TyHi = ST->getElementType(1);
3226     assert((TyLo->isFPOrFPVectorTy() ^ TyHi->isFPOrFPVectorTy()) &&
3227            "Unexpected ABI info for mixed regs");
3228     llvm::Type *PTyLo = llvm::PointerType::getUnqual(TyLo);
3229     llvm::Type *PTyHi = llvm::PointerType::getUnqual(TyHi);
3230     llvm::Value *GPAddr = CGF.Builder.CreateGEP(RegSaveArea, gp_offset);
3231     llvm::Value *FPAddr = CGF.Builder.CreateGEP(RegSaveArea, fp_offset);
3232     llvm::Value *RegLoAddr = TyLo->isFPOrFPVectorTy() ? FPAddr : GPAddr;
3233     llvm::Value *RegHiAddr = TyLo->isFPOrFPVectorTy() ? GPAddr : FPAddr;
3234 
3235     // Copy the first element.
3236     llvm::Value *V =
3237       CGF.Builder.CreateDefaultAlignedLoad(
3238                                CGF.Builder.CreateBitCast(RegLoAddr, PTyLo));
3239     CGF.Builder.CreateStore(V,
3240                     CGF.Builder.CreateStructGEP(Tmp, 0, CharUnits::Zero()));
3241 
3242     // Copy the second element.
3243     V = CGF.Builder.CreateDefaultAlignedLoad(
3244                                CGF.Builder.CreateBitCast(RegHiAddr, PTyHi));
3245     CharUnits Offset = CharUnits::fromQuantity(
3246                    getDataLayout().getStructLayout(ST)->getElementOffset(1));
3247     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1, Offset));
3248 
3249     RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy);
3250   } else if (neededInt) {
3251     RegAddr = Address(CGF.Builder.CreateGEP(RegSaveArea, gp_offset),
3252                       CharUnits::fromQuantity(8));
3253     RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy);
3254 
3255     // Copy to a temporary if necessary to ensure the appropriate alignment.
3256     std::pair<CharUnits, CharUnits> SizeAlign =
3257         getContext().getTypeInfoInChars(Ty);
3258     uint64_t TySize = SizeAlign.first.getQuantity();
3259     CharUnits TyAlign = SizeAlign.second;
3260 
3261     // Copy into a temporary if the type is more aligned than the
3262     // register save area.
3263     if (TyAlign.getQuantity() > 8) {
3264       Address Tmp = CGF.CreateMemTemp(Ty);
3265       CGF.Builder.CreateMemCpy(Tmp, RegAddr, TySize, false);
3266       RegAddr = Tmp;
3267     }
3268 
3269   } else if (neededSSE == 1) {
3270     RegAddr = Address(CGF.Builder.CreateGEP(RegSaveArea, fp_offset),
3271                       CharUnits::fromQuantity(16));
3272     RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy);
3273   } else {
3274     assert(neededSSE == 2 && "Invalid number of needed registers!");
3275     // SSE registers are spaced 16 bytes apart in the register save
3276     // area, we need to collect the two eightbytes together.
3277     // The ABI isn't explicit about this, but it seems reasonable
3278     // to assume that the slots are 16-byte aligned, since the stack is
3279     // naturally 16-byte aligned and the prologue is expected to store
3280     // all the SSE registers to the RSA.
3281     Address RegAddrLo = Address(CGF.Builder.CreateGEP(RegSaveArea, fp_offset),
3282                                 CharUnits::fromQuantity(16));
3283     Address RegAddrHi =
3284       CGF.Builder.CreateConstInBoundsByteGEP(RegAddrLo,
3285                                              CharUnits::fromQuantity(16));
3286     llvm::Type *DoubleTy = CGF.DoubleTy;
3287     llvm::StructType *ST = llvm::StructType::get(DoubleTy, DoubleTy, nullptr);
3288     llvm::Value *V;
3289     Address Tmp = CGF.CreateMemTemp(Ty);
3290     Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST);
3291     V = CGF.Builder.CreateLoad(
3292                    CGF.Builder.CreateElementBitCast(RegAddrLo, DoubleTy));
3293     CGF.Builder.CreateStore(V,
3294                    CGF.Builder.CreateStructGEP(Tmp, 0, CharUnits::Zero()));
3295     V = CGF.Builder.CreateLoad(
3296                    CGF.Builder.CreateElementBitCast(RegAddrHi, DoubleTy));
3297     CGF.Builder.CreateStore(V,
3298           CGF.Builder.CreateStructGEP(Tmp, 1, CharUnits::fromQuantity(8)));
3299 
3300     RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy);
3301   }
3302 
3303   // AMD64-ABI 3.5.7p5: Step 5. Set:
3304   // l->gp_offset = l->gp_offset + num_gp * 8
3305   // l->fp_offset = l->fp_offset + num_fp * 16.
3306   if (neededInt) {
3307     llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededInt * 8);
3308     CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset),
3309                             gp_offset_p);
3310   }
3311   if (neededSSE) {
3312     llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededSSE * 16);
3313     CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset),
3314                             fp_offset_p);
3315   }
3316   CGF.EmitBranch(ContBlock);
3317 
3318   // Emit code to load the value if it was passed in memory.
3319 
3320   CGF.EmitBlock(InMemBlock);
3321   Address MemAddr = EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty);
3322 
3323   // Return the appropriate result.
3324 
3325   CGF.EmitBlock(ContBlock);
3326   Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, MemAddr, InMemBlock,
3327                                  "vaarg.addr");
3328   return ResAddr;
3329 }
3330 
EmitMSVAArg(CodeGenFunction & CGF,Address VAListAddr,QualType Ty) const3331 Address X86_64ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
3332                                    QualType Ty) const {
3333   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false,
3334                           CGF.getContext().getTypeInfoInChars(Ty),
3335                           CharUnits::fromQuantity(8),
3336                           /*allowHigherAlign*/ false);
3337 }
3338 
classify(QualType Ty,unsigned & FreeSSERegs,bool IsReturnType) const3339 ABIArgInfo WinX86_64ABIInfo::classify(QualType Ty, unsigned &FreeSSERegs,
3340                                       bool IsReturnType) const {
3341 
3342   if (Ty->isVoidType())
3343     return ABIArgInfo::getIgnore();
3344 
3345   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
3346     Ty = EnumTy->getDecl()->getIntegerType();
3347 
3348   TypeInfo Info = getContext().getTypeInfo(Ty);
3349   uint64_t Width = Info.Width;
3350   CharUnits Align = getContext().toCharUnitsFromBits(Info.Align);
3351 
3352   const RecordType *RT = Ty->getAs<RecordType>();
3353   if (RT) {
3354     if (!IsReturnType) {
3355       if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()))
3356         return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
3357     }
3358 
3359     if (RT->getDecl()->hasFlexibleArrayMember())
3360       return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
3361 
3362   }
3363 
3364   // vectorcall adds the concept of a homogenous vector aggregate, similar to
3365   // other targets.
3366   const Type *Base = nullptr;
3367   uint64_t NumElts = 0;
3368   if (FreeSSERegs && isHomogeneousAggregate(Ty, Base, NumElts)) {
3369     if (FreeSSERegs >= NumElts) {
3370       FreeSSERegs -= NumElts;
3371       if (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType())
3372         return ABIArgInfo::getDirect();
3373       return ABIArgInfo::getExpand();
3374     }
3375     return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
3376   }
3377 
3378 
3379   if (Ty->isMemberPointerType()) {
3380     // If the member pointer is represented by an LLVM int or ptr, pass it
3381     // directly.
3382     llvm::Type *LLTy = CGT.ConvertType(Ty);
3383     if (LLTy->isPointerTy() || LLTy->isIntegerTy())
3384       return ABIArgInfo::getDirect();
3385   }
3386 
3387   if (RT || Ty->isAnyComplexType() || Ty->isMemberPointerType()) {
3388     // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is
3389     // not 1, 2, 4, or 8 bytes, must be passed by reference."
3390     if (Width > 64 || !llvm::isPowerOf2_64(Width))
3391       return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
3392 
3393     // Otherwise, coerce it to a small integer.
3394     return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Width));
3395   }
3396 
3397   // Bool type is always extended to the ABI, other builtin types are not
3398   // extended.
3399   const BuiltinType *BT = Ty->getAs<BuiltinType>();
3400   if (BT && BT->getKind() == BuiltinType::Bool)
3401     return ABIArgInfo::getExtend();
3402 
3403   // Mingw64 GCC uses the old 80 bit extended precision floating point unit. It
3404   // passes them indirectly through memory.
3405   if (IsMingw64 && BT && BT->getKind() == BuiltinType::LongDouble) {
3406     const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat();
3407     if (LDF == &llvm::APFloat::x87DoubleExtended)
3408       return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
3409   }
3410 
3411   return ABIArgInfo::getDirect();
3412 }
3413 
computeInfo(CGFunctionInfo & FI) const3414 void WinX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
3415   bool IsVectorCall =
3416       FI.getCallingConvention() == llvm::CallingConv::X86_VectorCall;
3417 
3418   // We can use up to 4 SSE return registers with vectorcall.
3419   unsigned FreeSSERegs = IsVectorCall ? 4 : 0;
3420   if (!getCXXABI().classifyReturnType(FI))
3421     FI.getReturnInfo() = classify(FI.getReturnType(), FreeSSERegs, true);
3422 
3423   // We can use up to 6 SSE register parameters with vectorcall.
3424   FreeSSERegs = IsVectorCall ? 6 : 0;
3425   for (auto &I : FI.arguments())
3426     I.info = classify(I.type, FreeSSERegs, false);
3427 }
3428 
EmitVAArg(CodeGenFunction & CGF,Address VAListAddr,QualType Ty) const3429 Address WinX86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
3430                                     QualType Ty) const {
3431   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false,
3432                           CGF.getContext().getTypeInfoInChars(Ty),
3433                           CharUnits::fromQuantity(8),
3434                           /*allowHigherAlign*/ false);
3435 }
3436 
3437 // PowerPC-32
3438 namespace {
3439 /// PPC32_SVR4_ABIInfo - The 32-bit PowerPC ELF (SVR4) ABI information.
3440 class PPC32_SVR4_ABIInfo : public DefaultABIInfo {
3441 bool IsSoftFloatABI;
3442 public:
PPC32_SVR4_ABIInfo(CodeGen::CodeGenTypes & CGT,bool SoftFloatABI)3443   PPC32_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, bool SoftFloatABI)
3444       : DefaultABIInfo(CGT), IsSoftFloatABI(SoftFloatABI) {}
3445 
3446   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
3447                     QualType Ty) const override;
3448 };
3449 
3450 class PPC32TargetCodeGenInfo : public TargetCodeGenInfo {
3451 public:
PPC32TargetCodeGenInfo(CodeGenTypes & CGT,bool SoftFloatABI)3452   PPC32TargetCodeGenInfo(CodeGenTypes &CGT, bool SoftFloatABI)
3453       : TargetCodeGenInfo(new PPC32_SVR4_ABIInfo(CGT, SoftFloatABI)) {}
3454 
getDwarfEHStackPointer(CodeGen::CodeGenModule & M) const3455   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
3456     // This is recovered from gcc output.
3457     return 1; // r1 is the dedicated stack pointer
3458   }
3459 
3460   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
3461                                llvm::Value *Address) const override;
3462 };
3463 
3464 }
3465 
EmitVAArg(CodeGenFunction & CGF,Address VAList,QualType Ty) const3466 Address PPC32_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAList,
3467                                       QualType Ty) const {
3468   if (const ComplexType *CTy = Ty->getAs<ComplexType>()) {
3469     // TODO: Implement this. For now ignore.
3470     (void)CTy;
3471     return Address::invalid();
3472   }
3473 
3474   // struct __va_list_tag {
3475   //   unsigned char gpr;
3476   //   unsigned char fpr;
3477   //   unsigned short reserved;
3478   //   void *overflow_arg_area;
3479   //   void *reg_save_area;
3480   // };
3481 
3482   bool isI64 = Ty->isIntegerType() && getContext().getTypeSize(Ty) == 64;
3483   bool isInt =
3484       Ty->isIntegerType() || Ty->isPointerType() || Ty->isAggregateType();
3485   bool isF64 = Ty->isFloatingType() && getContext().getTypeSize(Ty) == 64;
3486 
3487   // All aggregates are passed indirectly?  That doesn't seem consistent
3488   // with the argument-lowering code.
3489   bool isIndirect = Ty->isAggregateType();
3490 
3491   CGBuilderTy &Builder = CGF.Builder;
3492 
3493   // The calling convention either uses 1-2 GPRs or 1 FPR.
3494   Address NumRegsAddr = Address::invalid();
3495   if (isInt || IsSoftFloatABI) {
3496     NumRegsAddr = Builder.CreateStructGEP(VAList, 0, CharUnits::Zero(), "gpr");
3497   } else {
3498     NumRegsAddr = Builder.CreateStructGEP(VAList, 1, CharUnits::One(), "fpr");
3499   }
3500 
3501   llvm::Value *NumRegs = Builder.CreateLoad(NumRegsAddr, "numUsedRegs");
3502 
3503   // "Align" the register count when TY is i64.
3504   if (isI64 || (isF64 && IsSoftFloatABI)) {
3505     NumRegs = Builder.CreateAdd(NumRegs, Builder.getInt8(1));
3506     NumRegs = Builder.CreateAnd(NumRegs, Builder.getInt8((uint8_t) ~1U));
3507   }
3508 
3509   llvm::Value *CC =
3510       Builder.CreateICmpULT(NumRegs, Builder.getInt8(8), "cond");
3511 
3512   llvm::BasicBlock *UsingRegs = CGF.createBasicBlock("using_regs");
3513   llvm::BasicBlock *UsingOverflow = CGF.createBasicBlock("using_overflow");
3514   llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
3515 
3516   Builder.CreateCondBr(CC, UsingRegs, UsingOverflow);
3517 
3518   llvm::Type *DirectTy = CGF.ConvertType(Ty);
3519   if (isIndirect) DirectTy = DirectTy->getPointerTo(0);
3520 
3521   // Case 1: consume registers.
3522   Address RegAddr = Address::invalid();
3523   {
3524     CGF.EmitBlock(UsingRegs);
3525 
3526     Address RegSaveAreaPtr =
3527       Builder.CreateStructGEP(VAList, 4, CharUnits::fromQuantity(8));
3528     RegAddr = Address(Builder.CreateLoad(RegSaveAreaPtr),
3529                       CharUnits::fromQuantity(8));
3530     assert(RegAddr.getElementType() == CGF.Int8Ty);
3531 
3532     // Floating-point registers start after the general-purpose registers.
3533     if (!(isInt || IsSoftFloatABI)) {
3534       RegAddr = Builder.CreateConstInBoundsByteGEP(RegAddr,
3535                                                    CharUnits::fromQuantity(32));
3536     }
3537 
3538     // Get the address of the saved value by scaling the number of
3539     // registers we've used by the number of
3540     CharUnits RegSize = CharUnits::fromQuantity((isInt || IsSoftFloatABI) ? 4 : 8);
3541     llvm::Value *RegOffset =
3542       Builder.CreateMul(NumRegs, Builder.getInt8(RegSize.getQuantity()));
3543     RegAddr = Address(Builder.CreateInBoundsGEP(CGF.Int8Ty,
3544                                             RegAddr.getPointer(), RegOffset),
3545                       RegAddr.getAlignment().alignmentOfArrayElement(RegSize));
3546     RegAddr = Builder.CreateElementBitCast(RegAddr, DirectTy);
3547 
3548     // Increase the used-register count.
3549     NumRegs =
3550       Builder.CreateAdd(NumRegs,
3551                         Builder.getInt8((isI64 || (isF64 && IsSoftFloatABI)) ? 2 : 1));
3552     Builder.CreateStore(NumRegs, NumRegsAddr);
3553 
3554     CGF.EmitBranch(Cont);
3555   }
3556 
3557   // Case 2: consume space in the overflow area.
3558   Address MemAddr = Address::invalid();
3559   {
3560     CGF.EmitBlock(UsingOverflow);
3561 
3562     // Everything in the overflow area is rounded up to a size of at least 4.
3563     CharUnits OverflowAreaAlign = CharUnits::fromQuantity(4);
3564 
3565     CharUnits Size;
3566     if (!isIndirect) {
3567       auto TypeInfo = CGF.getContext().getTypeInfoInChars(Ty);
3568       Size = TypeInfo.first.RoundUpToAlignment(OverflowAreaAlign);
3569     } else {
3570       Size = CGF.getPointerSize();
3571     }
3572 
3573     Address OverflowAreaAddr =
3574       Builder.CreateStructGEP(VAList, 3, CharUnits::fromQuantity(4));
3575     Address OverflowArea(Builder.CreateLoad(OverflowAreaAddr, "argp.cur"),
3576                          OverflowAreaAlign);
3577     // Round up address of argument to alignment
3578     CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty);
3579     if (Align > OverflowAreaAlign) {
3580       llvm::Value *Ptr = OverflowArea.getPointer();
3581       OverflowArea = Address(emitRoundPointerUpToAlignment(CGF, Ptr, Align),
3582                                                            Align);
3583     }
3584 
3585     MemAddr = Builder.CreateElementBitCast(OverflowArea, DirectTy);
3586 
3587     // Increase the overflow area.
3588     OverflowArea = Builder.CreateConstInBoundsByteGEP(OverflowArea, Size);
3589     Builder.CreateStore(OverflowArea.getPointer(), OverflowAreaAddr);
3590     CGF.EmitBranch(Cont);
3591   }
3592 
3593   CGF.EmitBlock(Cont);
3594 
3595   // Merge the cases with a phi.
3596   Address Result = emitMergePHI(CGF, RegAddr, UsingRegs, MemAddr, UsingOverflow,
3597                                 "vaarg.addr");
3598 
3599   // Load the pointer if the argument was passed indirectly.
3600   if (isIndirect) {
3601     Result = Address(Builder.CreateLoad(Result, "aggr"),
3602                      getContext().getTypeAlignInChars(Ty));
3603   }
3604 
3605   return Result;
3606 }
3607 
3608 bool
initDwarfEHRegSizeTable(CodeGen::CodeGenFunction & CGF,llvm::Value * Address) const3609 PPC32TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
3610                                                 llvm::Value *Address) const {
3611   // This is calculated from the LLVM and GCC tables and verified
3612   // against gcc output.  AFAIK all ABIs use the same encoding.
3613 
3614   CodeGen::CGBuilderTy &Builder = CGF.Builder;
3615 
3616   llvm::IntegerType *i8 = CGF.Int8Ty;
3617   llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
3618   llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
3619   llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16);
3620 
3621   // 0-31: r0-31, the 4-byte general-purpose registers
3622   AssignToArrayRange(Builder, Address, Four8, 0, 31);
3623 
3624   // 32-63: fp0-31, the 8-byte floating-point registers
3625   AssignToArrayRange(Builder, Address, Eight8, 32, 63);
3626 
3627   // 64-76 are various 4-byte special-purpose registers:
3628   // 64: mq
3629   // 65: lr
3630   // 66: ctr
3631   // 67: ap
3632   // 68-75 cr0-7
3633   // 76: xer
3634   AssignToArrayRange(Builder, Address, Four8, 64, 76);
3635 
3636   // 77-108: v0-31, the 16-byte vector registers
3637   AssignToArrayRange(Builder, Address, Sixteen8, 77, 108);
3638 
3639   // 109: vrsave
3640   // 110: vscr
3641   // 111: spe_acc
3642   // 112: spefscr
3643   // 113: sfp
3644   AssignToArrayRange(Builder, Address, Four8, 109, 113);
3645 
3646   return false;
3647 }
3648 
3649 // PowerPC-64
3650 
3651 namespace {
3652 /// PPC64_SVR4_ABIInfo - The 64-bit PowerPC ELF (SVR4) ABI information.
3653 class PPC64_SVR4_ABIInfo : public DefaultABIInfo {
3654 public:
3655   enum ABIKind {
3656     ELFv1 = 0,
3657     ELFv2
3658   };
3659 
3660 private:
3661   static const unsigned GPRBits = 64;
3662   ABIKind Kind;
3663   bool HasQPX;
3664 
3665   // A vector of float or double will be promoted to <4 x f32> or <4 x f64> and
3666   // will be passed in a QPX register.
IsQPXVectorTy(const Type * Ty) const3667   bool IsQPXVectorTy(const Type *Ty) const {
3668     if (!HasQPX)
3669       return false;
3670 
3671     if (const VectorType *VT = Ty->getAs<VectorType>()) {
3672       unsigned NumElements = VT->getNumElements();
3673       if (NumElements == 1)
3674         return false;
3675 
3676       if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::Double)) {
3677         if (getContext().getTypeSize(Ty) <= 256)
3678           return true;
3679       } else if (VT->getElementType()->
3680                    isSpecificBuiltinType(BuiltinType::Float)) {
3681         if (getContext().getTypeSize(Ty) <= 128)
3682           return true;
3683       }
3684     }
3685 
3686     return false;
3687   }
3688 
IsQPXVectorTy(QualType Ty) const3689   bool IsQPXVectorTy(QualType Ty) const {
3690     return IsQPXVectorTy(Ty.getTypePtr());
3691   }
3692 
3693 public:
PPC64_SVR4_ABIInfo(CodeGen::CodeGenTypes & CGT,ABIKind Kind,bool HasQPX)3694   PPC64_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, ABIKind Kind, bool HasQPX)
3695     : DefaultABIInfo(CGT), Kind(Kind), HasQPX(HasQPX) {}
3696 
3697   bool isPromotableTypeForABI(QualType Ty) const;
3698   CharUnits getParamTypeAlignment(QualType Ty) const;
3699 
3700   ABIArgInfo classifyReturnType(QualType RetTy) const;
3701   ABIArgInfo classifyArgumentType(QualType Ty) const;
3702 
3703   bool isHomogeneousAggregateBaseType(QualType Ty) const override;
3704   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
3705                                          uint64_t Members) const override;
3706 
3707   // TODO: We can add more logic to computeInfo to improve performance.
3708   // Example: For aggregate arguments that fit in a register, we could
3709   // use getDirectInReg (as is done below for structs containing a single
3710   // floating-point value) to avoid pushing them to memory on function
3711   // entry.  This would require changing the logic in PPCISelLowering
3712   // when lowering the parameters in the caller and args in the callee.
computeInfo(CGFunctionInfo & FI) const3713   void computeInfo(CGFunctionInfo &FI) const override {
3714     if (!getCXXABI().classifyReturnType(FI))
3715       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
3716     for (auto &I : FI.arguments()) {
3717       // We rely on the default argument classification for the most part.
3718       // One exception:  An aggregate containing a single floating-point
3719       // or vector item must be passed in a register if one is available.
3720       const Type *T = isSingleElementStruct(I.type, getContext());
3721       if (T) {
3722         const BuiltinType *BT = T->getAs<BuiltinType>();
3723         if (IsQPXVectorTy(T) ||
3724             (T->isVectorType() && getContext().getTypeSize(T) == 128) ||
3725             (BT && BT->isFloatingPoint())) {
3726           QualType QT(T, 0);
3727           I.info = ABIArgInfo::getDirectInReg(CGT.ConvertType(QT));
3728           continue;
3729         }
3730       }
3731       I.info = classifyArgumentType(I.type);
3732     }
3733   }
3734 
3735   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
3736                     QualType Ty) const override;
3737 };
3738 
3739 class PPC64_SVR4_TargetCodeGenInfo : public TargetCodeGenInfo {
3740 
3741 public:
PPC64_SVR4_TargetCodeGenInfo(CodeGenTypes & CGT,PPC64_SVR4_ABIInfo::ABIKind Kind,bool HasQPX)3742   PPC64_SVR4_TargetCodeGenInfo(CodeGenTypes &CGT,
3743                                PPC64_SVR4_ABIInfo::ABIKind Kind, bool HasQPX)
3744       : TargetCodeGenInfo(new PPC64_SVR4_ABIInfo(CGT, Kind, HasQPX)) {}
3745 
getDwarfEHStackPointer(CodeGen::CodeGenModule & M) const3746   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
3747     // This is recovered from gcc output.
3748     return 1; // r1 is the dedicated stack pointer
3749   }
3750 
3751   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
3752                                llvm::Value *Address) const override;
3753 };
3754 
3755 class PPC64TargetCodeGenInfo : public DefaultTargetCodeGenInfo {
3756 public:
PPC64TargetCodeGenInfo(CodeGenTypes & CGT)3757   PPC64TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {}
3758 
getDwarfEHStackPointer(CodeGen::CodeGenModule & M) const3759   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
3760     // This is recovered from gcc output.
3761     return 1; // r1 is the dedicated stack pointer
3762   }
3763 
3764   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
3765                                llvm::Value *Address) const override;
3766 };
3767 
3768 }
3769 
3770 // Return true if the ABI requires Ty to be passed sign- or zero-
3771 // extended to 64 bits.
3772 bool
isPromotableTypeForABI(QualType Ty) const3773 PPC64_SVR4_ABIInfo::isPromotableTypeForABI(QualType Ty) const {
3774   // Treat an enum type as its underlying type.
3775   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
3776     Ty = EnumTy->getDecl()->getIntegerType();
3777 
3778   // Promotable integer types are required to be promoted by the ABI.
3779   if (Ty->isPromotableIntegerType())
3780     return true;
3781 
3782   // In addition to the usual promotable integer types, we also need to
3783   // extend all 32-bit types, since the ABI requires promotion to 64 bits.
3784   if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
3785     switch (BT->getKind()) {
3786     case BuiltinType::Int:
3787     case BuiltinType::UInt:
3788       return true;
3789     default:
3790       break;
3791     }
3792 
3793   return false;
3794 }
3795 
3796 /// isAlignedParamType - Determine whether a type requires 16-byte or
3797 /// higher alignment in the parameter area.  Always returns at least 8.
getParamTypeAlignment(QualType Ty) const3798 CharUnits PPC64_SVR4_ABIInfo::getParamTypeAlignment(QualType Ty) const {
3799   // Complex types are passed just like their elements.
3800   if (const ComplexType *CTy = Ty->getAs<ComplexType>())
3801     Ty = CTy->getElementType();
3802 
3803   // Only vector types of size 16 bytes need alignment (larger types are
3804   // passed via reference, smaller types are not aligned).
3805   if (IsQPXVectorTy(Ty)) {
3806     if (getContext().getTypeSize(Ty) > 128)
3807       return CharUnits::fromQuantity(32);
3808 
3809     return CharUnits::fromQuantity(16);
3810   } else if (Ty->isVectorType()) {
3811     return CharUnits::fromQuantity(getContext().getTypeSize(Ty) == 128 ? 16 : 8);
3812   }
3813 
3814   // For single-element float/vector structs, we consider the whole type
3815   // to have the same alignment requirements as its single element.
3816   const Type *AlignAsType = nullptr;
3817   const Type *EltType = isSingleElementStruct(Ty, getContext());
3818   if (EltType) {
3819     const BuiltinType *BT = EltType->getAs<BuiltinType>();
3820     if (IsQPXVectorTy(EltType) || (EltType->isVectorType() &&
3821          getContext().getTypeSize(EltType) == 128) ||
3822         (BT && BT->isFloatingPoint()))
3823       AlignAsType = EltType;
3824   }
3825 
3826   // Likewise for ELFv2 homogeneous aggregates.
3827   const Type *Base = nullptr;
3828   uint64_t Members = 0;
3829   if (!AlignAsType && Kind == ELFv2 &&
3830       isAggregateTypeForABI(Ty) && isHomogeneousAggregate(Ty, Base, Members))
3831     AlignAsType = Base;
3832 
3833   // With special case aggregates, only vector base types need alignment.
3834   if (AlignAsType && IsQPXVectorTy(AlignAsType)) {
3835     if (getContext().getTypeSize(AlignAsType) > 128)
3836       return CharUnits::fromQuantity(32);
3837 
3838     return CharUnits::fromQuantity(16);
3839   } else if (AlignAsType) {
3840     return CharUnits::fromQuantity(AlignAsType->isVectorType() ? 16 : 8);
3841   }
3842 
3843   // Otherwise, we only need alignment for any aggregate type that
3844   // has an alignment requirement of >= 16 bytes.
3845   if (isAggregateTypeForABI(Ty) && getContext().getTypeAlign(Ty) >= 128) {
3846     if (HasQPX && getContext().getTypeAlign(Ty) >= 256)
3847       return CharUnits::fromQuantity(32);
3848     return CharUnits::fromQuantity(16);
3849   }
3850 
3851   return CharUnits::fromQuantity(8);
3852 }
3853 
3854 /// isHomogeneousAggregate - Return true if a type is an ELFv2 homogeneous
3855 /// aggregate.  Base is set to the base element type, and Members is set
3856 /// to the number of base elements.
isHomogeneousAggregate(QualType Ty,const Type * & Base,uint64_t & Members) const3857 bool ABIInfo::isHomogeneousAggregate(QualType Ty, const Type *&Base,
3858                                      uint64_t &Members) const {
3859   if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
3860     uint64_t NElements = AT->getSize().getZExtValue();
3861     if (NElements == 0)
3862       return false;
3863     if (!isHomogeneousAggregate(AT->getElementType(), Base, Members))
3864       return false;
3865     Members *= NElements;
3866   } else if (const RecordType *RT = Ty->getAs<RecordType>()) {
3867     const RecordDecl *RD = RT->getDecl();
3868     if (RD->hasFlexibleArrayMember())
3869       return false;
3870 
3871     Members = 0;
3872 
3873     // If this is a C++ record, check the bases first.
3874     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
3875       for (const auto &I : CXXRD->bases()) {
3876         // Ignore empty records.
3877         if (isEmptyRecord(getContext(), I.getType(), true))
3878           continue;
3879 
3880         uint64_t FldMembers;
3881         if (!isHomogeneousAggregate(I.getType(), Base, FldMembers))
3882           return false;
3883 
3884         Members += FldMembers;
3885       }
3886     }
3887 
3888     for (const auto *FD : RD->fields()) {
3889       // Ignore (non-zero arrays of) empty records.
3890       QualType FT = FD->getType();
3891       while (const ConstantArrayType *AT =
3892              getContext().getAsConstantArrayType(FT)) {
3893         if (AT->getSize().getZExtValue() == 0)
3894           return false;
3895         FT = AT->getElementType();
3896       }
3897       if (isEmptyRecord(getContext(), FT, true))
3898         continue;
3899 
3900       // For compatibility with GCC, ignore empty bitfields in C++ mode.
3901       if (getContext().getLangOpts().CPlusPlus &&
3902           FD->isBitField() && FD->getBitWidthValue(getContext()) == 0)
3903         continue;
3904 
3905       uint64_t FldMembers;
3906       if (!isHomogeneousAggregate(FD->getType(), Base, FldMembers))
3907         return false;
3908 
3909       Members = (RD->isUnion() ?
3910                  std::max(Members, FldMembers) : Members + FldMembers);
3911     }
3912 
3913     if (!Base)
3914       return false;
3915 
3916     // Ensure there is no padding.
3917     if (getContext().getTypeSize(Base) * Members !=
3918         getContext().getTypeSize(Ty))
3919       return false;
3920   } else {
3921     Members = 1;
3922     if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
3923       Members = 2;
3924       Ty = CT->getElementType();
3925     }
3926 
3927     // Most ABIs only support float, double, and some vector type widths.
3928     if (!isHomogeneousAggregateBaseType(Ty))
3929       return false;
3930 
3931     // The base type must be the same for all members.  Types that
3932     // agree in both total size and mode (float vs. vector) are
3933     // treated as being equivalent here.
3934     const Type *TyPtr = Ty.getTypePtr();
3935     if (!Base)
3936       Base = TyPtr;
3937 
3938     if (Base->isVectorType() != TyPtr->isVectorType() ||
3939         getContext().getTypeSize(Base) != getContext().getTypeSize(TyPtr))
3940       return false;
3941   }
3942   return Members > 0 && isHomogeneousAggregateSmallEnough(Base, Members);
3943 }
3944 
isHomogeneousAggregateBaseType(QualType Ty) const3945 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
3946   // Homogeneous aggregates for ELFv2 must have base types of float,
3947   // double, long double, or 128-bit vectors.
3948   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
3949     if (BT->getKind() == BuiltinType::Float ||
3950         BT->getKind() == BuiltinType::Double ||
3951         BT->getKind() == BuiltinType::LongDouble)
3952       return true;
3953   }
3954   if (const VectorType *VT = Ty->getAs<VectorType>()) {
3955     if (getContext().getTypeSize(VT) == 128 || IsQPXVectorTy(Ty))
3956       return true;
3957   }
3958   return false;
3959 }
3960 
isHomogeneousAggregateSmallEnough(const Type * Base,uint64_t Members) const3961 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateSmallEnough(
3962     const Type *Base, uint64_t Members) const {
3963   // Vector types require one register, floating point types require one
3964   // or two registers depending on their size.
3965   uint32_t NumRegs =
3966       Base->isVectorType() ? 1 : (getContext().getTypeSize(Base) + 63) / 64;
3967 
3968   // Homogeneous Aggregates may occupy at most 8 registers.
3969   return Members * NumRegs <= 8;
3970 }
3971 
3972 ABIArgInfo
classifyArgumentType(QualType Ty) const3973 PPC64_SVR4_ABIInfo::classifyArgumentType(QualType Ty) const {
3974   Ty = useFirstFieldIfTransparentUnion(Ty);
3975 
3976   if (Ty->isAnyComplexType())
3977     return ABIArgInfo::getDirect();
3978 
3979   // Non-Altivec vector types are passed in GPRs (smaller than 16 bytes)
3980   // or via reference (larger than 16 bytes).
3981   if (Ty->isVectorType() && !IsQPXVectorTy(Ty)) {
3982     uint64_t Size = getContext().getTypeSize(Ty);
3983     if (Size > 128)
3984       return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
3985     else if (Size < 128) {
3986       llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size);
3987       return ABIArgInfo::getDirect(CoerceTy);
3988     }
3989   }
3990 
3991   if (isAggregateTypeForABI(Ty)) {
3992     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
3993       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
3994 
3995     uint64_t ABIAlign = getParamTypeAlignment(Ty).getQuantity();
3996     uint64_t TyAlign = getContext().getTypeAlignInChars(Ty).getQuantity();
3997 
3998     // ELFv2 homogeneous aggregates are passed as array types.
3999     const Type *Base = nullptr;
4000     uint64_t Members = 0;
4001     if (Kind == ELFv2 &&
4002         isHomogeneousAggregate(Ty, Base, Members)) {
4003       llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0));
4004       llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members);
4005       return ABIArgInfo::getDirect(CoerceTy);
4006     }
4007 
4008     // If an aggregate may end up fully in registers, we do not
4009     // use the ByVal method, but pass the aggregate as array.
4010     // This is usually beneficial since we avoid forcing the
4011     // back-end to store the argument to memory.
4012     uint64_t Bits = getContext().getTypeSize(Ty);
4013     if (Bits > 0 && Bits <= 8 * GPRBits) {
4014       llvm::Type *CoerceTy;
4015 
4016       // Types up to 8 bytes are passed as integer type (which will be
4017       // properly aligned in the argument save area doubleword).
4018       if (Bits <= GPRBits)
4019         CoerceTy = llvm::IntegerType::get(getVMContext(),
4020                                           llvm::RoundUpToAlignment(Bits, 8));
4021       // Larger types are passed as arrays, with the base type selected
4022       // according to the required alignment in the save area.
4023       else {
4024         uint64_t RegBits = ABIAlign * 8;
4025         uint64_t NumRegs = llvm::RoundUpToAlignment(Bits, RegBits) / RegBits;
4026         llvm::Type *RegTy = llvm::IntegerType::get(getVMContext(), RegBits);
4027         CoerceTy = llvm::ArrayType::get(RegTy, NumRegs);
4028       }
4029 
4030       return ABIArgInfo::getDirect(CoerceTy);
4031     }
4032 
4033     // All other aggregates are passed ByVal.
4034     return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign),
4035                                    /*ByVal=*/true,
4036                                    /*Realign=*/TyAlign > ABIAlign);
4037   }
4038 
4039   return (isPromotableTypeForABI(Ty) ?
4040           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
4041 }
4042 
4043 ABIArgInfo
classifyReturnType(QualType RetTy) const4044 PPC64_SVR4_ABIInfo::classifyReturnType(QualType RetTy) const {
4045   if (RetTy->isVoidType())
4046     return ABIArgInfo::getIgnore();
4047 
4048   if (RetTy->isAnyComplexType())
4049     return ABIArgInfo::getDirect();
4050 
4051   // Non-Altivec vector types are returned in GPRs (smaller than 16 bytes)
4052   // or via reference (larger than 16 bytes).
4053   if (RetTy->isVectorType() && !IsQPXVectorTy(RetTy)) {
4054     uint64_t Size = getContext().getTypeSize(RetTy);
4055     if (Size > 128)
4056       return getNaturalAlignIndirect(RetTy);
4057     else if (Size < 128) {
4058       llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size);
4059       return ABIArgInfo::getDirect(CoerceTy);
4060     }
4061   }
4062 
4063   if (isAggregateTypeForABI(RetTy)) {
4064     // ELFv2 homogeneous aggregates are returned as array types.
4065     const Type *Base = nullptr;
4066     uint64_t Members = 0;
4067     if (Kind == ELFv2 &&
4068         isHomogeneousAggregate(RetTy, Base, Members)) {
4069       llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0));
4070       llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members);
4071       return ABIArgInfo::getDirect(CoerceTy);
4072     }
4073 
4074     // ELFv2 small aggregates are returned in up to two registers.
4075     uint64_t Bits = getContext().getTypeSize(RetTy);
4076     if (Kind == ELFv2 && Bits <= 2 * GPRBits) {
4077       if (Bits == 0)
4078         return ABIArgInfo::getIgnore();
4079 
4080       llvm::Type *CoerceTy;
4081       if (Bits > GPRBits) {
4082         CoerceTy = llvm::IntegerType::get(getVMContext(), GPRBits);
4083         CoerceTy = llvm::StructType::get(CoerceTy, CoerceTy, nullptr);
4084       } else
4085         CoerceTy = llvm::IntegerType::get(getVMContext(),
4086                                           llvm::RoundUpToAlignment(Bits, 8));
4087       return ABIArgInfo::getDirect(CoerceTy);
4088     }
4089 
4090     // All other aggregates are returned indirectly.
4091     return getNaturalAlignIndirect(RetTy);
4092   }
4093 
4094   return (isPromotableTypeForABI(RetTy) ?
4095           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
4096 }
4097 
4098 // Based on ARMABIInfo::EmitVAArg, adjusted for 64-bit machine.
EmitVAArg(CodeGenFunction & CGF,Address VAListAddr,QualType Ty) const4099 Address PPC64_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
4100                                       QualType Ty) const {
4101   auto TypeInfo = getContext().getTypeInfoInChars(Ty);
4102   TypeInfo.second = getParamTypeAlignment(Ty);
4103 
4104   CharUnits SlotSize = CharUnits::fromQuantity(8);
4105 
4106   // If we have a complex type and the base type is smaller than 8 bytes,
4107   // the ABI calls for the real and imaginary parts to be right-adjusted
4108   // in separate doublewords.  However, Clang expects us to produce a
4109   // pointer to a structure with the two parts packed tightly.  So generate
4110   // loads of the real and imaginary parts relative to the va_list pointer,
4111   // and store them to a temporary structure.
4112   if (const ComplexType *CTy = Ty->getAs<ComplexType>()) {
4113     CharUnits EltSize = TypeInfo.first / 2;
4114     if (EltSize < SlotSize) {
4115       Address Addr = emitVoidPtrDirectVAArg(CGF, VAListAddr, CGF.Int8Ty,
4116                                             SlotSize * 2, SlotSize,
4117                                             SlotSize, /*AllowHigher*/ true);
4118 
4119       Address RealAddr = Addr;
4120       Address ImagAddr = RealAddr;
4121       if (CGF.CGM.getDataLayout().isBigEndian()) {
4122         RealAddr = CGF.Builder.CreateConstInBoundsByteGEP(RealAddr,
4123                                                           SlotSize - EltSize);
4124         ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(ImagAddr,
4125                                                       2 * SlotSize - EltSize);
4126       } else {
4127         ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(RealAddr, SlotSize);
4128       }
4129 
4130       llvm::Type *EltTy = CGF.ConvertTypeForMem(CTy->getElementType());
4131       RealAddr = CGF.Builder.CreateElementBitCast(RealAddr, EltTy);
4132       ImagAddr = CGF.Builder.CreateElementBitCast(ImagAddr, EltTy);
4133       llvm::Value *Real = CGF.Builder.CreateLoad(RealAddr, ".vareal");
4134       llvm::Value *Imag = CGF.Builder.CreateLoad(ImagAddr, ".vaimag");
4135 
4136       Address Temp = CGF.CreateMemTemp(Ty, "vacplx");
4137       CGF.EmitStoreOfComplex({Real, Imag}, CGF.MakeAddrLValue(Temp, Ty),
4138                              /*init*/ true);
4139       return Temp;
4140     }
4141   }
4142 
4143   // Otherwise, just use the general rule.
4144   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false,
4145                           TypeInfo, SlotSize, /*AllowHigher*/ true);
4146 }
4147 
4148 static bool
PPC64_initDwarfEHRegSizeTable(CodeGen::CodeGenFunction & CGF,llvm::Value * Address)4149 PPC64_initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4150                               llvm::Value *Address) {
4151   // This is calculated from the LLVM and GCC tables and verified
4152   // against gcc output.  AFAIK all ABIs use the same encoding.
4153 
4154   CodeGen::CGBuilderTy &Builder = CGF.Builder;
4155 
4156   llvm::IntegerType *i8 = CGF.Int8Ty;
4157   llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
4158   llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
4159   llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16);
4160 
4161   // 0-31: r0-31, the 8-byte general-purpose registers
4162   AssignToArrayRange(Builder, Address, Eight8, 0, 31);
4163 
4164   // 32-63: fp0-31, the 8-byte floating-point registers
4165   AssignToArrayRange(Builder, Address, Eight8, 32, 63);
4166 
4167   // 64-76 are various 4-byte special-purpose registers:
4168   // 64: mq
4169   // 65: lr
4170   // 66: ctr
4171   // 67: ap
4172   // 68-75 cr0-7
4173   // 76: xer
4174   AssignToArrayRange(Builder, Address, Four8, 64, 76);
4175 
4176   // 77-108: v0-31, the 16-byte vector registers
4177   AssignToArrayRange(Builder, Address, Sixteen8, 77, 108);
4178 
4179   // 109: vrsave
4180   // 110: vscr
4181   // 111: spe_acc
4182   // 112: spefscr
4183   // 113: sfp
4184   AssignToArrayRange(Builder, Address, Four8, 109, 113);
4185 
4186   return false;
4187 }
4188 
4189 bool
initDwarfEHRegSizeTable(CodeGen::CodeGenFunction & CGF,llvm::Value * Address) const4190 PPC64_SVR4_TargetCodeGenInfo::initDwarfEHRegSizeTable(
4191   CodeGen::CodeGenFunction &CGF,
4192   llvm::Value *Address) const {
4193 
4194   return PPC64_initDwarfEHRegSizeTable(CGF, Address);
4195 }
4196 
4197 bool
initDwarfEHRegSizeTable(CodeGen::CodeGenFunction & CGF,llvm::Value * Address) const4198 PPC64TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4199                                                 llvm::Value *Address) const {
4200 
4201   return PPC64_initDwarfEHRegSizeTable(CGF, Address);
4202 }
4203 
4204 //===----------------------------------------------------------------------===//
4205 // AArch64 ABI Implementation
4206 //===----------------------------------------------------------------------===//
4207 
4208 namespace {
4209 
4210 class AArch64ABIInfo : public ABIInfo {
4211 public:
4212   enum ABIKind {
4213     AAPCS = 0,
4214     DarwinPCS
4215   };
4216 
4217 private:
4218   ABIKind Kind;
4219 
4220 public:
AArch64ABIInfo(CodeGenTypes & CGT,ABIKind Kind)4221   AArch64ABIInfo(CodeGenTypes &CGT, ABIKind Kind) : ABIInfo(CGT), Kind(Kind) {}
4222 
4223 private:
getABIKind() const4224   ABIKind getABIKind() const { return Kind; }
isDarwinPCS() const4225   bool isDarwinPCS() const { return Kind == DarwinPCS; }
4226 
4227   ABIArgInfo classifyReturnType(QualType RetTy) const;
4228   ABIArgInfo classifyArgumentType(QualType RetTy) const;
4229   bool isHomogeneousAggregateBaseType(QualType Ty) const override;
4230   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
4231                                          uint64_t Members) const override;
4232 
4233   bool isIllegalVectorType(QualType Ty) const;
4234 
computeInfo(CGFunctionInfo & FI) const4235   void computeInfo(CGFunctionInfo &FI) const override {
4236     if (!getCXXABI().classifyReturnType(FI))
4237       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
4238 
4239     for (auto &it : FI.arguments())
4240       it.info = classifyArgumentType(it.type);
4241   }
4242 
4243   Address EmitDarwinVAArg(Address VAListAddr, QualType Ty,
4244                           CodeGenFunction &CGF) const;
4245 
4246   Address EmitAAPCSVAArg(Address VAListAddr, QualType Ty,
4247                          CodeGenFunction &CGF) const;
4248 
EmitVAArg(CodeGenFunction & CGF,Address VAListAddr,QualType Ty) const4249   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
4250                     QualType Ty) const override {
4251     return isDarwinPCS() ? EmitDarwinVAArg(VAListAddr, Ty, CGF)
4252                          : EmitAAPCSVAArg(VAListAddr, Ty, CGF);
4253   }
4254 };
4255 
4256 class AArch64TargetCodeGenInfo : public TargetCodeGenInfo {
4257 public:
AArch64TargetCodeGenInfo(CodeGenTypes & CGT,AArch64ABIInfo::ABIKind Kind)4258   AArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind Kind)
4259       : TargetCodeGenInfo(new AArch64ABIInfo(CGT, Kind)) {}
4260 
getARCRetainAutoreleasedReturnValueMarker() const4261   StringRef getARCRetainAutoreleasedReturnValueMarker() const override {
4262     return "mov\tfp, fp\t\t; marker for objc_retainAutoreleaseReturnValue";
4263   }
4264 
getDwarfEHStackPointer(CodeGen::CodeGenModule & M) const4265   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
4266     return 31;
4267   }
4268 
doesReturnSlotInterfereWithArgs() const4269   bool doesReturnSlotInterfereWithArgs() const override { return false; }
4270 };
4271 }
4272 
classifyArgumentType(QualType Ty) const4273 ABIArgInfo AArch64ABIInfo::classifyArgumentType(QualType Ty) const {
4274   Ty = useFirstFieldIfTransparentUnion(Ty);
4275 
4276   // Handle illegal vector types here.
4277   if (isIllegalVectorType(Ty)) {
4278     uint64_t Size = getContext().getTypeSize(Ty);
4279     // Android promotes <2 x i8> to i16, not i32
4280     if (Size <= 16) {
4281       llvm::Type *ResType = llvm::Type::getInt16Ty(getVMContext());
4282       return ABIArgInfo::getDirect(ResType);
4283     }
4284     if (Size == 32) {
4285       llvm::Type *ResType = llvm::Type::getInt32Ty(getVMContext());
4286       return ABIArgInfo::getDirect(ResType);
4287     }
4288     if (Size == 64) {
4289       llvm::Type *ResType =
4290           llvm::VectorType::get(llvm::Type::getInt32Ty(getVMContext()), 2);
4291       return ABIArgInfo::getDirect(ResType);
4292     }
4293     if (Size == 128) {
4294       llvm::Type *ResType =
4295           llvm::VectorType::get(llvm::Type::getInt32Ty(getVMContext()), 4);
4296       return ABIArgInfo::getDirect(ResType);
4297     }
4298     return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
4299   }
4300 
4301   if (!isAggregateTypeForABI(Ty)) {
4302     // Treat an enum type as its underlying type.
4303     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
4304       Ty = EnumTy->getDecl()->getIntegerType();
4305 
4306     return (Ty->isPromotableIntegerType() && isDarwinPCS()
4307                 ? ABIArgInfo::getExtend()
4308                 : ABIArgInfo::getDirect());
4309   }
4310 
4311   // Structures with either a non-trivial destructor or a non-trivial
4312   // copy constructor are always indirect.
4313   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
4314     return getNaturalAlignIndirect(Ty, /*ByVal=*/RAA ==
4315                                      CGCXXABI::RAA_DirectInMemory);
4316   }
4317 
4318   // Empty records are always ignored on Darwin, but actually passed in C++ mode
4319   // elsewhere for GNU compatibility.
4320   if (isEmptyRecord(getContext(), Ty, true)) {
4321     if (!getContext().getLangOpts().CPlusPlus || isDarwinPCS())
4322       return ABIArgInfo::getIgnore();
4323 
4324     return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
4325   }
4326 
4327   // Homogeneous Floating-point Aggregates (HFAs) need to be expanded.
4328   const Type *Base = nullptr;
4329   uint64_t Members = 0;
4330   if (isHomogeneousAggregate(Ty, Base, Members)) {
4331     return ABIArgInfo::getDirect(
4332         llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members));
4333   }
4334 
4335   // Aggregates <= 16 bytes are passed directly in registers or on the stack.
4336   uint64_t Size = getContext().getTypeSize(Ty);
4337   if (Size <= 128) {
4338     if (getContext().getLangOpts().Renderscript) {
4339       return coerceToIntArray(Ty, getContext(), getVMContext());
4340     }
4341     unsigned Alignment = getContext().getTypeAlign(Ty);
4342     Size = 64 * ((Size + 63) / 64); // round up to multiple of 8 bytes
4343 
4344     // We use a pair of i64 for 16-byte aggregate with 8-byte alignment.
4345     // For aggregates with 16-byte alignment, we use i128.
4346     if (Alignment < 128 && Size == 128) {
4347       llvm::Type *BaseTy = llvm::Type::getInt64Ty(getVMContext());
4348       return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64));
4349     }
4350     return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size));
4351   }
4352 
4353   return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
4354 }
4355 
classifyReturnType(QualType RetTy) const4356 ABIArgInfo AArch64ABIInfo::classifyReturnType(QualType RetTy) const {
4357   if (RetTy->isVoidType())
4358     return ABIArgInfo::getIgnore();
4359 
4360   // Large vector types should be returned via memory.
4361   if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128)
4362     return getNaturalAlignIndirect(RetTy);
4363 
4364   if (!isAggregateTypeForABI(RetTy)) {
4365     // Treat an enum type as its underlying type.
4366     if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
4367       RetTy = EnumTy->getDecl()->getIntegerType();
4368 
4369     return (RetTy->isPromotableIntegerType() && isDarwinPCS()
4370                 ? ABIArgInfo::getExtend()
4371                 : ABIArgInfo::getDirect());
4372   }
4373 
4374   if (isEmptyRecord(getContext(), RetTy, true))
4375     return ABIArgInfo::getIgnore();
4376 
4377   const Type *Base = nullptr;
4378   uint64_t Members = 0;
4379   if (isHomogeneousAggregate(RetTy, Base, Members))
4380     // Homogeneous Floating-point Aggregates (HFAs) are returned directly.
4381     return ABIArgInfo::getDirect();
4382 
4383   // Aggregates <= 16 bytes are returned directly in registers or on the stack.
4384   uint64_t Size = getContext().getTypeSize(RetTy);
4385   if (Size <= 128) {
4386     if (getContext().getLangOpts().Renderscript) {
4387       return coerceToIntArray(RetTy, getContext(), getVMContext());
4388     }
4389     unsigned Alignment = getContext().getTypeAlign(RetTy);
4390     Size = 64 * ((Size + 63) / 64); // round up to multiple of 8 bytes
4391 
4392     // We use a pair of i64 for 16-byte aggregate with 8-byte alignment.
4393     // For aggregates with 16-byte alignment, we use i128.
4394     if (Alignment < 128 && Size == 128) {
4395       llvm::Type *BaseTy = llvm::Type::getInt64Ty(getVMContext());
4396       return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64));
4397     }
4398     return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size));
4399   }
4400 
4401   return getNaturalAlignIndirect(RetTy);
4402 }
4403 
4404 /// isIllegalVectorType - check whether the vector type is legal for AArch64.
isIllegalVectorType(QualType Ty) const4405 bool AArch64ABIInfo::isIllegalVectorType(QualType Ty) const {
4406   if (const VectorType *VT = Ty->getAs<VectorType>()) {
4407     // Check whether VT is legal.
4408     unsigned NumElements = VT->getNumElements();
4409     uint64_t Size = getContext().getTypeSize(VT);
4410     // NumElements should be power of 2 between 1 and 16.
4411     if ((NumElements & (NumElements - 1)) != 0 || NumElements > 16)
4412       return true;
4413     return Size != 64 && (Size != 128 || NumElements == 1);
4414   }
4415   return false;
4416 }
4417 
isHomogeneousAggregateBaseType(QualType Ty) const4418 bool AArch64ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
4419   // Homogeneous aggregates for AAPCS64 must have base types of a floating
4420   // point type or a short-vector type. This is the same as the 32-bit ABI,
4421   // but with the difference that any floating-point type is allowed,
4422   // including __fp16.
4423   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
4424     if (BT->isFloatingPoint())
4425       return true;
4426   } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
4427     unsigned VecSize = getContext().getTypeSize(VT);
4428     if (VecSize == 64 || VecSize == 128)
4429       return true;
4430   }
4431   return false;
4432 }
4433 
isHomogeneousAggregateSmallEnough(const Type * Base,uint64_t Members) const4434 bool AArch64ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base,
4435                                                        uint64_t Members) const {
4436   return Members <= 4;
4437 }
4438 
EmitAAPCSVAArg(Address VAListAddr,QualType Ty,CodeGenFunction & CGF) const4439 Address AArch64ABIInfo::EmitAAPCSVAArg(Address VAListAddr,
4440                                             QualType Ty,
4441                                             CodeGenFunction &CGF) const {
4442   ABIArgInfo AI = classifyArgumentType(Ty);
4443   bool IsIndirect = AI.isIndirect();
4444 
4445   llvm::Type *BaseTy = CGF.ConvertType(Ty);
4446   if (IsIndirect)
4447     BaseTy = llvm::PointerType::getUnqual(BaseTy);
4448   else if (AI.getCoerceToType())
4449     BaseTy = AI.getCoerceToType();
4450 
4451   unsigned NumRegs = 1;
4452   if (llvm::ArrayType *ArrTy = dyn_cast<llvm::ArrayType>(BaseTy)) {
4453     BaseTy = ArrTy->getElementType();
4454     NumRegs = ArrTy->getNumElements();
4455   }
4456   bool IsFPR = BaseTy->isFloatingPointTy() || BaseTy->isVectorTy();
4457 
4458   // The AArch64 va_list type and handling is specified in the Procedure Call
4459   // Standard, section B.4:
4460   //
4461   // struct {
4462   //   void *__stack;
4463   //   void *__gr_top;
4464   //   void *__vr_top;
4465   //   int __gr_offs;
4466   //   int __vr_offs;
4467   // };
4468 
4469   llvm::BasicBlock *MaybeRegBlock = CGF.createBasicBlock("vaarg.maybe_reg");
4470   llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
4471   llvm::BasicBlock *OnStackBlock = CGF.createBasicBlock("vaarg.on_stack");
4472   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
4473 
4474   auto TyInfo = getContext().getTypeInfoInChars(Ty);
4475   CharUnits TyAlign = TyInfo.second;
4476 
4477   Address reg_offs_p = Address::invalid();
4478   llvm::Value *reg_offs = nullptr;
4479   int reg_top_index;
4480   CharUnits reg_top_offset;
4481   int RegSize = IsIndirect ? 8 : TyInfo.first.getQuantity();
4482   if (!IsFPR) {
4483     // 3 is the field number of __gr_offs
4484     reg_offs_p =
4485         CGF.Builder.CreateStructGEP(VAListAddr, 3, CharUnits::fromQuantity(24),
4486                                     "gr_offs_p");
4487     reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "gr_offs");
4488     reg_top_index = 1; // field number for __gr_top
4489     reg_top_offset = CharUnits::fromQuantity(8);
4490     RegSize = llvm::RoundUpToAlignment(RegSize, 8);
4491   } else {
4492     // 4 is the field number of __vr_offs.
4493     reg_offs_p =
4494         CGF.Builder.CreateStructGEP(VAListAddr, 4, CharUnits::fromQuantity(28),
4495                                     "vr_offs_p");
4496     reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "vr_offs");
4497     reg_top_index = 2; // field number for __vr_top
4498     reg_top_offset = CharUnits::fromQuantity(16);
4499     RegSize = 16 * NumRegs;
4500   }
4501 
4502   //=======================================
4503   // Find out where argument was passed
4504   //=======================================
4505 
4506   // If reg_offs >= 0 we're already using the stack for this type of
4507   // argument. We don't want to keep updating reg_offs (in case it overflows,
4508   // though anyone passing 2GB of arguments, each at most 16 bytes, deserves
4509   // whatever they get).
4510   llvm::Value *UsingStack = nullptr;
4511   UsingStack = CGF.Builder.CreateICmpSGE(
4512       reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, 0));
4513 
4514   CGF.Builder.CreateCondBr(UsingStack, OnStackBlock, MaybeRegBlock);
4515 
4516   // Otherwise, at least some kind of argument could go in these registers, the
4517   // question is whether this particular type is too big.
4518   CGF.EmitBlock(MaybeRegBlock);
4519 
4520   // Integer arguments may need to correct register alignment (for example a
4521   // "struct { __int128 a; };" gets passed in x_2N, x_{2N+1}). In this case we
4522   // align __gr_offs to calculate the potential address.
4523   if (!IsFPR && !IsIndirect && TyAlign.getQuantity() > 8) {
4524     int Align = TyAlign.getQuantity();
4525 
4526     reg_offs = CGF.Builder.CreateAdd(
4527         reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, Align - 1),
4528         "align_regoffs");
4529     reg_offs = CGF.Builder.CreateAnd(
4530         reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, -Align),
4531         "aligned_regoffs");
4532   }
4533 
4534   // Update the gr_offs/vr_offs pointer for next call to va_arg on this va_list.
4535   // The fact that this is done unconditionally reflects the fact that
4536   // allocating an argument to the stack also uses up all the remaining
4537   // registers of the appropriate kind.
4538   llvm::Value *NewOffset = nullptr;
4539   NewOffset = CGF.Builder.CreateAdd(
4540       reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, RegSize), "new_reg_offs");
4541   CGF.Builder.CreateStore(NewOffset, reg_offs_p);
4542 
4543   // Now we're in a position to decide whether this argument really was in
4544   // registers or not.
4545   llvm::Value *InRegs = nullptr;
4546   InRegs = CGF.Builder.CreateICmpSLE(
4547       NewOffset, llvm::ConstantInt::get(CGF.Int32Ty, 0), "inreg");
4548 
4549   CGF.Builder.CreateCondBr(InRegs, InRegBlock, OnStackBlock);
4550 
4551   //=======================================
4552   // Argument was in registers
4553   //=======================================
4554 
4555   // Now we emit the code for if the argument was originally passed in
4556   // registers. First start the appropriate block:
4557   CGF.EmitBlock(InRegBlock);
4558 
4559   llvm::Value *reg_top = nullptr;
4560   Address reg_top_p = CGF.Builder.CreateStructGEP(VAListAddr, reg_top_index,
4561                                                   reg_top_offset, "reg_top_p");
4562   reg_top = CGF.Builder.CreateLoad(reg_top_p, "reg_top");
4563   Address BaseAddr(CGF.Builder.CreateInBoundsGEP(reg_top, reg_offs),
4564                    CharUnits::fromQuantity(IsFPR ? 16 : 8));
4565   Address RegAddr = Address::invalid();
4566   llvm::Type *MemTy = CGF.ConvertTypeForMem(Ty);
4567 
4568   if (IsIndirect) {
4569     // If it's been passed indirectly (actually a struct), whatever we find from
4570     // stored registers or on the stack will actually be a struct **.
4571     MemTy = llvm::PointerType::getUnqual(MemTy);
4572   }
4573 
4574   const Type *Base = nullptr;
4575   uint64_t NumMembers = 0;
4576   bool IsHFA = isHomogeneousAggregate(Ty, Base, NumMembers);
4577   if (IsHFA && NumMembers > 1) {
4578     // Homogeneous aggregates passed in registers will have their elements split
4579     // and stored 16-bytes apart regardless of size (they're notionally in qN,
4580     // qN+1, ...). We reload and store into a temporary local variable
4581     // contiguously.
4582     assert(!IsIndirect && "Homogeneous aggregates should be passed directly");
4583     auto BaseTyInfo = getContext().getTypeInfoInChars(QualType(Base, 0));
4584     llvm::Type *BaseTy = CGF.ConvertType(QualType(Base, 0));
4585     llvm::Type *HFATy = llvm::ArrayType::get(BaseTy, NumMembers);
4586     Address Tmp = CGF.CreateTempAlloca(HFATy,
4587                                        std::max(TyAlign, BaseTyInfo.second));
4588 
4589     // On big-endian platforms, the value will be right-aligned in its slot.
4590     int Offset = 0;
4591     if (CGF.CGM.getDataLayout().isBigEndian() &&
4592         BaseTyInfo.first.getQuantity() < 16)
4593       Offset = 16 - BaseTyInfo.first.getQuantity();
4594 
4595     for (unsigned i = 0; i < NumMembers; ++i) {
4596       CharUnits BaseOffset = CharUnits::fromQuantity(16 * i + Offset);
4597       Address LoadAddr =
4598         CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, BaseOffset);
4599       LoadAddr = CGF.Builder.CreateElementBitCast(LoadAddr, BaseTy);
4600 
4601       Address StoreAddr =
4602         CGF.Builder.CreateConstArrayGEP(Tmp, i, BaseTyInfo.first);
4603 
4604       llvm::Value *Elem = CGF.Builder.CreateLoad(LoadAddr);
4605       CGF.Builder.CreateStore(Elem, StoreAddr);
4606     }
4607 
4608     RegAddr = CGF.Builder.CreateElementBitCast(Tmp, MemTy);
4609   } else {
4610     // Otherwise the object is contiguous in memory.
4611 
4612     // It might be right-aligned in its slot.
4613     CharUnits SlotSize = BaseAddr.getAlignment();
4614     if (CGF.CGM.getDataLayout().isBigEndian() && !IsIndirect &&
4615         (IsHFA || !isAggregateTypeForABI(Ty)) &&
4616         TyInfo.first < SlotSize) {
4617       CharUnits Offset = SlotSize - TyInfo.first;
4618       BaseAddr = CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, Offset);
4619     }
4620 
4621     RegAddr = CGF.Builder.CreateElementBitCast(BaseAddr, MemTy);
4622   }
4623 
4624   CGF.EmitBranch(ContBlock);
4625 
4626   //=======================================
4627   // Argument was on the stack
4628   //=======================================
4629   CGF.EmitBlock(OnStackBlock);
4630 
4631   Address stack_p = CGF.Builder.CreateStructGEP(VAListAddr, 0,
4632                                                 CharUnits::Zero(), "stack_p");
4633   llvm::Value *OnStackPtr = CGF.Builder.CreateLoad(stack_p, "stack");
4634 
4635   // Again, stack arguments may need realignment. In this case both integer and
4636   // floating-point ones might be affected.
4637   if (!IsIndirect && TyAlign.getQuantity() > 8) {
4638     int Align = TyAlign.getQuantity();
4639 
4640     OnStackPtr = CGF.Builder.CreatePtrToInt(OnStackPtr, CGF.Int64Ty);
4641 
4642     OnStackPtr = CGF.Builder.CreateAdd(
4643         OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, Align - 1),
4644         "align_stack");
4645     OnStackPtr = CGF.Builder.CreateAnd(
4646         OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, -Align),
4647         "align_stack");
4648 
4649     OnStackPtr = CGF.Builder.CreateIntToPtr(OnStackPtr, CGF.Int8PtrTy);
4650   }
4651   Address OnStackAddr(OnStackPtr,
4652                       std::max(CharUnits::fromQuantity(8), TyAlign));
4653 
4654   // All stack slots are multiples of 8 bytes.
4655   CharUnits StackSlotSize = CharUnits::fromQuantity(8);
4656   CharUnits StackSize;
4657   if (IsIndirect)
4658     StackSize = StackSlotSize;
4659   else
4660     StackSize = TyInfo.first.RoundUpToAlignment(StackSlotSize);
4661 
4662   llvm::Value *StackSizeC = CGF.Builder.getSize(StackSize);
4663   llvm::Value *NewStack =
4664       CGF.Builder.CreateInBoundsGEP(OnStackPtr, StackSizeC, "new_stack");
4665 
4666   // Write the new value of __stack for the next call to va_arg
4667   CGF.Builder.CreateStore(NewStack, stack_p);
4668 
4669   if (CGF.CGM.getDataLayout().isBigEndian() && !isAggregateTypeForABI(Ty) &&
4670       TyInfo.first < StackSlotSize) {
4671     CharUnits Offset = StackSlotSize - TyInfo.first;
4672     OnStackAddr = CGF.Builder.CreateConstInBoundsByteGEP(OnStackAddr, Offset);
4673   }
4674 
4675   OnStackAddr = CGF.Builder.CreateElementBitCast(OnStackAddr, MemTy);
4676 
4677   CGF.EmitBranch(ContBlock);
4678 
4679   //=======================================
4680   // Tidy up
4681   //=======================================
4682   CGF.EmitBlock(ContBlock);
4683 
4684   Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock,
4685                                  OnStackAddr, OnStackBlock, "vaargs.addr");
4686 
4687   if (IsIndirect)
4688     return Address(CGF.Builder.CreateLoad(ResAddr, "vaarg.addr"),
4689                    TyInfo.second);
4690 
4691   return ResAddr;
4692 }
4693 
EmitDarwinVAArg(Address VAListAddr,QualType Ty,CodeGenFunction & CGF) const4694 Address AArch64ABIInfo::EmitDarwinVAArg(Address VAListAddr, QualType Ty,
4695                                         CodeGenFunction &CGF) const {
4696   // The backend's lowering doesn't support va_arg for aggregates or
4697   // illegal vector types.  Lower VAArg here for these cases and use
4698   // the LLVM va_arg instruction for everything else.
4699   if (!isAggregateTypeForABI(Ty) && !isIllegalVectorType(Ty))
4700     return Address::invalid();
4701 
4702   CharUnits SlotSize = CharUnits::fromQuantity(8);
4703 
4704   // Empty records are ignored for parameter passing purposes.
4705   if (isEmptyRecord(getContext(), Ty, true)) {
4706     Address Addr(CGF.Builder.CreateLoad(VAListAddr, "ap.cur"), SlotSize);
4707     Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty));
4708     return Addr;
4709   }
4710 
4711   // The size of the actual thing passed, which might end up just
4712   // being a pointer for indirect types.
4713   auto TyInfo = getContext().getTypeInfoInChars(Ty);
4714 
4715   // Arguments bigger than 16 bytes which aren't homogeneous
4716   // aggregates should be passed indirectly.
4717   bool IsIndirect = false;
4718   if (TyInfo.first.getQuantity() > 16) {
4719     const Type *Base = nullptr;
4720     uint64_t Members = 0;
4721     IsIndirect = !isHomogeneousAggregate(Ty, Base, Members);
4722   }
4723 
4724   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect,
4725                           TyInfo, SlotSize, /*AllowHigherAlign*/ true);
4726 }
4727 
4728 //===----------------------------------------------------------------------===//
4729 // ARM ABI Implementation
4730 //===----------------------------------------------------------------------===//
4731 
4732 namespace {
4733 
4734 class ARMABIInfo : public ABIInfo {
4735 public:
4736   enum ABIKind {
4737     APCS = 0,
4738     AAPCS = 1,
4739     AAPCS_VFP = 2,
4740     AAPCS16_VFP = 3,
4741   };
4742 
4743 private:
4744   ABIKind Kind;
4745 
4746 public:
ARMABIInfo(CodeGenTypes & CGT,ABIKind _Kind)4747   ARMABIInfo(CodeGenTypes &CGT, ABIKind _Kind) : ABIInfo(CGT), Kind(_Kind) {
4748     setCCs();
4749   }
4750 
isEABI() const4751   bool isEABI() const {
4752     switch (getTarget().getTriple().getEnvironment()) {
4753     case llvm::Triple::Android:
4754     case llvm::Triple::EABI:
4755     case llvm::Triple::EABIHF:
4756     case llvm::Triple::GNUEABI:
4757     case llvm::Triple::GNUEABIHF:
4758       return true;
4759     default:
4760       return false;
4761     }
4762   }
4763 
isEABIHF() const4764   bool isEABIHF() const {
4765     switch (getTarget().getTriple().getEnvironment()) {
4766     case llvm::Triple::EABIHF:
4767     case llvm::Triple::GNUEABIHF:
4768       return true;
4769     default:
4770       return false;
4771     }
4772   }
4773 
isAndroid() const4774   bool isAndroid() const {
4775     return (getTarget().getTriple().getEnvironment() ==
4776             llvm::Triple::Android || getContext().getLangOpts().Renderscript);
4777   }
4778 
getABIKind() const4779   ABIKind getABIKind() const { return Kind; }
4780 
4781 private:
4782   ABIArgInfo classifyReturnType(QualType RetTy, bool isVariadic) const;
4783   ABIArgInfo classifyArgumentType(QualType RetTy, bool isVariadic) const;
4784   bool isIllegalVectorType(QualType Ty) const;
4785 
4786   bool isHomogeneousAggregateBaseType(QualType Ty) const override;
4787   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
4788                                          uint64_t Members) const override;
4789 
4790   void computeInfo(CGFunctionInfo &FI) const override;
4791 
4792   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
4793                     QualType Ty) const override;
4794 
4795   llvm::CallingConv::ID getLLVMDefaultCC() const;
4796   llvm::CallingConv::ID getABIDefaultCC() const;
4797   void setCCs();
4798 };
4799 
4800 class ARMTargetCodeGenInfo : public TargetCodeGenInfo {
4801 public:
ARMTargetCodeGenInfo(CodeGenTypes & CGT,ARMABIInfo::ABIKind K)4802   ARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K)
4803     :TargetCodeGenInfo(new ARMABIInfo(CGT, K)) {}
4804 
getABIInfo() const4805   const ARMABIInfo &getABIInfo() const {
4806     return static_cast<const ARMABIInfo&>(TargetCodeGenInfo::getABIInfo());
4807   }
4808 
getDwarfEHStackPointer(CodeGen::CodeGenModule & M) const4809   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
4810     return 13;
4811   }
4812 
getARCRetainAutoreleasedReturnValueMarker() const4813   StringRef getARCRetainAutoreleasedReturnValueMarker() const override {
4814     return "mov\tr7, r7\t\t@ marker for objc_retainAutoreleaseReturnValue";
4815   }
4816 
initDwarfEHRegSizeTable(CodeGen::CodeGenFunction & CGF,llvm::Value * Address) const4817   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4818                                llvm::Value *Address) const override {
4819     llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
4820 
4821     // 0-15 are the 16 integer registers.
4822     AssignToArrayRange(CGF.Builder, Address, Four8, 0, 15);
4823     return false;
4824   }
4825 
getSizeOfUnwindException() const4826   unsigned getSizeOfUnwindException() const override {
4827     if (getABIInfo().isEABI()) return 88;
4828     return TargetCodeGenInfo::getSizeOfUnwindException();
4829   }
4830 
setTargetAttributes(const Decl * D,llvm::GlobalValue * GV,CodeGen::CodeGenModule & CGM) const4831   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
4832                            CodeGen::CodeGenModule &CGM) const override {
4833     const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
4834     if (!FD)
4835       return;
4836 
4837     const ARMInterruptAttr *Attr = FD->getAttr<ARMInterruptAttr>();
4838     if (!Attr)
4839       return;
4840 
4841     const char *Kind;
4842     switch (Attr->getInterrupt()) {
4843     case ARMInterruptAttr::Generic: Kind = ""; break;
4844     case ARMInterruptAttr::IRQ:     Kind = "IRQ"; break;
4845     case ARMInterruptAttr::FIQ:     Kind = "FIQ"; break;
4846     case ARMInterruptAttr::SWI:     Kind = "SWI"; break;
4847     case ARMInterruptAttr::ABORT:   Kind = "ABORT"; break;
4848     case ARMInterruptAttr::UNDEF:   Kind = "UNDEF"; break;
4849     }
4850 
4851     llvm::Function *Fn = cast<llvm::Function>(GV);
4852 
4853     Fn->addFnAttr("interrupt", Kind);
4854 
4855     ARMABIInfo::ABIKind ABI = cast<ARMABIInfo>(getABIInfo()).getABIKind();
4856     if (ABI == ARMABIInfo::APCS)
4857       return;
4858 
4859     // AAPCS guarantees that sp will be 8-byte aligned on any public interface,
4860     // however this is not necessarily true on taking any interrupt. Instruct
4861     // the backend to perform a realignment as part of the function prologue.
4862     llvm::AttrBuilder B;
4863     B.addStackAlignmentAttr(8);
4864     Fn->addAttributes(llvm::AttributeSet::FunctionIndex,
4865                       llvm::AttributeSet::get(CGM.getLLVMContext(),
4866                                               llvm::AttributeSet::FunctionIndex,
4867                                               B));
4868   }
4869 };
4870 
4871 class WindowsARMTargetCodeGenInfo : public ARMTargetCodeGenInfo {
4872   void addStackProbeSizeTargetAttribute(const Decl *D, llvm::GlobalValue *GV,
4873                                         CodeGen::CodeGenModule &CGM) const;
4874 
4875 public:
WindowsARMTargetCodeGenInfo(CodeGenTypes & CGT,ARMABIInfo::ABIKind K)4876   WindowsARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K)
4877       : ARMTargetCodeGenInfo(CGT, K) {}
4878 
4879   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
4880                            CodeGen::CodeGenModule &CGM) const override;
4881 };
4882 
addStackProbeSizeTargetAttribute(const Decl * D,llvm::GlobalValue * GV,CodeGen::CodeGenModule & CGM) const4883 void WindowsARMTargetCodeGenInfo::addStackProbeSizeTargetAttribute(
4884     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
4885   if (!isa<FunctionDecl>(D))
4886     return;
4887   if (CGM.getCodeGenOpts().StackProbeSize == 4096)
4888     return;
4889 
4890   llvm::Function *F = cast<llvm::Function>(GV);
4891   F->addFnAttr("stack-probe-size",
4892                llvm::utostr(CGM.getCodeGenOpts().StackProbeSize));
4893 }
4894 
setTargetAttributes(const Decl * D,llvm::GlobalValue * GV,CodeGen::CodeGenModule & CGM) const4895 void WindowsARMTargetCodeGenInfo::setTargetAttributes(
4896     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
4897   ARMTargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
4898   addStackProbeSizeTargetAttribute(D, GV, CGM);
4899 }
4900 }
4901 
computeInfo(CGFunctionInfo & FI) const4902 void ARMABIInfo::computeInfo(CGFunctionInfo &FI) const {
4903   if (!getCXXABI().classifyReturnType(FI))
4904     FI.getReturnInfo() =
4905         classifyReturnType(FI.getReturnType(), FI.isVariadic());
4906 
4907   for (auto &I : FI.arguments())
4908     I.info = classifyArgumentType(I.type, FI.isVariadic());
4909 
4910   // Always honor user-specified calling convention.
4911   if (FI.getCallingConvention() != llvm::CallingConv::C)
4912     return;
4913 
4914   llvm::CallingConv::ID cc = getRuntimeCC();
4915   if (cc != llvm::CallingConv::C)
4916     FI.setEffectiveCallingConvention(cc);
4917 }
4918 
4919 /// Return the default calling convention that LLVM will use.
getLLVMDefaultCC() const4920 llvm::CallingConv::ID ARMABIInfo::getLLVMDefaultCC() const {
4921   // The default calling convention that LLVM will infer.
4922   if (isEABIHF() || getTarget().getTriple().isWatchOS())
4923     return llvm::CallingConv::ARM_AAPCS_VFP;
4924   else if (isEABI())
4925     return llvm::CallingConv::ARM_AAPCS;
4926   else
4927     return llvm::CallingConv::ARM_APCS;
4928 }
4929 
4930 /// Return the calling convention that our ABI would like us to use
4931 /// as the C calling convention.
getABIDefaultCC() const4932 llvm::CallingConv::ID ARMABIInfo::getABIDefaultCC() const {
4933   switch (getABIKind()) {
4934   case APCS: return llvm::CallingConv::ARM_APCS;
4935   case AAPCS: return llvm::CallingConv::ARM_AAPCS;
4936   case AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP;
4937   case AAPCS16_VFP: return llvm::CallingConv::ARM_AAPCS_VFP;
4938   }
4939   llvm_unreachable("bad ABI kind");
4940 }
4941 
setCCs()4942 void ARMABIInfo::setCCs() {
4943   assert(getRuntimeCC() == llvm::CallingConv::C);
4944 
4945   // Don't muddy up the IR with a ton of explicit annotations if
4946   // they'd just match what LLVM will infer from the triple.
4947   llvm::CallingConv::ID abiCC = getABIDefaultCC();
4948   if (abiCC != getLLVMDefaultCC())
4949     RuntimeCC = abiCC;
4950 
4951   // AAPCS apparently requires runtime support functions to be soft-float, but
4952   // that's almost certainly for historic reasons (Thumb1 not supporting VFP
4953   // most likely). It's more convenient for AAPCS16_VFP to be hard-float.
4954   switch (getABIKind()) {
4955   case APCS:
4956   case AAPCS16_VFP:
4957     if (abiCC != getLLVMDefaultCC())
4958       BuiltinCC = abiCC;
4959     break;
4960   case AAPCS:
4961   case AAPCS_VFP:
4962     BuiltinCC = llvm::CallingConv::ARM_AAPCS;
4963     break;
4964   }
4965 }
4966 
classifyArgumentType(QualType Ty,bool isVariadic) const4967 ABIArgInfo ARMABIInfo::classifyArgumentType(QualType Ty,
4968                                             bool isVariadic) const {
4969   // 6.1.2.1 The following argument types are VFP CPRCs:
4970   //   A single-precision floating-point type (including promoted
4971   //   half-precision types); A double-precision floating-point type;
4972   //   A 64-bit or 128-bit containerized vector type; Homogeneous Aggregate
4973   //   with a Base Type of a single- or double-precision floating-point type,
4974   //   64-bit containerized vectors or 128-bit containerized vectors with one
4975   //   to four Elements.
4976   bool IsEffectivelyAAPCS_VFP = getABIKind() == AAPCS_VFP && !isVariadic;
4977 
4978   Ty = useFirstFieldIfTransparentUnion(Ty);
4979 
4980   // Handle illegal vector types here.
4981   if (isIllegalVectorType(Ty)) {
4982     uint64_t Size = getContext().getTypeSize(Ty);
4983     if (Size <= 32) {
4984       llvm::Type *ResType =
4985           llvm::Type::getInt32Ty(getVMContext());
4986       return ABIArgInfo::getDirect(ResType);
4987     }
4988     if (Size == 64) {
4989       llvm::Type *ResType = llvm::VectorType::get(
4990           llvm::Type::getInt32Ty(getVMContext()), 2);
4991       return ABIArgInfo::getDirect(ResType);
4992     }
4993     if (Size == 128) {
4994       llvm::Type *ResType = llvm::VectorType::get(
4995           llvm::Type::getInt32Ty(getVMContext()), 4);
4996       return ABIArgInfo::getDirect(ResType);
4997     }
4998     return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
4999   }
5000 
5001   // __fp16 gets passed as if it were an int or float, but with the top 16 bits
5002   // unspecified. This is not done for OpenCL as it handles the half type
5003   // natively, and does not need to interwork with AAPCS code.
5004   if (Ty->isHalfType() && !getContext().getLangOpts().HalfArgsAndReturns) {
5005     llvm::Type *ResType = IsEffectivelyAAPCS_VFP ?
5006       llvm::Type::getFloatTy(getVMContext()) :
5007       llvm::Type::getInt32Ty(getVMContext());
5008     return ABIArgInfo::getDirect(ResType);
5009   }
5010 
5011   if (!isAggregateTypeForABI(Ty)) {
5012     // Treat an enum type as its underlying type.
5013     if (const EnumType *EnumTy = Ty->getAs<EnumType>()) {
5014       Ty = EnumTy->getDecl()->getIntegerType();
5015     }
5016 
5017     return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend()
5018                                           : ABIArgInfo::getDirect());
5019   }
5020 
5021   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
5022     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
5023   }
5024 
5025   // Ignore empty records.
5026   if (isEmptyRecord(getContext(), Ty, true))
5027     return ABIArgInfo::getIgnore();
5028 
5029   if (IsEffectivelyAAPCS_VFP) {
5030     // Homogeneous Aggregates need to be expanded when we can fit the aggregate
5031     // into VFP registers.
5032     const Type *Base = nullptr;
5033     uint64_t Members = 0;
5034     if (isHomogeneousAggregate(Ty, Base, Members)) {
5035       assert(Base && "Base class should be set for homogeneous aggregate");
5036       // Base can be a floating-point or a vector.
5037       return ABIArgInfo::getDirect(nullptr, 0, nullptr, false);
5038     }
5039   } else if (getABIKind() == ARMABIInfo::AAPCS16_VFP) {
5040     // WatchOS does have homogeneous aggregates. Note that we intentionally use
5041     // this convention even for a variadic function: the backend will use GPRs
5042     // if needed.
5043     const Type *Base = nullptr;
5044     uint64_t Members = 0;
5045     if (isHomogeneousAggregate(Ty, Base, Members)) {
5046       assert(Base && Members <= 4 && "unexpected homogeneous aggregate");
5047       llvm::Type *Ty =
5048         llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members);
5049       return ABIArgInfo::getDirect(Ty, 0, nullptr, false);
5050     }
5051   }
5052 
5053   if (getABIKind() == ARMABIInfo::AAPCS16_VFP &&
5054       getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(16)) {
5055     // WatchOS is adopting the 64-bit AAPCS rule on composite types: if they're
5056     // bigger than 128-bits, they get placed in space allocated by the caller,
5057     // and a pointer is passed.
5058     return ABIArgInfo::getIndirect(
5059         CharUnits::fromQuantity(getContext().getTypeAlign(Ty) / 8), false);
5060   }
5061 
5062   // Support byval for ARM.
5063   // The ABI alignment for APCS is 4-byte and for AAPCS at least 4-byte and at
5064   // most 8-byte. We realign the indirect argument if type alignment is bigger
5065   // than ABI alignment.
5066   uint64_t ABIAlign = 4;
5067   uint64_t TyAlign = getContext().getTypeAlign(Ty) / 8;
5068   if (getABIKind() == ARMABIInfo::AAPCS_VFP ||
5069        getABIKind() == ARMABIInfo::AAPCS)
5070     ABIAlign = std::min(std::max(TyAlign, (uint64_t)4), (uint64_t)8);
5071 
5072   if (getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(64)) {
5073     assert(getABIKind() != ARMABIInfo::AAPCS16_VFP && "unexpected byval");
5074     return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign),
5075                                    /*ByVal=*/true,
5076                                    /*Realign=*/TyAlign > ABIAlign);
5077   }
5078 
5079   if (getContext().getLangOpts().Renderscript) {
5080     return coerceToIntArray(Ty, getContext(), getVMContext());
5081   }
5082 
5083   // Otherwise, pass by coercing to a structure of the appropriate size.
5084   llvm::Type* ElemTy;
5085   unsigned SizeRegs;
5086   // FIXME: Try to match the types of the arguments more accurately where
5087   // we can.
5088   if (getContext().getTypeAlign(Ty) <= 32) {
5089     ElemTy = llvm::Type::getInt32Ty(getVMContext());
5090     SizeRegs = (getContext().getTypeSize(Ty) + 31) / 32;
5091   } else {
5092     ElemTy = llvm::Type::getInt64Ty(getVMContext());
5093     SizeRegs = (getContext().getTypeSize(Ty) + 63) / 64;
5094   }
5095 
5096   return ABIArgInfo::getDirect(llvm::ArrayType::get(ElemTy, SizeRegs));
5097 }
5098 
isIntegerLikeType(QualType Ty,ASTContext & Context,llvm::LLVMContext & VMContext)5099 static bool isIntegerLikeType(QualType Ty, ASTContext &Context,
5100                               llvm::LLVMContext &VMContext) {
5101   // APCS, C Language Calling Conventions, Non-Simple Return Values: A structure
5102   // is called integer-like if its size is less than or equal to one word, and
5103   // the offset of each of its addressable sub-fields is zero.
5104 
5105   uint64_t Size = Context.getTypeSize(Ty);
5106 
5107   // Check that the type fits in a word.
5108   if (Size > 32)
5109     return false;
5110 
5111   // FIXME: Handle vector types!
5112   if (Ty->isVectorType())
5113     return false;
5114 
5115   // Float types are never treated as "integer like".
5116   if (Ty->isRealFloatingType())
5117     return false;
5118 
5119   // If this is a builtin or pointer type then it is ok.
5120   if (Ty->getAs<BuiltinType>() || Ty->isPointerType())
5121     return true;
5122 
5123   // Small complex integer types are "integer like".
5124   if (const ComplexType *CT = Ty->getAs<ComplexType>())
5125     return isIntegerLikeType(CT->getElementType(), Context, VMContext);
5126 
5127   // Single element and zero sized arrays should be allowed, by the definition
5128   // above, but they are not.
5129 
5130   // Otherwise, it must be a record type.
5131   const RecordType *RT = Ty->getAs<RecordType>();
5132   if (!RT) return false;
5133 
5134   // Ignore records with flexible arrays.
5135   const RecordDecl *RD = RT->getDecl();
5136   if (RD->hasFlexibleArrayMember())
5137     return false;
5138 
5139   // Check that all sub-fields are at offset 0, and are themselves "integer
5140   // like".
5141   const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
5142 
5143   bool HadField = false;
5144   unsigned idx = 0;
5145   for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
5146        i != e; ++i, ++idx) {
5147     const FieldDecl *FD = *i;
5148 
5149     // Bit-fields are not addressable, we only need to verify they are "integer
5150     // like". We still have to disallow a subsequent non-bitfield, for example:
5151     //   struct { int : 0; int x }
5152     // is non-integer like according to gcc.
5153     if (FD->isBitField()) {
5154       if (!RD->isUnion())
5155         HadField = true;
5156 
5157       if (!isIntegerLikeType(FD->getType(), Context, VMContext))
5158         return false;
5159 
5160       continue;
5161     }
5162 
5163     // Check if this field is at offset 0.
5164     if (Layout.getFieldOffset(idx) != 0)
5165       return false;
5166 
5167     if (!isIntegerLikeType(FD->getType(), Context, VMContext))
5168       return false;
5169 
5170     // Only allow at most one field in a structure. This doesn't match the
5171     // wording above, but follows gcc in situations with a field following an
5172     // empty structure.
5173     if (!RD->isUnion()) {
5174       if (HadField)
5175         return false;
5176 
5177       HadField = true;
5178     }
5179   }
5180 
5181   return true;
5182 }
5183 
classifyReturnType(QualType RetTy,bool isVariadic) const5184 ABIArgInfo ARMABIInfo::classifyReturnType(QualType RetTy,
5185                                           bool isVariadic) const {
5186   bool IsEffectivelyAAPCS_VFP =
5187       (getABIKind() == AAPCS_VFP || getABIKind() == AAPCS16_VFP) && !isVariadic;
5188 
5189   if (RetTy->isVoidType())
5190     return ABIArgInfo::getIgnore();
5191 
5192   // Large vector types should be returned via memory.
5193   if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128) {
5194     return getNaturalAlignIndirect(RetTy);
5195   }
5196 
5197   // __fp16 gets returned as if it were an int or float, but with the top 16
5198   // bits unspecified. This is not done for OpenCL as it handles the half type
5199   // natively, and does not need to interwork with AAPCS code.
5200   if (RetTy->isHalfType() && !getContext().getLangOpts().HalfArgsAndReturns) {
5201     llvm::Type *ResType = IsEffectivelyAAPCS_VFP ?
5202       llvm::Type::getFloatTy(getVMContext()) :
5203       llvm::Type::getInt32Ty(getVMContext());
5204     return ABIArgInfo::getDirect(ResType);
5205   }
5206 
5207   if (!isAggregateTypeForABI(RetTy)) {
5208     // Treat an enum type as its underlying type.
5209     if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
5210       RetTy = EnumTy->getDecl()->getIntegerType();
5211 
5212     return RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend()
5213                                             : ABIArgInfo::getDirect();
5214   }
5215 
5216   // Are we following APCS?
5217   if (getABIKind() == APCS) {
5218     if (isEmptyRecord(getContext(), RetTy, false))
5219       return ABIArgInfo::getIgnore();
5220 
5221     // Complex types are all returned as packed integers.
5222     //
5223     // FIXME: Consider using 2 x vector types if the back end handles them
5224     // correctly.
5225     if (RetTy->isAnyComplexType())
5226       return ABIArgInfo::getDirect(llvm::IntegerType::get(
5227           getVMContext(), getContext().getTypeSize(RetTy)));
5228 
5229     // Integer like structures are returned in r0.
5230     if (isIntegerLikeType(RetTy, getContext(), getVMContext())) {
5231       // Return in the smallest viable integer type.
5232       uint64_t Size = getContext().getTypeSize(RetTy);
5233       if (Size <= 8)
5234         return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
5235       if (Size <= 16)
5236         return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
5237       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
5238     }
5239 
5240     // Otherwise return in memory.
5241     return getNaturalAlignIndirect(RetTy);
5242   }
5243 
5244   // Otherwise this is an AAPCS variant.
5245 
5246   if (isEmptyRecord(getContext(), RetTy, true))
5247     return ABIArgInfo::getIgnore();
5248 
5249   // Check for homogeneous aggregates with AAPCS-VFP.
5250   if (IsEffectivelyAAPCS_VFP) {
5251     const Type *Base = nullptr;
5252     uint64_t Members = 0;
5253     if (isHomogeneousAggregate(RetTy, Base, Members)) {
5254       assert(Base && "Base class should be set for homogeneous aggregate");
5255       // Homogeneous Aggregates are returned directly.
5256       return ABIArgInfo::getDirect(nullptr, 0, nullptr, false);
5257     }
5258   }
5259 
5260   // Aggregates <= 4 bytes are returned in r0; other aggregates
5261   // are returned indirectly.
5262   uint64_t Size = getContext().getTypeSize(RetTy);
5263   if (Size <= 32) {
5264     if (getContext().getLangOpts().Renderscript) {
5265       return coerceToIntArray(RetTy, getContext(), getVMContext());
5266     }
5267     if (getDataLayout().isBigEndian())
5268       // Return in 32 bit integer integer type (as if loaded by LDR, AAPCS 5.4)
5269       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
5270 
5271     // Return in the smallest viable integer type.
5272     if (Size <= 8)
5273       return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
5274     if (Size <= 16)
5275       return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
5276     return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
5277   } else if (Size <= 128 && getABIKind() == AAPCS16_VFP) {
5278     llvm::Type *Int32Ty = llvm::Type::getInt32Ty(getVMContext());
5279     llvm::Type *CoerceTy =
5280         llvm::ArrayType::get(Int32Ty, llvm::RoundUpToAlignment(Size, 32) / 32);
5281     return ABIArgInfo::getDirect(CoerceTy);
5282   }
5283 
5284   return getNaturalAlignIndirect(RetTy);
5285 }
5286 
5287 /// isIllegalVector - check whether Ty is an illegal vector type.
isIllegalVectorType(QualType Ty) const5288 bool ARMABIInfo::isIllegalVectorType(QualType Ty) const {
5289   if (const VectorType *VT = Ty->getAs<VectorType> ()) {
5290     if (isAndroid()) {
5291       // Android shipped using Clang 3.1, which supported a slightly different
5292       // vector ABI. The primary differences were that 3-element vector types
5293       // were legal, and so were sub 32-bit vectors (i.e. <2 x i8>). This path
5294       // accepts that legacy behavior for Android only.
5295       // Check whether VT is legal.
5296       unsigned NumElements = VT->getNumElements();
5297       // NumElements should be power of 2 or equal to 3.
5298       if (!llvm::isPowerOf2_32(NumElements) && NumElements != 3)
5299         return true;
5300     } else {
5301       // Check whether VT is legal.
5302       unsigned NumElements = VT->getNumElements();
5303       uint64_t Size = getContext().getTypeSize(VT);
5304       // NumElements should be power of 2.
5305       if (!llvm::isPowerOf2_32(NumElements))
5306         return true;
5307       // Size should be greater than 32 bits.
5308       return Size <= 32;
5309     }
5310   }
5311   return false;
5312 }
5313 
isHomogeneousAggregateBaseType(QualType Ty) const5314 bool ARMABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
5315   // Homogeneous aggregates for AAPCS-VFP must have base types of float,
5316   // double, or 64-bit or 128-bit vectors.
5317   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
5318     if (BT->getKind() == BuiltinType::Float ||
5319         BT->getKind() == BuiltinType::Double ||
5320         BT->getKind() == BuiltinType::LongDouble)
5321       return true;
5322   } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
5323     unsigned VecSize = getContext().getTypeSize(VT);
5324     if (VecSize == 64 || VecSize == 128)
5325       return true;
5326   }
5327   return false;
5328 }
5329 
isHomogeneousAggregateSmallEnough(const Type * Base,uint64_t Members) const5330 bool ARMABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base,
5331                                                    uint64_t Members) const {
5332   return Members <= 4;
5333 }
5334 
EmitVAArg(CodeGenFunction & CGF,Address VAListAddr,QualType Ty) const5335 Address ARMABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
5336                               QualType Ty) const {
5337   CharUnits SlotSize = CharUnits::fromQuantity(4);
5338 
5339   // Empty records are ignored for parameter passing purposes.
5340   if (isEmptyRecord(getContext(), Ty, true)) {
5341     Address Addr(CGF.Builder.CreateLoad(VAListAddr), SlotSize);
5342     Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty));
5343     return Addr;
5344   }
5345 
5346   auto TyInfo = getContext().getTypeInfoInChars(Ty);
5347   CharUnits TyAlignForABI = TyInfo.second;
5348 
5349   // Use indirect if size of the illegal vector is bigger than 16 bytes.
5350   bool IsIndirect = false;
5351   const Type *Base = nullptr;
5352   uint64_t Members = 0;
5353   if (TyInfo.first > CharUnits::fromQuantity(16) && isIllegalVectorType(Ty)) {
5354     IsIndirect = true;
5355 
5356   // ARMv7k passes structs bigger than 16 bytes indirectly, in space
5357   // allocated by the caller.
5358   } else if (TyInfo.first > CharUnits::fromQuantity(16) &&
5359              getABIKind() == ARMABIInfo::AAPCS16_VFP &&
5360              !isHomogeneousAggregate(Ty, Base, Members)) {
5361     IsIndirect = true;
5362 
5363   // Otherwise, bound the type's ABI alignment.
5364   // The ABI alignment for 64-bit or 128-bit vectors is 8 for AAPCS and 4 for
5365   // APCS. For AAPCS, the ABI alignment is at least 4-byte and at most 8-byte.
5366   // Our callers should be prepared to handle an under-aligned address.
5367   } else if (getABIKind() == ARMABIInfo::AAPCS_VFP ||
5368              getABIKind() == ARMABIInfo::AAPCS) {
5369     TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4));
5370     TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(8));
5371   } else if (getABIKind() == ARMABIInfo::AAPCS16_VFP) {
5372     // ARMv7k allows type alignment up to 16 bytes.
5373     TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4));
5374     TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(16));
5375   } else {
5376     TyAlignForABI = CharUnits::fromQuantity(4);
5377   }
5378   TyInfo.second = TyAlignForABI;
5379 
5380   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, TyInfo,
5381                           SlotSize, /*AllowHigherAlign*/ true);
5382 }
5383 
5384 //===----------------------------------------------------------------------===//
5385 // NVPTX ABI Implementation
5386 //===----------------------------------------------------------------------===//
5387 
5388 namespace {
5389 
5390 class NVPTXABIInfo : public ABIInfo {
5391 public:
NVPTXABIInfo(CodeGenTypes & CGT)5392   NVPTXABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
5393 
5394   ABIArgInfo classifyReturnType(QualType RetTy) const;
5395   ABIArgInfo classifyArgumentType(QualType Ty) const;
5396 
5397   void computeInfo(CGFunctionInfo &FI) const override;
5398   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
5399                     QualType Ty) const override;
5400 };
5401 
5402 class NVPTXTargetCodeGenInfo : public TargetCodeGenInfo {
5403 public:
NVPTXTargetCodeGenInfo(CodeGenTypes & CGT)5404   NVPTXTargetCodeGenInfo(CodeGenTypes &CGT)
5405     : TargetCodeGenInfo(new NVPTXABIInfo(CGT)) {}
5406 
5407   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
5408                            CodeGen::CodeGenModule &M) const override;
5409 private:
5410   // Adds a NamedMDNode with F, Name, and Operand as operands, and adds the
5411   // resulting MDNode to the nvvm.annotations MDNode.
5412   static void addNVVMMetadata(llvm::Function *F, StringRef Name, int Operand);
5413 };
5414 
classifyReturnType(QualType RetTy) const5415 ABIArgInfo NVPTXABIInfo::classifyReturnType(QualType RetTy) const {
5416   if (RetTy->isVoidType())
5417     return ABIArgInfo::getIgnore();
5418 
5419   // note: this is different from default ABI
5420   if (!RetTy->isScalarType())
5421     return ABIArgInfo::getDirect();
5422 
5423   // Treat an enum type as its underlying type.
5424   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
5425     RetTy = EnumTy->getDecl()->getIntegerType();
5426 
5427   return (RetTy->isPromotableIntegerType() ?
5428           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
5429 }
5430 
classifyArgumentType(QualType Ty) const5431 ABIArgInfo NVPTXABIInfo::classifyArgumentType(QualType Ty) const {
5432   // Treat an enum type as its underlying type.
5433   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
5434     Ty = EnumTy->getDecl()->getIntegerType();
5435 
5436   // Return aggregates type as indirect by value
5437   if (isAggregateTypeForABI(Ty))
5438     return getNaturalAlignIndirect(Ty, /* byval */ true);
5439 
5440   return (Ty->isPromotableIntegerType() ?
5441           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
5442 }
5443 
computeInfo(CGFunctionInfo & FI) const5444 void NVPTXABIInfo::computeInfo(CGFunctionInfo &FI) const {
5445   if (!getCXXABI().classifyReturnType(FI))
5446     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
5447   for (auto &I : FI.arguments())
5448     I.info = classifyArgumentType(I.type);
5449 
5450   // Always honor user-specified calling convention.
5451   if (FI.getCallingConvention() != llvm::CallingConv::C)
5452     return;
5453 
5454   FI.setEffectiveCallingConvention(getRuntimeCC());
5455 }
5456 
EmitVAArg(CodeGenFunction & CGF,Address VAListAddr,QualType Ty) const5457 Address NVPTXABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
5458                                 QualType Ty) const {
5459   llvm_unreachable("NVPTX does not support varargs");
5460 }
5461 
5462 void NVPTXTargetCodeGenInfo::
setTargetAttributes(const Decl * D,llvm::GlobalValue * GV,CodeGen::CodeGenModule & M) const5463 setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
5464                     CodeGen::CodeGenModule &M) const{
5465   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
5466   if (!FD) return;
5467 
5468   llvm::Function *F = cast<llvm::Function>(GV);
5469 
5470   // Perform special handling in OpenCL mode
5471   if (M.getLangOpts().OpenCL) {
5472     // Use OpenCL function attributes to check for kernel functions
5473     // By default, all functions are device functions
5474     if (FD->hasAttr<OpenCLKernelAttr>()) {
5475       // OpenCL __kernel functions get kernel metadata
5476       // Create !{<func-ref>, metadata !"kernel", i32 1} node
5477       addNVVMMetadata(F, "kernel", 1);
5478       // And kernel functions are not subject to inlining
5479       F->addFnAttr(llvm::Attribute::NoInline);
5480     }
5481   }
5482 
5483   // Perform special handling in CUDA mode.
5484   if (M.getLangOpts().CUDA) {
5485     // CUDA __global__ functions get a kernel metadata entry.  Since
5486     // __global__ functions cannot be called from the device, we do not
5487     // need to set the noinline attribute.
5488     if (FD->hasAttr<CUDAGlobalAttr>()) {
5489       // Create !{<func-ref>, metadata !"kernel", i32 1} node
5490       addNVVMMetadata(F, "kernel", 1);
5491     }
5492     if (CUDALaunchBoundsAttr *Attr = FD->getAttr<CUDALaunchBoundsAttr>()) {
5493       // Create !{<func-ref>, metadata !"maxntidx", i32 <val>} node
5494       llvm::APSInt MaxThreads(32);
5495       MaxThreads = Attr->getMaxThreads()->EvaluateKnownConstInt(M.getContext());
5496       if (MaxThreads > 0)
5497         addNVVMMetadata(F, "maxntidx", MaxThreads.getExtValue());
5498 
5499       // min blocks is an optional argument for CUDALaunchBoundsAttr. If it was
5500       // not specified in __launch_bounds__ or if the user specified a 0 value,
5501       // we don't have to add a PTX directive.
5502       if (Attr->getMinBlocks()) {
5503         llvm::APSInt MinBlocks(32);
5504         MinBlocks = Attr->getMinBlocks()->EvaluateKnownConstInt(M.getContext());
5505         if (MinBlocks > 0)
5506           // Create !{<func-ref>, metadata !"minctasm", i32 <val>} node
5507           addNVVMMetadata(F, "minctasm", MinBlocks.getExtValue());
5508       }
5509     }
5510   }
5511 }
5512 
addNVVMMetadata(llvm::Function * F,StringRef Name,int Operand)5513 void NVPTXTargetCodeGenInfo::addNVVMMetadata(llvm::Function *F, StringRef Name,
5514                                              int Operand) {
5515   llvm::Module *M = F->getParent();
5516   llvm::LLVMContext &Ctx = M->getContext();
5517 
5518   // Get "nvvm.annotations" metadata node
5519   llvm::NamedMDNode *MD = M->getOrInsertNamedMetadata("nvvm.annotations");
5520 
5521   llvm::Metadata *MDVals[] = {
5522       llvm::ConstantAsMetadata::get(F), llvm::MDString::get(Ctx, Name),
5523       llvm::ConstantAsMetadata::get(
5524           llvm::ConstantInt::get(llvm::Type::getInt32Ty(Ctx), Operand))};
5525   // Append metadata to nvvm.annotations
5526   MD->addOperand(llvm::MDNode::get(Ctx, MDVals));
5527 }
5528 }
5529 
5530 //===----------------------------------------------------------------------===//
5531 // SystemZ ABI Implementation
5532 //===----------------------------------------------------------------------===//
5533 
5534 namespace {
5535 
5536 class SystemZABIInfo : public ABIInfo {
5537   bool HasVector;
5538 
5539 public:
SystemZABIInfo(CodeGenTypes & CGT,bool HV)5540   SystemZABIInfo(CodeGenTypes &CGT, bool HV)
5541     : ABIInfo(CGT), HasVector(HV) {}
5542 
5543   bool isPromotableIntegerType(QualType Ty) const;
5544   bool isCompoundType(QualType Ty) const;
5545   bool isVectorArgumentType(QualType Ty) const;
5546   bool isFPArgumentType(QualType Ty) const;
5547   QualType GetSingleElementType(QualType Ty) const;
5548 
5549   ABIArgInfo classifyReturnType(QualType RetTy) const;
5550   ABIArgInfo classifyArgumentType(QualType ArgTy) const;
5551 
computeInfo(CGFunctionInfo & FI) const5552   void computeInfo(CGFunctionInfo &FI) const override {
5553     if (!getCXXABI().classifyReturnType(FI))
5554       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
5555     for (auto &I : FI.arguments())
5556       I.info = classifyArgumentType(I.type);
5557   }
5558 
5559   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
5560                     QualType Ty) const override;
5561 };
5562 
5563 class SystemZTargetCodeGenInfo : public TargetCodeGenInfo {
5564 public:
SystemZTargetCodeGenInfo(CodeGenTypes & CGT,bool HasVector)5565   SystemZTargetCodeGenInfo(CodeGenTypes &CGT, bool HasVector)
5566     : TargetCodeGenInfo(new SystemZABIInfo(CGT, HasVector)) {}
5567 };
5568 
5569 }
5570 
isPromotableIntegerType(QualType Ty) const5571 bool SystemZABIInfo::isPromotableIntegerType(QualType Ty) const {
5572   // Treat an enum type as its underlying type.
5573   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
5574     Ty = EnumTy->getDecl()->getIntegerType();
5575 
5576   // Promotable integer types are required to be promoted by the ABI.
5577   if (Ty->isPromotableIntegerType())
5578     return true;
5579 
5580   // 32-bit values must also be promoted.
5581   if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
5582     switch (BT->getKind()) {
5583     case BuiltinType::Int:
5584     case BuiltinType::UInt:
5585       return true;
5586     default:
5587       return false;
5588     }
5589   return false;
5590 }
5591 
isCompoundType(QualType Ty) const5592 bool SystemZABIInfo::isCompoundType(QualType Ty) const {
5593   return (Ty->isAnyComplexType() ||
5594           Ty->isVectorType() ||
5595           isAggregateTypeForABI(Ty));
5596 }
5597 
isVectorArgumentType(QualType Ty) const5598 bool SystemZABIInfo::isVectorArgumentType(QualType Ty) const {
5599   return (HasVector &&
5600           Ty->isVectorType() &&
5601           getContext().getTypeSize(Ty) <= 128);
5602 }
5603 
isFPArgumentType(QualType Ty) const5604 bool SystemZABIInfo::isFPArgumentType(QualType Ty) const {
5605   if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
5606     switch (BT->getKind()) {
5607     case BuiltinType::Float:
5608     case BuiltinType::Double:
5609       return true;
5610     default:
5611       return false;
5612     }
5613 
5614   return false;
5615 }
5616 
GetSingleElementType(QualType Ty) const5617 QualType SystemZABIInfo::GetSingleElementType(QualType Ty) const {
5618   if (const RecordType *RT = Ty->getAsStructureType()) {
5619     const RecordDecl *RD = RT->getDecl();
5620     QualType Found;
5621 
5622     // If this is a C++ record, check the bases first.
5623     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
5624       for (const auto &I : CXXRD->bases()) {
5625         QualType Base = I.getType();
5626 
5627         // Empty bases don't affect things either way.
5628         if (isEmptyRecord(getContext(), Base, true))
5629           continue;
5630 
5631         if (!Found.isNull())
5632           return Ty;
5633         Found = GetSingleElementType(Base);
5634       }
5635 
5636     // Check the fields.
5637     for (const auto *FD : RD->fields()) {
5638       // For compatibility with GCC, ignore empty bitfields in C++ mode.
5639       // Unlike isSingleElementStruct(), empty structure and array fields
5640       // do count.  So do anonymous bitfields that aren't zero-sized.
5641       if (getContext().getLangOpts().CPlusPlus &&
5642           FD->isBitField() && FD->getBitWidthValue(getContext()) == 0)
5643         continue;
5644 
5645       // Unlike isSingleElementStruct(), arrays do not count.
5646       // Nested structures still do though.
5647       if (!Found.isNull())
5648         return Ty;
5649       Found = GetSingleElementType(FD->getType());
5650     }
5651 
5652     // Unlike isSingleElementStruct(), trailing padding is allowed.
5653     // An 8-byte aligned struct s { float f; } is passed as a double.
5654     if (!Found.isNull())
5655       return Found;
5656   }
5657 
5658   return Ty;
5659 }
5660 
EmitVAArg(CodeGenFunction & CGF,Address VAListAddr,QualType Ty) const5661 Address SystemZABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
5662                                   QualType Ty) const {
5663   // Assume that va_list type is correct; should be pointer to LLVM type:
5664   // struct {
5665   //   i64 __gpr;
5666   //   i64 __fpr;
5667   //   i8 *__overflow_arg_area;
5668   //   i8 *__reg_save_area;
5669   // };
5670 
5671   // Every non-vector argument occupies 8 bytes and is passed by preference
5672   // in either GPRs or FPRs.  Vector arguments occupy 8 or 16 bytes and are
5673   // always passed on the stack.
5674   Ty = getContext().getCanonicalType(Ty);
5675   auto TyInfo = getContext().getTypeInfoInChars(Ty);
5676   llvm::Type *ArgTy = CGF.ConvertTypeForMem(Ty);
5677   llvm::Type *DirectTy = ArgTy;
5678   ABIArgInfo AI = classifyArgumentType(Ty);
5679   bool IsIndirect = AI.isIndirect();
5680   bool InFPRs = false;
5681   bool IsVector = false;
5682   CharUnits UnpaddedSize;
5683   CharUnits DirectAlign;
5684   if (IsIndirect) {
5685     DirectTy = llvm::PointerType::getUnqual(DirectTy);
5686     UnpaddedSize = DirectAlign = CharUnits::fromQuantity(8);
5687   } else {
5688     if (AI.getCoerceToType())
5689       ArgTy = AI.getCoerceToType();
5690     InFPRs = ArgTy->isFloatTy() || ArgTy->isDoubleTy();
5691     IsVector = ArgTy->isVectorTy();
5692     UnpaddedSize = TyInfo.first;
5693     DirectAlign = TyInfo.second;
5694   }
5695   CharUnits PaddedSize = CharUnits::fromQuantity(8);
5696   if (IsVector && UnpaddedSize > PaddedSize)
5697     PaddedSize = CharUnits::fromQuantity(16);
5698   assert((UnpaddedSize <= PaddedSize) && "Invalid argument size.");
5699 
5700   CharUnits Padding = (PaddedSize - UnpaddedSize);
5701 
5702   llvm::Type *IndexTy = CGF.Int64Ty;
5703   llvm::Value *PaddedSizeV =
5704     llvm::ConstantInt::get(IndexTy, PaddedSize.getQuantity());
5705 
5706   if (IsVector) {
5707     // Work out the address of a vector argument on the stack.
5708     // Vector arguments are always passed in the high bits of a
5709     // single (8 byte) or double (16 byte) stack slot.
5710     Address OverflowArgAreaPtr =
5711       CGF.Builder.CreateStructGEP(VAListAddr, 2, CharUnits::fromQuantity(16),
5712                                   "overflow_arg_area_ptr");
5713     Address OverflowArgArea =
5714       Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"),
5715               TyInfo.second);
5716     Address MemAddr =
5717       CGF.Builder.CreateElementBitCast(OverflowArgArea, DirectTy, "mem_addr");
5718 
5719     // Update overflow_arg_area_ptr pointer
5720     llvm::Value *NewOverflowArgArea =
5721       CGF.Builder.CreateGEP(OverflowArgArea.getPointer(), PaddedSizeV,
5722                             "overflow_arg_area");
5723     CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr);
5724 
5725     return MemAddr;
5726   }
5727 
5728   assert(PaddedSize.getQuantity() == 8);
5729 
5730   unsigned MaxRegs, RegCountField, RegSaveIndex;
5731   CharUnits RegPadding;
5732   if (InFPRs) {
5733     MaxRegs = 4; // Maximum of 4 FPR arguments
5734     RegCountField = 1; // __fpr
5735     RegSaveIndex = 16; // save offset for f0
5736     RegPadding = CharUnits(); // floats are passed in the high bits of an FPR
5737   } else {
5738     MaxRegs = 5; // Maximum of 5 GPR arguments
5739     RegCountField = 0; // __gpr
5740     RegSaveIndex = 2; // save offset for r2
5741     RegPadding = Padding; // values are passed in the low bits of a GPR
5742   }
5743 
5744   Address RegCountPtr = CGF.Builder.CreateStructGEP(
5745       VAListAddr, RegCountField, RegCountField * CharUnits::fromQuantity(8),
5746       "reg_count_ptr");
5747   llvm::Value *RegCount = CGF.Builder.CreateLoad(RegCountPtr, "reg_count");
5748   llvm::Value *MaxRegsV = llvm::ConstantInt::get(IndexTy, MaxRegs);
5749   llvm::Value *InRegs = CGF.Builder.CreateICmpULT(RegCount, MaxRegsV,
5750                                                  "fits_in_regs");
5751 
5752   llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
5753   llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem");
5754   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
5755   CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock);
5756 
5757   // Emit code to load the value if it was passed in registers.
5758   CGF.EmitBlock(InRegBlock);
5759 
5760   // Work out the address of an argument register.
5761   llvm::Value *ScaledRegCount =
5762     CGF.Builder.CreateMul(RegCount, PaddedSizeV, "scaled_reg_count");
5763   llvm::Value *RegBase =
5764     llvm::ConstantInt::get(IndexTy, RegSaveIndex * PaddedSize.getQuantity()
5765                                       + RegPadding.getQuantity());
5766   llvm::Value *RegOffset =
5767     CGF.Builder.CreateAdd(ScaledRegCount, RegBase, "reg_offset");
5768   Address RegSaveAreaPtr =
5769       CGF.Builder.CreateStructGEP(VAListAddr, 3, CharUnits::fromQuantity(24),
5770                                   "reg_save_area_ptr");
5771   llvm::Value *RegSaveArea =
5772     CGF.Builder.CreateLoad(RegSaveAreaPtr, "reg_save_area");
5773   Address RawRegAddr(CGF.Builder.CreateGEP(RegSaveArea, RegOffset,
5774                                            "raw_reg_addr"),
5775                      PaddedSize);
5776   Address RegAddr =
5777     CGF.Builder.CreateElementBitCast(RawRegAddr, DirectTy, "reg_addr");
5778 
5779   // Update the register count
5780   llvm::Value *One = llvm::ConstantInt::get(IndexTy, 1);
5781   llvm::Value *NewRegCount =
5782     CGF.Builder.CreateAdd(RegCount, One, "reg_count");
5783   CGF.Builder.CreateStore(NewRegCount, RegCountPtr);
5784   CGF.EmitBranch(ContBlock);
5785 
5786   // Emit code to load the value if it was passed in memory.
5787   CGF.EmitBlock(InMemBlock);
5788 
5789   // Work out the address of a stack argument.
5790   Address OverflowArgAreaPtr = CGF.Builder.CreateStructGEP(
5791       VAListAddr, 2, CharUnits::fromQuantity(16), "overflow_arg_area_ptr");
5792   Address OverflowArgArea =
5793     Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"),
5794             PaddedSize);
5795   Address RawMemAddr =
5796     CGF.Builder.CreateConstByteGEP(OverflowArgArea, Padding, "raw_mem_addr");
5797   Address MemAddr =
5798     CGF.Builder.CreateElementBitCast(RawMemAddr, DirectTy, "mem_addr");
5799 
5800   // Update overflow_arg_area_ptr pointer
5801   llvm::Value *NewOverflowArgArea =
5802     CGF.Builder.CreateGEP(OverflowArgArea.getPointer(), PaddedSizeV,
5803                           "overflow_arg_area");
5804   CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr);
5805   CGF.EmitBranch(ContBlock);
5806 
5807   // Return the appropriate result.
5808   CGF.EmitBlock(ContBlock);
5809   Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock,
5810                                  MemAddr, InMemBlock, "va_arg.addr");
5811 
5812   if (IsIndirect)
5813     ResAddr = Address(CGF.Builder.CreateLoad(ResAddr, "indirect_arg"),
5814                       TyInfo.second);
5815 
5816   return ResAddr;
5817 }
5818 
classifyReturnType(QualType RetTy) const5819 ABIArgInfo SystemZABIInfo::classifyReturnType(QualType RetTy) const {
5820   if (RetTy->isVoidType())
5821     return ABIArgInfo::getIgnore();
5822   if (isVectorArgumentType(RetTy))
5823     return ABIArgInfo::getDirect();
5824   if (isCompoundType(RetTy) || getContext().getTypeSize(RetTy) > 64)
5825     return getNaturalAlignIndirect(RetTy);
5826   return (isPromotableIntegerType(RetTy) ?
5827           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
5828 }
5829 
classifyArgumentType(QualType Ty) const5830 ABIArgInfo SystemZABIInfo::classifyArgumentType(QualType Ty) const {
5831   // Handle the generic C++ ABI.
5832   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
5833     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
5834 
5835   // Integers and enums are extended to full register width.
5836   if (isPromotableIntegerType(Ty))
5837     return ABIArgInfo::getExtend();
5838 
5839   // Handle vector types and vector-like structure types.  Note that
5840   // as opposed to float-like structure types, we do not allow any
5841   // padding for vector-like structures, so verify the sizes match.
5842   uint64_t Size = getContext().getTypeSize(Ty);
5843   QualType SingleElementTy = GetSingleElementType(Ty);
5844   if (isVectorArgumentType(SingleElementTy) &&
5845       getContext().getTypeSize(SingleElementTy) == Size)
5846     return ABIArgInfo::getDirect(CGT.ConvertType(SingleElementTy));
5847 
5848   // Values that are not 1, 2, 4 or 8 bytes in size are passed indirectly.
5849   if (Size != 8 && Size != 16 && Size != 32 && Size != 64)
5850     return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
5851 
5852   // Handle small structures.
5853   if (const RecordType *RT = Ty->getAs<RecordType>()) {
5854     // Structures with flexible arrays have variable length, so really
5855     // fail the size test above.
5856     const RecordDecl *RD = RT->getDecl();
5857     if (RD->hasFlexibleArrayMember())
5858       return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
5859 
5860     // The structure is passed as an unextended integer, a float, or a double.
5861     llvm::Type *PassTy;
5862     if (isFPArgumentType(SingleElementTy)) {
5863       assert(Size == 32 || Size == 64);
5864       if (Size == 32)
5865         PassTy = llvm::Type::getFloatTy(getVMContext());
5866       else
5867         PassTy = llvm::Type::getDoubleTy(getVMContext());
5868     } else
5869       PassTy = llvm::IntegerType::get(getVMContext(), Size);
5870     return ABIArgInfo::getDirect(PassTy);
5871   }
5872 
5873   // Non-structure compounds are passed indirectly.
5874   if (isCompoundType(Ty))
5875     return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
5876 
5877   return ABIArgInfo::getDirect(nullptr);
5878 }
5879 
5880 //===----------------------------------------------------------------------===//
5881 // MSP430 ABI Implementation
5882 //===----------------------------------------------------------------------===//
5883 
5884 namespace {
5885 
5886 class MSP430TargetCodeGenInfo : public TargetCodeGenInfo {
5887 public:
MSP430TargetCodeGenInfo(CodeGenTypes & CGT)5888   MSP430TargetCodeGenInfo(CodeGenTypes &CGT)
5889     : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
5890   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
5891                            CodeGen::CodeGenModule &M) const override;
5892 };
5893 
5894 }
5895 
setTargetAttributes(const Decl * D,llvm::GlobalValue * GV,CodeGen::CodeGenModule & M) const5896 void MSP430TargetCodeGenInfo::setTargetAttributes(const Decl *D,
5897                                                   llvm::GlobalValue *GV,
5898                                              CodeGen::CodeGenModule &M) const {
5899   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
5900     if (const MSP430InterruptAttr *attr = FD->getAttr<MSP430InterruptAttr>()) {
5901       // Handle 'interrupt' attribute:
5902       llvm::Function *F = cast<llvm::Function>(GV);
5903 
5904       // Step 1: Set ISR calling convention.
5905       F->setCallingConv(llvm::CallingConv::MSP430_INTR);
5906 
5907       // Step 2: Add attributes goodness.
5908       F->addFnAttr(llvm::Attribute::NoInline);
5909 
5910       // Step 3: Emit ISR vector alias.
5911       unsigned Num = attr->getNumber() / 2;
5912       llvm::GlobalAlias::create(llvm::Function::ExternalLinkage,
5913                                 "__isr_" + Twine(Num), F);
5914     }
5915   }
5916 }
5917 
5918 //===----------------------------------------------------------------------===//
5919 // MIPS ABI Implementation.  This works for both little-endian and
5920 // big-endian variants.
5921 //===----------------------------------------------------------------------===//
5922 
5923 namespace {
5924 class MipsABIInfo : public ABIInfo {
5925   bool IsO32;
5926   unsigned MinABIStackAlignInBytes, StackAlignInBytes;
5927   void CoerceToIntArgs(uint64_t TySize,
5928                        SmallVectorImpl<llvm::Type *> &ArgList) const;
5929   llvm::Type* HandleAggregates(QualType Ty, uint64_t TySize) const;
5930   llvm::Type* returnAggregateInRegs(QualType RetTy, uint64_t Size) const;
5931   llvm::Type* getPaddingType(uint64_t Align, uint64_t Offset) const;
5932 public:
MipsABIInfo(CodeGenTypes & CGT,bool _IsO32)5933   MipsABIInfo(CodeGenTypes &CGT, bool _IsO32) :
5934     ABIInfo(CGT), IsO32(_IsO32), MinABIStackAlignInBytes(IsO32 ? 4 : 8),
5935     StackAlignInBytes(IsO32 ? 8 : 16) {}
5936 
5937   ABIArgInfo classifyReturnType(QualType RetTy) const;
5938   ABIArgInfo classifyArgumentType(QualType RetTy, uint64_t &Offset) const;
5939   void computeInfo(CGFunctionInfo &FI) const override;
5940   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
5941                     QualType Ty) const override;
5942   bool shouldSignExtUnsignedType(QualType Ty) const override;
5943 };
5944 
5945 class MIPSTargetCodeGenInfo : public TargetCodeGenInfo {
5946   unsigned SizeOfUnwindException;
5947 public:
MIPSTargetCodeGenInfo(CodeGenTypes & CGT,bool IsO32)5948   MIPSTargetCodeGenInfo(CodeGenTypes &CGT, bool IsO32)
5949     : TargetCodeGenInfo(new MipsABIInfo(CGT, IsO32)),
5950       SizeOfUnwindException(IsO32 ? 24 : 32) {}
5951 
getDwarfEHStackPointer(CodeGen::CodeGenModule & CGM) const5952   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
5953     return 29;
5954   }
5955 
setTargetAttributes(const Decl * D,llvm::GlobalValue * GV,CodeGen::CodeGenModule & CGM) const5956   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
5957                            CodeGen::CodeGenModule &CGM) const override {
5958     const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
5959     if (!FD) return;
5960     llvm::Function *Fn = cast<llvm::Function>(GV);
5961     if (FD->hasAttr<Mips16Attr>()) {
5962       Fn->addFnAttr("mips16");
5963     }
5964     else if (FD->hasAttr<NoMips16Attr>()) {
5965       Fn->addFnAttr("nomips16");
5966     }
5967 
5968     const MipsInterruptAttr *Attr = FD->getAttr<MipsInterruptAttr>();
5969     if (!Attr)
5970       return;
5971 
5972     const char *Kind;
5973     switch (Attr->getInterrupt()) {
5974     case MipsInterruptAttr::eic:     Kind = "eic"; break;
5975     case MipsInterruptAttr::sw0:     Kind = "sw0"; break;
5976     case MipsInterruptAttr::sw1:     Kind = "sw1"; break;
5977     case MipsInterruptAttr::hw0:     Kind = "hw0"; break;
5978     case MipsInterruptAttr::hw1:     Kind = "hw1"; break;
5979     case MipsInterruptAttr::hw2:     Kind = "hw2"; break;
5980     case MipsInterruptAttr::hw3:     Kind = "hw3"; break;
5981     case MipsInterruptAttr::hw4:     Kind = "hw4"; break;
5982     case MipsInterruptAttr::hw5:     Kind = "hw5"; break;
5983     }
5984 
5985     Fn->addFnAttr("interrupt", Kind);
5986 
5987   }
5988 
5989   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
5990                                llvm::Value *Address) const override;
5991 
getSizeOfUnwindException() const5992   unsigned getSizeOfUnwindException() const override {
5993     return SizeOfUnwindException;
5994   }
5995 };
5996 }
5997 
CoerceToIntArgs(uint64_t TySize,SmallVectorImpl<llvm::Type * > & ArgList) const5998 void MipsABIInfo::CoerceToIntArgs(
5999     uint64_t TySize, SmallVectorImpl<llvm::Type *> &ArgList) const {
6000   llvm::IntegerType *IntTy =
6001     llvm::IntegerType::get(getVMContext(), MinABIStackAlignInBytes * 8);
6002 
6003   // Add (TySize / MinABIStackAlignInBytes) args of IntTy.
6004   for (unsigned N = TySize / (MinABIStackAlignInBytes * 8); N; --N)
6005     ArgList.push_back(IntTy);
6006 
6007   // If necessary, add one more integer type to ArgList.
6008   unsigned R = TySize % (MinABIStackAlignInBytes * 8);
6009 
6010   if (R)
6011     ArgList.push_back(llvm::IntegerType::get(getVMContext(), R));
6012 }
6013 
6014 // In N32/64, an aligned double precision floating point field is passed in
6015 // a register.
HandleAggregates(QualType Ty,uint64_t TySize) const6016 llvm::Type* MipsABIInfo::HandleAggregates(QualType Ty, uint64_t TySize) const {
6017   SmallVector<llvm::Type*, 8> ArgList, IntArgList;
6018 
6019   if (IsO32) {
6020     CoerceToIntArgs(TySize, ArgList);
6021     return llvm::StructType::get(getVMContext(), ArgList);
6022   }
6023 
6024   if (Ty->isComplexType())
6025     return CGT.ConvertType(Ty);
6026 
6027   const RecordType *RT = Ty->getAs<RecordType>();
6028 
6029   // Unions/vectors are passed in integer registers.
6030   if (!RT || !RT->isStructureOrClassType()) {
6031     CoerceToIntArgs(TySize, ArgList);
6032     return llvm::StructType::get(getVMContext(), ArgList);
6033   }
6034 
6035   const RecordDecl *RD = RT->getDecl();
6036   const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
6037   assert(!(TySize % 8) && "Size of structure must be multiple of 8.");
6038 
6039   uint64_t LastOffset = 0;
6040   unsigned idx = 0;
6041   llvm::IntegerType *I64 = llvm::IntegerType::get(getVMContext(), 64);
6042 
6043   // Iterate over fields in the struct/class and check if there are any aligned
6044   // double fields.
6045   for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
6046        i != e; ++i, ++idx) {
6047     const QualType Ty = i->getType();
6048     const BuiltinType *BT = Ty->getAs<BuiltinType>();
6049 
6050     if (!BT || BT->getKind() != BuiltinType::Double)
6051       continue;
6052 
6053     uint64_t Offset = Layout.getFieldOffset(idx);
6054     if (Offset % 64) // Ignore doubles that are not aligned.
6055       continue;
6056 
6057     // Add ((Offset - LastOffset) / 64) args of type i64.
6058     for (unsigned j = (Offset - LastOffset) / 64; j > 0; --j)
6059       ArgList.push_back(I64);
6060 
6061     // Add double type.
6062     ArgList.push_back(llvm::Type::getDoubleTy(getVMContext()));
6063     LastOffset = Offset + 64;
6064   }
6065 
6066   CoerceToIntArgs(TySize - LastOffset, IntArgList);
6067   ArgList.append(IntArgList.begin(), IntArgList.end());
6068 
6069   return llvm::StructType::get(getVMContext(), ArgList);
6070 }
6071 
getPaddingType(uint64_t OrigOffset,uint64_t Offset) const6072 llvm::Type *MipsABIInfo::getPaddingType(uint64_t OrigOffset,
6073                                         uint64_t Offset) const {
6074   if (OrigOffset + MinABIStackAlignInBytes > Offset)
6075     return nullptr;
6076 
6077   return llvm::IntegerType::get(getVMContext(), (Offset - OrigOffset) * 8);
6078 }
6079 
6080 ABIArgInfo
classifyArgumentType(QualType Ty,uint64_t & Offset) const6081 MipsABIInfo::classifyArgumentType(QualType Ty, uint64_t &Offset) const {
6082   Ty = useFirstFieldIfTransparentUnion(Ty);
6083 
6084   uint64_t OrigOffset = Offset;
6085   uint64_t TySize = getContext().getTypeSize(Ty);
6086   uint64_t Align = getContext().getTypeAlign(Ty) / 8;
6087 
6088   Align = std::min(std::max(Align, (uint64_t)MinABIStackAlignInBytes),
6089                    (uint64_t)StackAlignInBytes);
6090   unsigned CurrOffset = llvm::RoundUpToAlignment(Offset, Align);
6091   Offset = CurrOffset + llvm::RoundUpToAlignment(TySize, Align * 8) / 8;
6092 
6093   if (isAggregateTypeForABI(Ty) || Ty->isVectorType()) {
6094     // Ignore empty aggregates.
6095     if (TySize == 0)
6096       return ABIArgInfo::getIgnore();
6097 
6098     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
6099       Offset = OrigOffset + MinABIStackAlignInBytes;
6100       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
6101     }
6102 
6103     // If we have reached here, aggregates are passed directly by coercing to
6104     // another structure type. Padding is inserted if the offset of the
6105     // aggregate is unaligned.
6106     ABIArgInfo ArgInfo =
6107         ABIArgInfo::getDirect(HandleAggregates(Ty, TySize), 0,
6108                               getPaddingType(OrigOffset, CurrOffset));
6109     ArgInfo.setInReg(true);
6110     return ArgInfo;
6111   }
6112 
6113   // Treat an enum type as its underlying type.
6114   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
6115     Ty = EnumTy->getDecl()->getIntegerType();
6116 
6117   // All integral types are promoted to the GPR width.
6118   if (Ty->isIntegralOrEnumerationType())
6119     return ABIArgInfo::getExtend();
6120 
6121   return ABIArgInfo::getDirect(
6122       nullptr, 0, IsO32 ? nullptr : getPaddingType(OrigOffset, CurrOffset));
6123 }
6124 
6125 llvm::Type*
returnAggregateInRegs(QualType RetTy,uint64_t Size) const6126 MipsABIInfo::returnAggregateInRegs(QualType RetTy, uint64_t Size) const {
6127   const RecordType *RT = RetTy->getAs<RecordType>();
6128   SmallVector<llvm::Type*, 8> RTList;
6129 
6130   if (RT && RT->isStructureOrClassType()) {
6131     const RecordDecl *RD = RT->getDecl();
6132     const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
6133     unsigned FieldCnt = Layout.getFieldCount();
6134 
6135     // N32/64 returns struct/classes in floating point registers if the
6136     // following conditions are met:
6137     // 1. The size of the struct/class is no larger than 128-bit.
6138     // 2. The struct/class has one or two fields all of which are floating
6139     //    point types.
6140     // 3. The offset of the first field is zero (this follows what gcc does).
6141     //
6142     // Any other composite results are returned in integer registers.
6143     //
6144     if (FieldCnt && (FieldCnt <= 2) && !Layout.getFieldOffset(0)) {
6145       RecordDecl::field_iterator b = RD->field_begin(), e = RD->field_end();
6146       for (; b != e; ++b) {
6147         const BuiltinType *BT = b->getType()->getAs<BuiltinType>();
6148 
6149         if (!BT || !BT->isFloatingPoint())
6150           break;
6151 
6152         RTList.push_back(CGT.ConvertType(b->getType()));
6153       }
6154 
6155       if (b == e)
6156         return llvm::StructType::get(getVMContext(), RTList,
6157                                      RD->hasAttr<PackedAttr>());
6158 
6159       RTList.clear();
6160     }
6161   }
6162 
6163   CoerceToIntArgs(Size, RTList);
6164   return llvm::StructType::get(getVMContext(), RTList);
6165 }
6166 
classifyReturnType(QualType RetTy) const6167 ABIArgInfo MipsABIInfo::classifyReturnType(QualType RetTy) const {
6168   uint64_t Size = getContext().getTypeSize(RetTy);
6169 
6170   if (RetTy->isVoidType())
6171     return ABIArgInfo::getIgnore();
6172 
6173   // O32 doesn't treat zero-sized structs differently from other structs.
6174   // However, N32/N64 ignores zero sized return values.
6175   if (!IsO32 && Size == 0)
6176     return ABIArgInfo::getIgnore();
6177 
6178   if (isAggregateTypeForABI(RetTy) || RetTy->isVectorType()) {
6179     if (Size <= 128) {
6180       if (RetTy->isAnyComplexType())
6181         return ABIArgInfo::getDirect();
6182 
6183       // O32 returns integer vectors in registers and N32/N64 returns all small
6184       // aggregates in registers.
6185       if (!IsO32 ||
6186           (RetTy->isVectorType() && !RetTy->hasFloatingRepresentation())) {
6187         ABIArgInfo ArgInfo =
6188             ABIArgInfo::getDirect(returnAggregateInRegs(RetTy, Size));
6189         ArgInfo.setInReg(true);
6190         return ArgInfo;
6191       }
6192     }
6193 
6194     return getNaturalAlignIndirect(RetTy);
6195   }
6196 
6197   // Treat an enum type as its underlying type.
6198   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
6199     RetTy = EnumTy->getDecl()->getIntegerType();
6200 
6201   return (RetTy->isPromotableIntegerType() ?
6202           ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
6203 }
6204 
computeInfo(CGFunctionInfo & FI) const6205 void MipsABIInfo::computeInfo(CGFunctionInfo &FI) const {
6206   ABIArgInfo &RetInfo = FI.getReturnInfo();
6207   if (!getCXXABI().classifyReturnType(FI))
6208     RetInfo = classifyReturnType(FI.getReturnType());
6209 
6210   // Check if a pointer to an aggregate is passed as a hidden argument.
6211   uint64_t Offset = RetInfo.isIndirect() ? MinABIStackAlignInBytes : 0;
6212 
6213   for (auto &I : FI.arguments())
6214     I.info = classifyArgumentType(I.type, Offset);
6215 }
6216 
EmitVAArg(CodeGenFunction & CGF,Address VAListAddr,QualType OrigTy) const6217 Address MipsABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6218                                QualType OrigTy) const {
6219   QualType Ty = OrigTy;
6220 
6221   // Integer arguments are promoted to 32-bit on O32 and 64-bit on N32/N64.
6222   // Pointers are also promoted in the same way but this only matters for N32.
6223   unsigned SlotSizeInBits = IsO32 ? 32 : 64;
6224   unsigned PtrWidth = getTarget().getPointerWidth(0);
6225   bool DidPromote = false;
6226   if ((Ty->isIntegerType() &&
6227           getContext().getIntWidth(Ty) < SlotSizeInBits) ||
6228       (Ty->isPointerType() && PtrWidth < SlotSizeInBits)) {
6229     DidPromote = true;
6230     Ty = getContext().getIntTypeForBitwidth(SlotSizeInBits,
6231                                             Ty->isSignedIntegerType());
6232   }
6233 
6234   auto TyInfo = getContext().getTypeInfoInChars(Ty);
6235 
6236   // The alignment of things in the argument area is never larger than
6237   // StackAlignInBytes.
6238   TyInfo.second =
6239     std::min(TyInfo.second, CharUnits::fromQuantity(StackAlignInBytes));
6240 
6241   // MinABIStackAlignInBytes is the size of argument slots on the stack.
6242   CharUnits ArgSlotSize = CharUnits::fromQuantity(MinABIStackAlignInBytes);
6243 
6244   Address Addr = emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false,
6245                           TyInfo, ArgSlotSize, /*AllowHigherAlign*/ true);
6246 
6247 
6248   // If there was a promotion, "unpromote" into a temporary.
6249   // TODO: can we just use a pointer into a subset of the original slot?
6250   if (DidPromote) {
6251     Address Temp = CGF.CreateMemTemp(OrigTy, "vaarg.promotion-temp");
6252     llvm::Value *Promoted = CGF.Builder.CreateLoad(Addr);
6253 
6254     // Truncate down to the right width.
6255     llvm::Type *IntTy = (OrigTy->isIntegerType() ? Temp.getElementType()
6256                                                  : CGF.IntPtrTy);
6257     llvm::Value *V = CGF.Builder.CreateTrunc(Promoted, IntTy);
6258     if (OrigTy->isPointerType())
6259       V = CGF.Builder.CreateIntToPtr(V, Temp.getElementType());
6260 
6261     CGF.Builder.CreateStore(V, Temp);
6262     Addr = Temp;
6263   }
6264 
6265   return Addr;
6266 }
6267 
shouldSignExtUnsignedType(QualType Ty) const6268 bool MipsABIInfo::shouldSignExtUnsignedType(QualType Ty) const {
6269   int TySize = getContext().getTypeSize(Ty);
6270 
6271   // MIPS64 ABI requires unsigned 32 bit integers to be sign extended.
6272   if (Ty->isUnsignedIntegerOrEnumerationType() && TySize == 32)
6273     return true;
6274 
6275   return false;
6276 }
6277 
6278 bool
initDwarfEHRegSizeTable(CodeGen::CodeGenFunction & CGF,llvm::Value * Address) const6279 MIPSTargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
6280                                                llvm::Value *Address) const {
6281   // This information comes from gcc's implementation, which seems to
6282   // as canonical as it gets.
6283 
6284   // Everything on MIPS is 4 bytes.  Double-precision FP registers
6285   // are aliased to pairs of single-precision FP registers.
6286   llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
6287 
6288   // 0-31 are the general purpose registers, $0 - $31.
6289   // 32-63 are the floating-point registers, $f0 - $f31.
6290   // 64 and 65 are the multiply/divide registers, $hi and $lo.
6291   // 66 is the (notional, I think) register for signal-handler return.
6292   AssignToArrayRange(CGF.Builder, Address, Four8, 0, 65);
6293 
6294   // 67-74 are the floating-point status registers, $fcc0 - $fcc7.
6295   // They are one bit wide and ignored here.
6296 
6297   // 80-111 are the coprocessor 0 registers, $c0r0 - $c0r31.
6298   // (coprocessor 1 is the FP unit)
6299   // 112-143 are the coprocessor 2 registers, $c2r0 - $c2r31.
6300   // 144-175 are the coprocessor 3 registers, $c3r0 - $c3r31.
6301   // 176-181 are the DSP accumulator registers.
6302   AssignToArrayRange(CGF.Builder, Address, Four8, 80, 181);
6303   return false;
6304 }
6305 
6306 //===----------------------------------------------------------------------===//
6307 // TCE ABI Implementation (see http://tce.cs.tut.fi). Uses mostly the defaults.
6308 // Currently subclassed only to implement custom OpenCL C function attribute
6309 // handling.
6310 //===----------------------------------------------------------------------===//
6311 
6312 namespace {
6313 
6314 class TCETargetCodeGenInfo : public DefaultTargetCodeGenInfo {
6315 public:
TCETargetCodeGenInfo(CodeGenTypes & CGT)6316   TCETargetCodeGenInfo(CodeGenTypes &CGT)
6317     : DefaultTargetCodeGenInfo(CGT) {}
6318 
6319   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
6320                            CodeGen::CodeGenModule &M) const override;
6321 };
6322 
setTargetAttributes(const Decl * D,llvm::GlobalValue * GV,CodeGen::CodeGenModule & M) const6323 void TCETargetCodeGenInfo::setTargetAttributes(
6324     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const {
6325   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
6326   if (!FD) return;
6327 
6328   llvm::Function *F = cast<llvm::Function>(GV);
6329 
6330   if (M.getLangOpts().OpenCL) {
6331     if (FD->hasAttr<OpenCLKernelAttr>()) {
6332       // OpenCL C Kernel functions are not subject to inlining
6333       F->addFnAttr(llvm::Attribute::NoInline);
6334       const ReqdWorkGroupSizeAttr *Attr = FD->getAttr<ReqdWorkGroupSizeAttr>();
6335       if (Attr) {
6336         // Convert the reqd_work_group_size() attributes to metadata.
6337         llvm::LLVMContext &Context = F->getContext();
6338         llvm::NamedMDNode *OpenCLMetadata =
6339             M.getModule().getOrInsertNamedMetadata(
6340                 "opencl.kernel_wg_size_info");
6341 
6342         SmallVector<llvm::Metadata *, 5> Operands;
6343         Operands.push_back(llvm::ConstantAsMetadata::get(F));
6344 
6345         Operands.push_back(
6346             llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue(
6347                 M.Int32Ty, llvm::APInt(32, Attr->getXDim()))));
6348         Operands.push_back(
6349             llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue(
6350                 M.Int32Ty, llvm::APInt(32, Attr->getYDim()))));
6351         Operands.push_back(
6352             llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue(
6353                 M.Int32Ty, llvm::APInt(32, Attr->getZDim()))));
6354 
6355         // Add a boolean constant operand for "required" (true) or "hint"
6356         // (false) for implementing the work_group_size_hint attr later.
6357         // Currently always true as the hint is not yet implemented.
6358         Operands.push_back(
6359             llvm::ConstantAsMetadata::get(llvm::ConstantInt::getTrue(Context)));
6360         OpenCLMetadata->addOperand(llvm::MDNode::get(Context, Operands));
6361       }
6362     }
6363   }
6364 }
6365 
6366 }
6367 
6368 //===----------------------------------------------------------------------===//
6369 // Hexagon ABI Implementation
6370 //===----------------------------------------------------------------------===//
6371 
6372 namespace {
6373 
6374 class HexagonABIInfo : public ABIInfo {
6375 
6376 
6377 public:
HexagonABIInfo(CodeGenTypes & CGT)6378   HexagonABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
6379 
6380 private:
6381 
6382   ABIArgInfo classifyReturnType(QualType RetTy) const;
6383   ABIArgInfo classifyArgumentType(QualType RetTy) const;
6384 
6385   void computeInfo(CGFunctionInfo &FI) const override;
6386 
6387   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6388                     QualType Ty) const override;
6389 };
6390 
6391 class HexagonTargetCodeGenInfo : public TargetCodeGenInfo {
6392 public:
HexagonTargetCodeGenInfo(CodeGenTypes & CGT)6393   HexagonTargetCodeGenInfo(CodeGenTypes &CGT)
6394     :TargetCodeGenInfo(new HexagonABIInfo(CGT)) {}
6395 
getDwarfEHStackPointer(CodeGen::CodeGenModule & M) const6396   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
6397     return 29;
6398   }
6399 };
6400 
6401 }
6402 
computeInfo(CGFunctionInfo & FI) const6403 void HexagonABIInfo::computeInfo(CGFunctionInfo &FI) const {
6404   if (!getCXXABI().classifyReturnType(FI))
6405     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
6406   for (auto &I : FI.arguments())
6407     I.info = classifyArgumentType(I.type);
6408 }
6409 
classifyArgumentType(QualType Ty) const6410 ABIArgInfo HexagonABIInfo::classifyArgumentType(QualType Ty) const {
6411   if (!isAggregateTypeForABI(Ty)) {
6412     // Treat an enum type as its underlying type.
6413     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
6414       Ty = EnumTy->getDecl()->getIntegerType();
6415 
6416     return (Ty->isPromotableIntegerType() ?
6417             ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
6418   }
6419 
6420   // Ignore empty records.
6421   if (isEmptyRecord(getContext(), Ty, true))
6422     return ABIArgInfo::getIgnore();
6423 
6424   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
6425     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
6426 
6427   uint64_t Size = getContext().getTypeSize(Ty);
6428   if (Size > 64)
6429     return getNaturalAlignIndirect(Ty, /*ByVal=*/true);
6430     // Pass in the smallest viable integer type.
6431   else if (Size > 32)
6432       return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext()));
6433   else if (Size > 16)
6434       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
6435   else if (Size > 8)
6436       return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
6437   else
6438       return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
6439 }
6440 
classifyReturnType(QualType RetTy) const6441 ABIArgInfo HexagonABIInfo::classifyReturnType(QualType RetTy) const {
6442   if (RetTy->isVoidType())
6443     return ABIArgInfo::getIgnore();
6444 
6445   // Large vector types should be returned via memory.
6446   if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 64)
6447     return getNaturalAlignIndirect(RetTy);
6448 
6449   if (!isAggregateTypeForABI(RetTy)) {
6450     // Treat an enum type as its underlying type.
6451     if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
6452       RetTy = EnumTy->getDecl()->getIntegerType();
6453 
6454     return (RetTy->isPromotableIntegerType() ?
6455             ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
6456   }
6457 
6458   if (isEmptyRecord(getContext(), RetTy, true))
6459     return ABIArgInfo::getIgnore();
6460 
6461   // Aggregates <= 8 bytes are returned in r0; other aggregates
6462   // are returned indirectly.
6463   uint64_t Size = getContext().getTypeSize(RetTy);
6464   if (Size <= 64) {
6465     // Return in the smallest viable integer type.
6466     if (Size <= 8)
6467       return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
6468     if (Size <= 16)
6469       return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
6470     if (Size <= 32)
6471       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
6472     return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext()));
6473   }
6474 
6475   return getNaturalAlignIndirect(RetTy, /*ByVal=*/true);
6476 }
6477 
EmitVAArg(CodeGenFunction & CGF,Address VAListAddr,QualType Ty) const6478 Address HexagonABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6479                                   QualType Ty) const {
6480   // FIXME: Someone needs to audit that this handle alignment correctly.
6481   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false,
6482                           getContext().getTypeInfoInChars(Ty),
6483                           CharUnits::fromQuantity(4),
6484                           /*AllowHigherAlign*/ true);
6485 }
6486 
6487 //===----------------------------------------------------------------------===//
6488 // AMDGPU ABI Implementation
6489 //===----------------------------------------------------------------------===//
6490 
6491 namespace {
6492 
6493 class AMDGPUTargetCodeGenInfo : public TargetCodeGenInfo {
6494 public:
AMDGPUTargetCodeGenInfo(CodeGenTypes & CGT)6495   AMDGPUTargetCodeGenInfo(CodeGenTypes &CGT)
6496     : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
6497   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
6498                            CodeGen::CodeGenModule &M) const override;
6499 };
6500 
6501 }
6502 
setTargetAttributes(const Decl * D,llvm::GlobalValue * GV,CodeGen::CodeGenModule & M) const6503 void AMDGPUTargetCodeGenInfo::setTargetAttributes(
6504   const Decl *D,
6505   llvm::GlobalValue *GV,
6506   CodeGen::CodeGenModule &M) const {
6507   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
6508   if (!FD)
6509     return;
6510 
6511   if (const auto Attr = FD->getAttr<AMDGPUNumVGPRAttr>()) {
6512     llvm::Function *F = cast<llvm::Function>(GV);
6513     uint32_t NumVGPR = Attr->getNumVGPR();
6514     if (NumVGPR != 0)
6515       F->addFnAttr("amdgpu_num_vgpr", llvm::utostr(NumVGPR));
6516   }
6517 
6518   if (const auto Attr = FD->getAttr<AMDGPUNumSGPRAttr>()) {
6519     llvm::Function *F = cast<llvm::Function>(GV);
6520     unsigned NumSGPR = Attr->getNumSGPR();
6521     if (NumSGPR != 0)
6522       F->addFnAttr("amdgpu_num_sgpr", llvm::utostr(NumSGPR));
6523   }
6524 }
6525 
6526 
6527 //===----------------------------------------------------------------------===//
6528 // SPARC v9 ABI Implementation.
6529 // Based on the SPARC Compliance Definition version 2.4.1.
6530 //
6531 // Function arguments a mapped to a nominal "parameter array" and promoted to
6532 // registers depending on their type. Each argument occupies 8 or 16 bytes in
6533 // the array, structs larger than 16 bytes are passed indirectly.
6534 //
6535 // One case requires special care:
6536 //
6537 //   struct mixed {
6538 //     int i;
6539 //     float f;
6540 //   };
6541 //
6542 // When a struct mixed is passed by value, it only occupies 8 bytes in the
6543 // parameter array, but the int is passed in an integer register, and the float
6544 // is passed in a floating point register. This is represented as two arguments
6545 // with the LLVM IR inreg attribute:
6546 //
6547 //   declare void f(i32 inreg %i, float inreg %f)
6548 //
6549 // The code generator will only allocate 4 bytes from the parameter array for
6550 // the inreg arguments. All other arguments are allocated a multiple of 8
6551 // bytes.
6552 //
6553 namespace {
6554 class SparcV9ABIInfo : public ABIInfo {
6555 public:
SparcV9ABIInfo(CodeGenTypes & CGT)6556   SparcV9ABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
6557 
6558 private:
6559   ABIArgInfo classifyType(QualType RetTy, unsigned SizeLimit) const;
6560   void computeInfo(CGFunctionInfo &FI) const override;
6561   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6562                     QualType Ty) const override;
6563 
6564   // Coercion type builder for structs passed in registers. The coercion type
6565   // serves two purposes:
6566   //
6567   // 1. Pad structs to a multiple of 64 bits, so they are passed 'left-aligned'
6568   //    in registers.
6569   // 2. Expose aligned floating point elements as first-level elements, so the
6570   //    code generator knows to pass them in floating point registers.
6571   //
6572   // We also compute the InReg flag which indicates that the struct contains
6573   // aligned 32-bit floats.
6574   //
6575   struct CoerceBuilder {
6576     llvm::LLVMContext &Context;
6577     const llvm::DataLayout &DL;
6578     SmallVector<llvm::Type*, 8> Elems;
6579     uint64_t Size;
6580     bool InReg;
6581 
CoerceBuilder__anon2cc540940e11::SparcV9ABIInfo::CoerceBuilder6582     CoerceBuilder(llvm::LLVMContext &c, const llvm::DataLayout &dl)
6583       : Context(c), DL(dl), Size(0), InReg(false) {}
6584 
6585     // Pad Elems with integers until Size is ToSize.
pad__anon2cc540940e11::SparcV9ABIInfo::CoerceBuilder6586     void pad(uint64_t ToSize) {
6587       assert(ToSize >= Size && "Cannot remove elements");
6588       if (ToSize == Size)
6589         return;
6590 
6591       // Finish the current 64-bit word.
6592       uint64_t Aligned = llvm::RoundUpToAlignment(Size, 64);
6593       if (Aligned > Size && Aligned <= ToSize) {
6594         Elems.push_back(llvm::IntegerType::get(Context, Aligned - Size));
6595         Size = Aligned;
6596       }
6597 
6598       // Add whole 64-bit words.
6599       while (Size + 64 <= ToSize) {
6600         Elems.push_back(llvm::Type::getInt64Ty(Context));
6601         Size += 64;
6602       }
6603 
6604       // Final in-word padding.
6605       if (Size < ToSize) {
6606         Elems.push_back(llvm::IntegerType::get(Context, ToSize - Size));
6607         Size = ToSize;
6608       }
6609     }
6610 
6611     // Add a floating point element at Offset.
addFloat__anon2cc540940e11::SparcV9ABIInfo::CoerceBuilder6612     void addFloat(uint64_t Offset, llvm::Type *Ty, unsigned Bits) {
6613       // Unaligned floats are treated as integers.
6614       if (Offset % Bits)
6615         return;
6616       // The InReg flag is only required if there are any floats < 64 bits.
6617       if (Bits < 64)
6618         InReg = true;
6619       pad(Offset);
6620       Elems.push_back(Ty);
6621       Size = Offset + Bits;
6622     }
6623 
6624     // Add a struct type to the coercion type, starting at Offset (in bits).
addStruct__anon2cc540940e11::SparcV9ABIInfo::CoerceBuilder6625     void addStruct(uint64_t Offset, llvm::StructType *StrTy) {
6626       const llvm::StructLayout *Layout = DL.getStructLayout(StrTy);
6627       for (unsigned i = 0, e = StrTy->getNumElements(); i != e; ++i) {
6628         llvm::Type *ElemTy = StrTy->getElementType(i);
6629         uint64_t ElemOffset = Offset + Layout->getElementOffsetInBits(i);
6630         switch (ElemTy->getTypeID()) {
6631         case llvm::Type::StructTyID:
6632           addStruct(ElemOffset, cast<llvm::StructType>(ElemTy));
6633           break;
6634         case llvm::Type::FloatTyID:
6635           addFloat(ElemOffset, ElemTy, 32);
6636           break;
6637         case llvm::Type::DoubleTyID:
6638           addFloat(ElemOffset, ElemTy, 64);
6639           break;
6640         case llvm::Type::FP128TyID:
6641           addFloat(ElemOffset, ElemTy, 128);
6642           break;
6643         case llvm::Type::PointerTyID:
6644           if (ElemOffset % 64 == 0) {
6645             pad(ElemOffset);
6646             Elems.push_back(ElemTy);
6647             Size += 64;
6648           }
6649           break;
6650         default:
6651           break;
6652         }
6653       }
6654     }
6655 
6656     // Check if Ty is a usable substitute for the coercion type.
isUsableType__anon2cc540940e11::SparcV9ABIInfo::CoerceBuilder6657     bool isUsableType(llvm::StructType *Ty) const {
6658       return llvm::makeArrayRef(Elems) == Ty->elements();
6659     }
6660 
6661     // Get the coercion type as a literal struct type.
getType__anon2cc540940e11::SparcV9ABIInfo::CoerceBuilder6662     llvm::Type *getType() const {
6663       if (Elems.size() == 1)
6664         return Elems.front();
6665       else
6666         return llvm::StructType::get(Context, Elems);
6667     }
6668   };
6669 };
6670 } // end anonymous namespace
6671 
6672 ABIArgInfo
classifyType(QualType Ty,unsigned SizeLimit) const6673 SparcV9ABIInfo::classifyType(QualType Ty, unsigned SizeLimit) const {
6674   if (Ty->isVoidType())
6675     return ABIArgInfo::getIgnore();
6676 
6677   uint64_t Size = getContext().getTypeSize(Ty);
6678 
6679   // Anything too big to fit in registers is passed with an explicit indirect
6680   // pointer / sret pointer.
6681   if (Size > SizeLimit)
6682     return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
6683 
6684   // Treat an enum type as its underlying type.
6685   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
6686     Ty = EnumTy->getDecl()->getIntegerType();
6687 
6688   // Integer types smaller than a register are extended.
6689   if (Size < 64 && Ty->isIntegerType())
6690     return ABIArgInfo::getExtend();
6691 
6692   // Other non-aggregates go in registers.
6693   if (!isAggregateTypeForABI(Ty))
6694     return ABIArgInfo::getDirect();
6695 
6696   // If a C++ object has either a non-trivial copy constructor or a non-trivial
6697   // destructor, it is passed with an explicit indirect pointer / sret pointer.
6698   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
6699     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
6700 
6701   // This is a small aggregate type that should be passed in registers.
6702   // Build a coercion type from the LLVM struct type.
6703   llvm::StructType *StrTy = dyn_cast<llvm::StructType>(CGT.ConvertType(Ty));
6704   if (!StrTy)
6705     return ABIArgInfo::getDirect();
6706 
6707   CoerceBuilder CB(getVMContext(), getDataLayout());
6708   CB.addStruct(0, StrTy);
6709   CB.pad(llvm::RoundUpToAlignment(CB.DL.getTypeSizeInBits(StrTy), 64));
6710 
6711   // Try to use the original type for coercion.
6712   llvm::Type *CoerceTy = CB.isUsableType(StrTy) ? StrTy : CB.getType();
6713 
6714   if (CB.InReg)
6715     return ABIArgInfo::getDirectInReg(CoerceTy);
6716   else
6717     return ABIArgInfo::getDirect(CoerceTy);
6718 }
6719 
EmitVAArg(CodeGenFunction & CGF,Address VAListAddr,QualType Ty) const6720 Address SparcV9ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6721                                   QualType Ty) const {
6722   ABIArgInfo AI = classifyType(Ty, 16 * 8);
6723   llvm::Type *ArgTy = CGT.ConvertType(Ty);
6724   if (AI.canHaveCoerceToType() && !AI.getCoerceToType())
6725     AI.setCoerceToType(ArgTy);
6726 
6727   CharUnits SlotSize = CharUnits::fromQuantity(8);
6728 
6729   CGBuilderTy &Builder = CGF.Builder;
6730   Address Addr(Builder.CreateLoad(VAListAddr, "ap.cur"), SlotSize);
6731   llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy);
6732 
6733   auto TypeInfo = getContext().getTypeInfoInChars(Ty);
6734 
6735   Address ArgAddr = Address::invalid();
6736   CharUnits Stride;
6737   switch (AI.getKind()) {
6738   case ABIArgInfo::Expand:
6739   case ABIArgInfo::InAlloca:
6740     llvm_unreachable("Unsupported ABI kind for va_arg");
6741 
6742   case ABIArgInfo::Extend: {
6743     Stride = SlotSize;
6744     CharUnits Offset = SlotSize - TypeInfo.first;
6745     ArgAddr = Builder.CreateConstInBoundsByteGEP(Addr, Offset, "extend");
6746     break;
6747   }
6748 
6749   case ABIArgInfo::Direct: {
6750     auto AllocSize = getDataLayout().getTypeAllocSize(AI.getCoerceToType());
6751     Stride = CharUnits::fromQuantity(AllocSize).RoundUpToAlignment(SlotSize);
6752     ArgAddr = Addr;
6753     break;
6754   }
6755 
6756   case ABIArgInfo::Indirect:
6757     Stride = SlotSize;
6758     ArgAddr = Builder.CreateElementBitCast(Addr, ArgPtrTy, "indirect");
6759     ArgAddr = Address(Builder.CreateLoad(ArgAddr, "indirect.arg"),
6760                       TypeInfo.second);
6761     break;
6762 
6763   case ABIArgInfo::Ignore:
6764     return Address(llvm::UndefValue::get(ArgPtrTy), TypeInfo.second);
6765   }
6766 
6767   // Update VAList.
6768   llvm::Value *NextPtr =
6769     Builder.CreateConstInBoundsByteGEP(Addr.getPointer(), Stride, "ap.next");
6770   Builder.CreateStore(NextPtr, VAListAddr);
6771 
6772   return Builder.CreateBitCast(ArgAddr, ArgPtrTy, "arg.addr");
6773 }
6774 
computeInfo(CGFunctionInfo & FI) const6775 void SparcV9ABIInfo::computeInfo(CGFunctionInfo &FI) const {
6776   FI.getReturnInfo() = classifyType(FI.getReturnType(), 32 * 8);
6777   for (auto &I : FI.arguments())
6778     I.info = classifyType(I.type, 16 * 8);
6779 }
6780 
6781 namespace {
6782 class SparcV9TargetCodeGenInfo : public TargetCodeGenInfo {
6783 public:
SparcV9TargetCodeGenInfo(CodeGenTypes & CGT)6784   SparcV9TargetCodeGenInfo(CodeGenTypes &CGT)
6785     : TargetCodeGenInfo(new SparcV9ABIInfo(CGT)) {}
6786 
getDwarfEHStackPointer(CodeGen::CodeGenModule & M) const6787   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
6788     return 14;
6789   }
6790 
6791   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
6792                                llvm::Value *Address) const override;
6793 };
6794 } // end anonymous namespace
6795 
6796 bool
initDwarfEHRegSizeTable(CodeGen::CodeGenFunction & CGF,llvm::Value * Address) const6797 SparcV9TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
6798                                                 llvm::Value *Address) const {
6799   // This is calculated from the LLVM and GCC tables and verified
6800   // against gcc output.  AFAIK all ABIs use the same encoding.
6801 
6802   CodeGen::CGBuilderTy &Builder = CGF.Builder;
6803 
6804   llvm::IntegerType *i8 = CGF.Int8Ty;
6805   llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
6806   llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
6807 
6808   // 0-31: the 8-byte general-purpose registers
6809   AssignToArrayRange(Builder, Address, Eight8, 0, 31);
6810 
6811   // 32-63: f0-31, the 4-byte floating-point registers
6812   AssignToArrayRange(Builder, Address, Four8, 32, 63);
6813 
6814   //   Y   = 64
6815   //   PSR = 65
6816   //   WIM = 66
6817   //   TBR = 67
6818   //   PC  = 68
6819   //   NPC = 69
6820   //   FSR = 70
6821   //   CSR = 71
6822   AssignToArrayRange(Builder, Address, Eight8, 64, 71);
6823 
6824   // 72-87: d0-15, the 8-byte floating-point registers
6825   AssignToArrayRange(Builder, Address, Eight8, 72, 87);
6826 
6827   return false;
6828 }
6829 
6830 
6831 //===----------------------------------------------------------------------===//
6832 // XCore ABI Implementation
6833 //===----------------------------------------------------------------------===//
6834 
6835 namespace {
6836 
6837 /// A SmallStringEnc instance is used to build up the TypeString by passing
6838 /// it by reference between functions that append to it.
6839 typedef llvm::SmallString<128> SmallStringEnc;
6840 
6841 /// TypeStringCache caches the meta encodings of Types.
6842 ///
6843 /// The reason for caching TypeStrings is two fold:
6844 ///   1. To cache a type's encoding for later uses;
6845 ///   2. As a means to break recursive member type inclusion.
6846 ///
6847 /// A cache Entry can have a Status of:
6848 ///   NonRecursive:   The type encoding is not recursive;
6849 ///   Recursive:      The type encoding is recursive;
6850 ///   Incomplete:     An incomplete TypeString;
6851 ///   IncompleteUsed: An incomplete TypeString that has been used in a
6852 ///                   Recursive type encoding.
6853 ///
6854 /// A NonRecursive entry will have all of its sub-members expanded as fully
6855 /// as possible. Whilst it may contain types which are recursive, the type
6856 /// itself is not recursive and thus its encoding may be safely used whenever
6857 /// the type is encountered.
6858 ///
6859 /// A Recursive entry will have all of its sub-members expanded as fully as
6860 /// possible. The type itself is recursive and it may contain other types which
6861 /// are recursive. The Recursive encoding must not be used during the expansion
6862 /// of a recursive type's recursive branch. For simplicity the code uses
6863 /// IncompleteCount to reject all usage of Recursive encodings for member types.
6864 ///
6865 /// An Incomplete entry is always a RecordType and only encodes its
6866 /// identifier e.g. "s(S){}". Incomplete 'StubEnc' entries are ephemeral and
6867 /// are placed into the cache during type expansion as a means to identify and
6868 /// handle recursive inclusion of types as sub-members. If there is recursion
6869 /// the entry becomes IncompleteUsed.
6870 ///
6871 /// During the expansion of a RecordType's members:
6872 ///
6873 ///   If the cache contains a NonRecursive encoding for the member type, the
6874 ///   cached encoding is used;
6875 ///
6876 ///   If the cache contains a Recursive encoding for the member type, the
6877 ///   cached encoding is 'Swapped' out, as it may be incorrect, and...
6878 ///
6879 ///   If the member is a RecordType, an Incomplete encoding is placed into the
6880 ///   cache to break potential recursive inclusion of itself as a sub-member;
6881 ///
6882 ///   Once a member RecordType has been expanded, its temporary incomplete
6883 ///   entry is removed from the cache. If a Recursive encoding was swapped out
6884 ///   it is swapped back in;
6885 ///
6886 ///   If an incomplete entry is used to expand a sub-member, the incomplete
6887 ///   entry is marked as IncompleteUsed. The cache keeps count of how many
6888 ///   IncompleteUsed entries it currently contains in IncompleteUsedCount;
6889 ///
6890 ///   If a member's encoding is found to be a NonRecursive or Recursive viz:
6891 ///   IncompleteUsedCount==0, the member's encoding is added to the cache.
6892 ///   Else the member is part of a recursive type and thus the recursion has
6893 ///   been exited too soon for the encoding to be correct for the member.
6894 ///
6895 class TypeStringCache {
6896   enum Status {NonRecursive, Recursive, Incomplete, IncompleteUsed};
6897   struct Entry {
6898     std::string Str;     // The encoded TypeString for the type.
6899     enum Status State;   // Information about the encoding in 'Str'.
6900     std::string Swapped; // A temporary place holder for a Recursive encoding
6901                          // during the expansion of RecordType's members.
6902   };
6903   std::map<const IdentifierInfo *, struct Entry> Map;
6904   unsigned IncompleteCount;     // Number of Incomplete entries in the Map.
6905   unsigned IncompleteUsedCount; // Number of IncompleteUsed entries in the Map.
6906 public:
TypeStringCache()6907   TypeStringCache() : IncompleteCount(0), IncompleteUsedCount(0) {}
6908   void addIncomplete(const IdentifierInfo *ID, std::string StubEnc);
6909   bool removeIncomplete(const IdentifierInfo *ID);
6910   void addIfComplete(const IdentifierInfo *ID, StringRef Str,
6911                      bool IsRecursive);
6912   StringRef lookupStr(const IdentifierInfo *ID);
6913 };
6914 
6915 /// TypeString encodings for enum & union fields must be order.
6916 /// FieldEncoding is a helper for this ordering process.
6917 class FieldEncoding {
6918   bool HasName;
6919   std::string Enc;
6920 public:
FieldEncoding(bool b,SmallStringEnc & e)6921   FieldEncoding(bool b, SmallStringEnc &e) : HasName(b), Enc(e.c_str()) {}
str()6922   StringRef str() {return Enc.c_str();}
operator <(const FieldEncoding & rhs) const6923   bool operator<(const FieldEncoding &rhs) const {
6924     if (HasName != rhs.HasName) return HasName;
6925     return Enc < rhs.Enc;
6926   }
6927 };
6928 
6929 class XCoreABIInfo : public DefaultABIInfo {
6930 public:
XCoreABIInfo(CodeGen::CodeGenTypes & CGT)6931   XCoreABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
6932   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6933                     QualType Ty) const override;
6934 };
6935 
6936 class XCoreTargetCodeGenInfo : public TargetCodeGenInfo {
6937   mutable TypeStringCache TSC;
6938 public:
XCoreTargetCodeGenInfo(CodeGenTypes & CGT)6939   XCoreTargetCodeGenInfo(CodeGenTypes &CGT)
6940     :TargetCodeGenInfo(new XCoreABIInfo(CGT)) {}
6941   void emitTargetMD(const Decl *D, llvm::GlobalValue *GV,
6942                     CodeGen::CodeGenModule &M) const override;
6943 };
6944 
6945 } // End anonymous namespace.
6946 
EmitVAArg(CodeGenFunction & CGF,Address VAListAddr,QualType Ty) const6947 Address XCoreABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6948                                 QualType Ty) const {
6949   CGBuilderTy &Builder = CGF.Builder;
6950 
6951   // Get the VAList.
6952   CharUnits SlotSize = CharUnits::fromQuantity(4);
6953   Address AP(Builder.CreateLoad(VAListAddr), SlotSize);
6954 
6955   // Handle the argument.
6956   ABIArgInfo AI = classifyArgumentType(Ty);
6957   CharUnits TypeAlign = getContext().getTypeAlignInChars(Ty);
6958   llvm::Type *ArgTy = CGT.ConvertType(Ty);
6959   if (AI.canHaveCoerceToType() && !AI.getCoerceToType())
6960     AI.setCoerceToType(ArgTy);
6961   llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy);
6962 
6963   Address Val = Address::invalid();
6964   CharUnits ArgSize = CharUnits::Zero();
6965   switch (AI.getKind()) {
6966   case ABIArgInfo::Expand:
6967   case ABIArgInfo::InAlloca:
6968     llvm_unreachable("Unsupported ABI kind for va_arg");
6969   case ABIArgInfo::Ignore:
6970     Val = Address(llvm::UndefValue::get(ArgPtrTy), TypeAlign);
6971     ArgSize = CharUnits::Zero();
6972     break;
6973   case ABIArgInfo::Extend:
6974   case ABIArgInfo::Direct:
6975     Val = Builder.CreateBitCast(AP, ArgPtrTy);
6976     ArgSize = CharUnits::fromQuantity(
6977                        getDataLayout().getTypeAllocSize(AI.getCoerceToType()));
6978     ArgSize = ArgSize.RoundUpToAlignment(SlotSize);
6979     break;
6980   case ABIArgInfo::Indirect:
6981     Val = Builder.CreateElementBitCast(AP, ArgPtrTy);
6982     Val = Address(Builder.CreateLoad(Val), TypeAlign);
6983     ArgSize = SlotSize;
6984     break;
6985   }
6986 
6987   // Increment the VAList.
6988   if (!ArgSize.isZero()) {
6989     llvm::Value *APN =
6990       Builder.CreateConstInBoundsByteGEP(AP.getPointer(), ArgSize);
6991     Builder.CreateStore(APN, VAListAddr);
6992   }
6993 
6994   return Val;
6995 }
6996 
6997 /// During the expansion of a RecordType, an incomplete TypeString is placed
6998 /// into the cache as a means to identify and break recursion.
6999 /// If there is a Recursive encoding in the cache, it is swapped out and will
7000 /// be reinserted by removeIncomplete().
7001 /// All other types of encoding should have been used rather than arriving here.
addIncomplete(const IdentifierInfo * ID,std::string StubEnc)7002 void TypeStringCache::addIncomplete(const IdentifierInfo *ID,
7003                                     std::string StubEnc) {
7004   if (!ID)
7005     return;
7006   Entry &E = Map[ID];
7007   assert( (E.Str.empty() || E.State == Recursive) &&
7008          "Incorrectly use of addIncomplete");
7009   assert(!StubEnc.empty() && "Passing an empty string to addIncomplete()");
7010   E.Swapped.swap(E.Str); // swap out the Recursive
7011   E.Str.swap(StubEnc);
7012   E.State = Incomplete;
7013   ++IncompleteCount;
7014 }
7015 
7016 /// Once the RecordType has been expanded, the temporary incomplete TypeString
7017 /// must be removed from the cache.
7018 /// If a Recursive was swapped out by addIncomplete(), it will be replaced.
7019 /// Returns true if the RecordType was defined recursively.
removeIncomplete(const IdentifierInfo * ID)7020 bool TypeStringCache::removeIncomplete(const IdentifierInfo *ID) {
7021   if (!ID)
7022     return false;
7023   auto I = Map.find(ID);
7024   assert(I != Map.end() && "Entry not present");
7025   Entry &E = I->second;
7026   assert( (E.State == Incomplete ||
7027            E.State == IncompleteUsed) &&
7028          "Entry must be an incomplete type");
7029   bool IsRecursive = false;
7030   if (E.State == IncompleteUsed) {
7031     // We made use of our Incomplete encoding, thus we are recursive.
7032     IsRecursive = true;
7033     --IncompleteUsedCount;
7034   }
7035   if (E.Swapped.empty())
7036     Map.erase(I);
7037   else {
7038     // Swap the Recursive back.
7039     E.Swapped.swap(E.Str);
7040     E.Swapped.clear();
7041     E.State = Recursive;
7042   }
7043   --IncompleteCount;
7044   return IsRecursive;
7045 }
7046 
7047 /// Add the encoded TypeString to the cache only if it is NonRecursive or
7048 /// Recursive (viz: all sub-members were expanded as fully as possible).
addIfComplete(const IdentifierInfo * ID,StringRef Str,bool IsRecursive)7049 void TypeStringCache::addIfComplete(const IdentifierInfo *ID, StringRef Str,
7050                                     bool IsRecursive) {
7051   if (!ID || IncompleteUsedCount)
7052     return; // No key or it is is an incomplete sub-type so don't add.
7053   Entry &E = Map[ID];
7054   if (IsRecursive && !E.Str.empty()) {
7055     assert(E.State==Recursive && E.Str.size() == Str.size() &&
7056            "This is not the same Recursive entry");
7057     // The parent container was not recursive after all, so we could have used
7058     // this Recursive sub-member entry after all, but we assumed the worse when
7059     // we started viz: IncompleteCount!=0.
7060     return;
7061   }
7062   assert(E.Str.empty() && "Entry already present");
7063   E.Str = Str.str();
7064   E.State = IsRecursive? Recursive : NonRecursive;
7065 }
7066 
7067 /// Return a cached TypeString encoding for the ID. If there isn't one, or we
7068 /// are recursively expanding a type (IncompleteCount != 0) and the cached
7069 /// encoding is Recursive, return an empty StringRef.
lookupStr(const IdentifierInfo * ID)7070 StringRef TypeStringCache::lookupStr(const IdentifierInfo *ID) {
7071   if (!ID)
7072     return StringRef();   // We have no key.
7073   auto I = Map.find(ID);
7074   if (I == Map.end())
7075     return StringRef();   // We have no encoding.
7076   Entry &E = I->second;
7077   if (E.State == Recursive && IncompleteCount)
7078     return StringRef();   // We don't use Recursive encodings for member types.
7079 
7080   if (E.State == Incomplete) {
7081     // The incomplete type is being used to break out of recursion.
7082     E.State = IncompleteUsed;
7083     ++IncompleteUsedCount;
7084   }
7085   return E.Str.c_str();
7086 }
7087 
7088 /// The XCore ABI includes a type information section that communicates symbol
7089 /// type information to the linker. The linker uses this information to verify
7090 /// safety/correctness of things such as array bound and pointers et al.
7091 /// The ABI only requires C (and XC) language modules to emit TypeStrings.
7092 /// This type information (TypeString) is emitted into meta data for all global
7093 /// symbols: definitions, declarations, functions & variables.
7094 ///
7095 /// The TypeString carries type, qualifier, name, size & value details.
7096 /// Please see 'Tools Development Guide' section 2.16.2 for format details:
7097 /// https://www.xmos.com/download/public/Tools-Development-Guide%28X9114A%29.pdf
7098 /// The output is tested by test/CodeGen/xcore-stringtype.c.
7099 ///
7100 static bool getTypeString(SmallStringEnc &Enc, const Decl *D,
7101                           CodeGen::CodeGenModule &CGM, TypeStringCache &TSC);
7102 
7103 /// XCore uses emitTargetMD to emit TypeString metadata for global symbols.
emitTargetMD(const Decl * D,llvm::GlobalValue * GV,CodeGen::CodeGenModule & CGM) const7104 void XCoreTargetCodeGenInfo::emitTargetMD(const Decl *D, llvm::GlobalValue *GV,
7105                                           CodeGen::CodeGenModule &CGM) const {
7106   SmallStringEnc Enc;
7107   if (getTypeString(Enc, D, CGM, TSC)) {
7108     llvm::LLVMContext &Ctx = CGM.getModule().getContext();
7109     llvm::SmallVector<llvm::Metadata *, 2> MDVals;
7110     MDVals.push_back(llvm::ConstantAsMetadata::get(GV));
7111     MDVals.push_back(llvm::MDString::get(Ctx, Enc.str()));
7112     llvm::NamedMDNode *MD =
7113       CGM.getModule().getOrInsertNamedMetadata("xcore.typestrings");
7114     MD->addOperand(llvm::MDNode::get(Ctx, MDVals));
7115   }
7116 }
7117 
7118 static bool appendType(SmallStringEnc &Enc, QualType QType,
7119                        const CodeGen::CodeGenModule &CGM,
7120                        TypeStringCache &TSC);
7121 
7122 /// Helper function for appendRecordType().
7123 /// Builds a SmallVector containing the encoded field types in declaration
7124 /// order.
extractFieldType(SmallVectorImpl<FieldEncoding> & FE,const RecordDecl * RD,const CodeGen::CodeGenModule & CGM,TypeStringCache & TSC)7125 static bool extractFieldType(SmallVectorImpl<FieldEncoding> &FE,
7126                              const RecordDecl *RD,
7127                              const CodeGen::CodeGenModule &CGM,
7128                              TypeStringCache &TSC) {
7129   for (const auto *Field : RD->fields()) {
7130     SmallStringEnc Enc;
7131     Enc += "m(";
7132     Enc += Field->getName();
7133     Enc += "){";
7134     if (Field->isBitField()) {
7135       Enc += "b(";
7136       llvm::raw_svector_ostream OS(Enc);
7137       OS << Field->getBitWidthValue(CGM.getContext());
7138       Enc += ':';
7139     }
7140     if (!appendType(Enc, Field->getType(), CGM, TSC))
7141       return false;
7142     if (Field->isBitField())
7143       Enc += ')';
7144     Enc += '}';
7145     FE.emplace_back(!Field->getName().empty(), Enc);
7146   }
7147   return true;
7148 }
7149 
7150 /// Appends structure and union types to Enc and adds encoding to cache.
7151 /// Recursively calls appendType (via extractFieldType) for each field.
7152 /// Union types have their fields ordered according to the ABI.
appendRecordType(SmallStringEnc & Enc,const RecordType * RT,const CodeGen::CodeGenModule & CGM,TypeStringCache & TSC,const IdentifierInfo * ID)7153 static bool appendRecordType(SmallStringEnc &Enc, const RecordType *RT,
7154                              const CodeGen::CodeGenModule &CGM,
7155                              TypeStringCache &TSC, const IdentifierInfo *ID) {
7156   // Append the cached TypeString if we have one.
7157   StringRef TypeString = TSC.lookupStr(ID);
7158   if (!TypeString.empty()) {
7159     Enc += TypeString;
7160     return true;
7161   }
7162 
7163   // Start to emit an incomplete TypeString.
7164   size_t Start = Enc.size();
7165   Enc += (RT->isUnionType()? 'u' : 's');
7166   Enc += '(';
7167   if (ID)
7168     Enc += ID->getName();
7169   Enc += "){";
7170 
7171   // We collect all encoded fields and order as necessary.
7172   bool IsRecursive = false;
7173   const RecordDecl *RD = RT->getDecl()->getDefinition();
7174   if (RD && !RD->field_empty()) {
7175     // An incomplete TypeString stub is placed in the cache for this RecordType
7176     // so that recursive calls to this RecordType will use it whilst building a
7177     // complete TypeString for this RecordType.
7178     SmallVector<FieldEncoding, 16> FE;
7179     std::string StubEnc(Enc.substr(Start).str());
7180     StubEnc += '}';  // StubEnc now holds a valid incomplete TypeString.
7181     TSC.addIncomplete(ID, std::move(StubEnc));
7182     if (!extractFieldType(FE, RD, CGM, TSC)) {
7183       (void) TSC.removeIncomplete(ID);
7184       return false;
7185     }
7186     IsRecursive = TSC.removeIncomplete(ID);
7187     // The ABI requires unions to be sorted but not structures.
7188     // See FieldEncoding::operator< for sort algorithm.
7189     if (RT->isUnionType())
7190       std::sort(FE.begin(), FE.end());
7191     // We can now complete the TypeString.
7192     unsigned E = FE.size();
7193     for (unsigned I = 0; I != E; ++I) {
7194       if (I)
7195         Enc += ',';
7196       Enc += FE[I].str();
7197     }
7198   }
7199   Enc += '}';
7200   TSC.addIfComplete(ID, Enc.substr(Start), IsRecursive);
7201   return true;
7202 }
7203 
7204 /// Appends enum types to Enc and adds the encoding to the cache.
appendEnumType(SmallStringEnc & Enc,const EnumType * ET,TypeStringCache & TSC,const IdentifierInfo * ID)7205 static bool appendEnumType(SmallStringEnc &Enc, const EnumType *ET,
7206                            TypeStringCache &TSC,
7207                            const IdentifierInfo *ID) {
7208   // Append the cached TypeString if we have one.
7209   StringRef TypeString = TSC.lookupStr(ID);
7210   if (!TypeString.empty()) {
7211     Enc += TypeString;
7212     return true;
7213   }
7214 
7215   size_t Start = Enc.size();
7216   Enc += "e(";
7217   if (ID)
7218     Enc += ID->getName();
7219   Enc += "){";
7220 
7221   // We collect all encoded enumerations and order them alphanumerically.
7222   if (const EnumDecl *ED = ET->getDecl()->getDefinition()) {
7223     SmallVector<FieldEncoding, 16> FE;
7224     for (auto I = ED->enumerator_begin(), E = ED->enumerator_end(); I != E;
7225          ++I) {
7226       SmallStringEnc EnumEnc;
7227       EnumEnc += "m(";
7228       EnumEnc += I->getName();
7229       EnumEnc += "){";
7230       I->getInitVal().toString(EnumEnc);
7231       EnumEnc += '}';
7232       FE.push_back(FieldEncoding(!I->getName().empty(), EnumEnc));
7233     }
7234     std::sort(FE.begin(), FE.end());
7235     unsigned E = FE.size();
7236     for (unsigned I = 0; I != E; ++I) {
7237       if (I)
7238         Enc += ',';
7239       Enc += FE[I].str();
7240     }
7241   }
7242   Enc += '}';
7243   TSC.addIfComplete(ID, Enc.substr(Start), false);
7244   return true;
7245 }
7246 
7247 /// Appends type's qualifier to Enc.
7248 /// This is done prior to appending the type's encoding.
appendQualifier(SmallStringEnc & Enc,QualType QT)7249 static void appendQualifier(SmallStringEnc &Enc, QualType QT) {
7250   // Qualifiers are emitted in alphabetical order.
7251   static const char *const Table[]={"","c:","r:","cr:","v:","cv:","rv:","crv:"};
7252   int Lookup = 0;
7253   if (QT.isConstQualified())
7254     Lookup += 1<<0;
7255   if (QT.isRestrictQualified())
7256     Lookup += 1<<1;
7257   if (QT.isVolatileQualified())
7258     Lookup += 1<<2;
7259   Enc += Table[Lookup];
7260 }
7261 
7262 /// Appends built-in types to Enc.
appendBuiltinType(SmallStringEnc & Enc,const BuiltinType * BT)7263 static bool appendBuiltinType(SmallStringEnc &Enc, const BuiltinType *BT) {
7264   const char *EncType;
7265   switch (BT->getKind()) {
7266     case BuiltinType::Void:
7267       EncType = "0";
7268       break;
7269     case BuiltinType::Bool:
7270       EncType = "b";
7271       break;
7272     case BuiltinType::Char_U:
7273       EncType = "uc";
7274       break;
7275     case BuiltinType::UChar:
7276       EncType = "uc";
7277       break;
7278     case BuiltinType::SChar:
7279       EncType = "sc";
7280       break;
7281     case BuiltinType::UShort:
7282       EncType = "us";
7283       break;
7284     case BuiltinType::Short:
7285       EncType = "ss";
7286       break;
7287     case BuiltinType::UInt:
7288       EncType = "ui";
7289       break;
7290     case BuiltinType::Int:
7291       EncType = "si";
7292       break;
7293     case BuiltinType::ULong:
7294       EncType = "ul";
7295       break;
7296     case BuiltinType::Long:
7297       EncType = "sl";
7298       break;
7299     case BuiltinType::ULongLong:
7300       EncType = "ull";
7301       break;
7302     case BuiltinType::LongLong:
7303       EncType = "sll";
7304       break;
7305     case BuiltinType::Float:
7306       EncType = "ft";
7307       break;
7308     case BuiltinType::Double:
7309       EncType = "d";
7310       break;
7311     case BuiltinType::LongDouble:
7312       EncType = "ld";
7313       break;
7314     default:
7315       return false;
7316   }
7317   Enc += EncType;
7318   return true;
7319 }
7320 
7321 /// Appends a pointer encoding to Enc before calling appendType for the pointee.
appendPointerType(SmallStringEnc & Enc,const PointerType * PT,const CodeGen::CodeGenModule & CGM,TypeStringCache & TSC)7322 static bool appendPointerType(SmallStringEnc &Enc, const PointerType *PT,
7323                               const CodeGen::CodeGenModule &CGM,
7324                               TypeStringCache &TSC) {
7325   Enc += "p(";
7326   if (!appendType(Enc, PT->getPointeeType(), CGM, TSC))
7327     return false;
7328   Enc += ')';
7329   return true;
7330 }
7331 
7332 /// Appends array encoding to Enc before calling appendType for the element.
appendArrayType(SmallStringEnc & Enc,QualType QT,const ArrayType * AT,const CodeGen::CodeGenModule & CGM,TypeStringCache & TSC,StringRef NoSizeEnc)7333 static bool appendArrayType(SmallStringEnc &Enc, QualType QT,
7334                             const ArrayType *AT,
7335                             const CodeGen::CodeGenModule &CGM,
7336                             TypeStringCache &TSC, StringRef NoSizeEnc) {
7337   if (AT->getSizeModifier() != ArrayType::Normal)
7338     return false;
7339   Enc += "a(";
7340   if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
7341     CAT->getSize().toStringUnsigned(Enc);
7342   else
7343     Enc += NoSizeEnc; // Global arrays use "*", otherwise it is "".
7344   Enc += ':';
7345   // The Qualifiers should be attached to the type rather than the array.
7346   appendQualifier(Enc, QT);
7347   if (!appendType(Enc, AT->getElementType(), CGM, TSC))
7348     return false;
7349   Enc += ')';
7350   return true;
7351 }
7352 
7353 /// Appends a function encoding to Enc, calling appendType for the return type
7354 /// and the arguments.
appendFunctionType(SmallStringEnc & Enc,const FunctionType * FT,const CodeGen::CodeGenModule & CGM,TypeStringCache & TSC)7355 static bool appendFunctionType(SmallStringEnc &Enc, const FunctionType *FT,
7356                              const CodeGen::CodeGenModule &CGM,
7357                              TypeStringCache &TSC) {
7358   Enc += "f{";
7359   if (!appendType(Enc, FT->getReturnType(), CGM, TSC))
7360     return false;
7361   Enc += "}(";
7362   if (const FunctionProtoType *FPT = FT->getAs<FunctionProtoType>()) {
7363     // N.B. we are only interested in the adjusted param types.
7364     auto I = FPT->param_type_begin();
7365     auto E = FPT->param_type_end();
7366     if (I != E) {
7367       do {
7368         if (!appendType(Enc, *I, CGM, TSC))
7369           return false;
7370         ++I;
7371         if (I != E)
7372           Enc += ',';
7373       } while (I != E);
7374       if (FPT->isVariadic())
7375         Enc += ",va";
7376     } else {
7377       if (FPT->isVariadic())
7378         Enc += "va";
7379       else
7380         Enc += '0';
7381     }
7382   }
7383   Enc += ')';
7384   return true;
7385 }
7386 
7387 /// Handles the type's qualifier before dispatching a call to handle specific
7388 /// type encodings.
appendType(SmallStringEnc & Enc,QualType QType,const CodeGen::CodeGenModule & CGM,TypeStringCache & TSC)7389 static bool appendType(SmallStringEnc &Enc, QualType QType,
7390                        const CodeGen::CodeGenModule &CGM,
7391                        TypeStringCache &TSC) {
7392 
7393   QualType QT = QType.getCanonicalType();
7394 
7395   if (const ArrayType *AT = QT->getAsArrayTypeUnsafe())
7396     // The Qualifiers should be attached to the type rather than the array.
7397     // Thus we don't call appendQualifier() here.
7398     return appendArrayType(Enc, QT, AT, CGM, TSC, "");
7399 
7400   appendQualifier(Enc, QT);
7401 
7402   if (const BuiltinType *BT = QT->getAs<BuiltinType>())
7403     return appendBuiltinType(Enc, BT);
7404 
7405   if (const PointerType *PT = QT->getAs<PointerType>())
7406     return appendPointerType(Enc, PT, CGM, TSC);
7407 
7408   if (const EnumType *ET = QT->getAs<EnumType>())
7409     return appendEnumType(Enc, ET, TSC, QT.getBaseTypeIdentifier());
7410 
7411   if (const RecordType *RT = QT->getAsStructureType())
7412     return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier());
7413 
7414   if (const RecordType *RT = QT->getAsUnionType())
7415     return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier());
7416 
7417   if (const FunctionType *FT = QT->getAs<FunctionType>())
7418     return appendFunctionType(Enc, FT, CGM, TSC);
7419 
7420   return false;
7421 }
7422 
getTypeString(SmallStringEnc & Enc,const Decl * D,CodeGen::CodeGenModule & CGM,TypeStringCache & TSC)7423 static bool getTypeString(SmallStringEnc &Enc, const Decl *D,
7424                           CodeGen::CodeGenModule &CGM, TypeStringCache &TSC) {
7425   if (!D)
7426     return false;
7427 
7428   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
7429     if (FD->getLanguageLinkage() != CLanguageLinkage)
7430       return false;
7431     return appendType(Enc, FD->getType(), CGM, TSC);
7432   }
7433 
7434   if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
7435     if (VD->getLanguageLinkage() != CLanguageLinkage)
7436       return false;
7437     QualType QT = VD->getType().getCanonicalType();
7438     if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) {
7439       // Global ArrayTypes are given a size of '*' if the size is unknown.
7440       // The Qualifiers should be attached to the type rather than the array.
7441       // Thus we don't call appendQualifier() here.
7442       return appendArrayType(Enc, QT, AT, CGM, TSC, "*");
7443     }
7444     return appendType(Enc, QT, CGM, TSC);
7445   }
7446   return false;
7447 }
7448 
7449 
7450 //===----------------------------------------------------------------------===//
7451 // Driver code
7452 //===----------------------------------------------------------------------===//
7453 
getTriple() const7454 const llvm::Triple &CodeGenModule::getTriple() const {
7455   return getTarget().getTriple();
7456 }
7457 
supportsCOMDAT() const7458 bool CodeGenModule::supportsCOMDAT() const {
7459   return !getTriple().isOSBinFormatMachO();
7460 }
7461 
getTargetCodeGenInfo()7462 const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() {
7463   if (TheTargetCodeGenInfo)
7464     return *TheTargetCodeGenInfo;
7465 
7466   const llvm::Triple &Triple = getTarget().getTriple();
7467   switch (Triple.getArch()) {
7468   default:
7469     return *(TheTargetCodeGenInfo = new DefaultTargetCodeGenInfo(Types));
7470 
7471   case llvm::Triple::le32:
7472     return *(TheTargetCodeGenInfo = new PNaClTargetCodeGenInfo(Types));
7473   case llvm::Triple::mips:
7474   case llvm::Triple::mipsel:
7475     if (Triple.getOS() == llvm::Triple::NaCl)
7476       return *(TheTargetCodeGenInfo = new PNaClTargetCodeGenInfo(Types));
7477     return *(TheTargetCodeGenInfo = new MIPSTargetCodeGenInfo(Types, true));
7478 
7479   case llvm::Triple::mips64:
7480   case llvm::Triple::mips64el:
7481     return *(TheTargetCodeGenInfo = new MIPSTargetCodeGenInfo(Types, false));
7482 
7483   case llvm::Triple::aarch64:
7484   case llvm::Triple::aarch64_be: {
7485     AArch64ABIInfo::ABIKind Kind = AArch64ABIInfo::AAPCS;
7486     if (getTarget().getABI() == "darwinpcs")
7487       Kind = AArch64ABIInfo::DarwinPCS;
7488 
7489     return *(TheTargetCodeGenInfo = new AArch64TargetCodeGenInfo(Types, Kind));
7490   }
7491 
7492   case llvm::Triple::wasm32:
7493   case llvm::Triple::wasm64:
7494     return *(TheTargetCodeGenInfo = new WebAssemblyTargetCodeGenInfo(Types));
7495 
7496   case llvm::Triple::arm:
7497   case llvm::Triple::armeb:
7498   case llvm::Triple::thumb:
7499   case llvm::Triple::thumbeb:
7500     {
7501       if (Triple.getOS() == llvm::Triple::Win32) {
7502         TheTargetCodeGenInfo =
7503             new WindowsARMTargetCodeGenInfo(Types, ARMABIInfo::AAPCS_VFP);
7504         return *TheTargetCodeGenInfo;
7505       }
7506 
7507       ARMABIInfo::ABIKind Kind = ARMABIInfo::AAPCS;
7508       StringRef ABIStr = getTarget().getABI();
7509       if (ABIStr == "apcs-gnu")
7510         Kind = ARMABIInfo::APCS;
7511       else if (ABIStr == "aapcs16")
7512         Kind = ARMABIInfo::AAPCS16_VFP;
7513       else if (CodeGenOpts.FloatABI == "hard" ||
7514                (CodeGenOpts.FloatABI != "soft" &&
7515                 Triple.getEnvironment() == llvm::Triple::GNUEABIHF))
7516         Kind = ARMABIInfo::AAPCS_VFP;
7517 
7518       return *(TheTargetCodeGenInfo = new ARMTargetCodeGenInfo(Types, Kind));
7519     }
7520 
7521   case llvm::Triple::ppc:
7522     return *(TheTargetCodeGenInfo =
7523              new PPC32TargetCodeGenInfo(Types, CodeGenOpts.FloatABI == "soft"));
7524   case llvm::Triple::ppc64:
7525     if (Triple.isOSBinFormatELF()) {
7526       PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv1;
7527       if (getTarget().getABI() == "elfv2")
7528         Kind = PPC64_SVR4_ABIInfo::ELFv2;
7529       bool HasQPX = getTarget().getABI() == "elfv1-qpx";
7530 
7531       return *(TheTargetCodeGenInfo =
7532                new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, HasQPX));
7533     } else
7534       return *(TheTargetCodeGenInfo = new PPC64TargetCodeGenInfo(Types));
7535   case llvm::Triple::ppc64le: {
7536     assert(Triple.isOSBinFormatELF() && "PPC64 LE non-ELF not supported!");
7537     PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv2;
7538     if (getTarget().getABI() == "elfv1" || getTarget().getABI() == "elfv1-qpx")
7539       Kind = PPC64_SVR4_ABIInfo::ELFv1;
7540     bool HasQPX = getTarget().getABI() == "elfv1-qpx";
7541 
7542     return *(TheTargetCodeGenInfo =
7543              new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, HasQPX));
7544   }
7545 
7546   case llvm::Triple::nvptx:
7547   case llvm::Triple::nvptx64:
7548     return *(TheTargetCodeGenInfo = new NVPTXTargetCodeGenInfo(Types));
7549 
7550   case llvm::Triple::msp430:
7551     return *(TheTargetCodeGenInfo = new MSP430TargetCodeGenInfo(Types));
7552 
7553   case llvm::Triple::systemz: {
7554     bool HasVector = getTarget().getABI() == "vector";
7555     return *(TheTargetCodeGenInfo = new SystemZTargetCodeGenInfo(Types,
7556                                                                  HasVector));
7557   }
7558 
7559   case llvm::Triple::tce:
7560     return *(TheTargetCodeGenInfo = new TCETargetCodeGenInfo(Types));
7561 
7562   case llvm::Triple::x86: {
7563     bool IsDarwinVectorABI = Triple.isOSDarwin();
7564     bool RetSmallStructInRegABI =
7565         X86_32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts);
7566     bool IsWin32FloatStructABI = Triple.isOSWindows() && !Triple.isOSCygMing();
7567 
7568     if (Triple.getOS() == llvm::Triple::Win32) {
7569       return *(TheTargetCodeGenInfo = new WinX86_32TargetCodeGenInfo(
7570                    Types, IsDarwinVectorABI, RetSmallStructInRegABI,
7571                    IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters));
7572     } else {
7573       return *(TheTargetCodeGenInfo = new X86_32TargetCodeGenInfo(
7574                    Types, IsDarwinVectorABI, RetSmallStructInRegABI,
7575                    IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters,
7576                    CodeGenOpts.FloatABI == "soft"));
7577     }
7578   }
7579 
7580   case llvm::Triple::x86_64: {
7581     StringRef ABI = getTarget().getABI();
7582     X86AVXABILevel AVXLevel = (ABI == "avx512" ? X86AVXABILevel::AVX512 :
7583                                ABI == "avx" ? X86AVXABILevel::AVX :
7584                                X86AVXABILevel::None);
7585 
7586     switch (Triple.getOS()) {
7587     case llvm::Triple::Win32:
7588       return *(TheTargetCodeGenInfo =
7589                    new WinX86_64TargetCodeGenInfo(Types, AVXLevel));
7590     case llvm::Triple::PS4:
7591       return *(TheTargetCodeGenInfo =
7592                    new PS4TargetCodeGenInfo(Types, AVXLevel));
7593     default:
7594       return *(TheTargetCodeGenInfo =
7595                    new X86_64TargetCodeGenInfo(Types, AVXLevel));
7596     }
7597   }
7598   case llvm::Triple::hexagon:
7599     return *(TheTargetCodeGenInfo = new HexagonTargetCodeGenInfo(Types));
7600   case llvm::Triple::r600:
7601     return *(TheTargetCodeGenInfo = new AMDGPUTargetCodeGenInfo(Types));
7602   case llvm::Triple::amdgcn:
7603     return *(TheTargetCodeGenInfo = new AMDGPUTargetCodeGenInfo(Types));
7604   case llvm::Triple::sparcv9:
7605     return *(TheTargetCodeGenInfo = new SparcV9TargetCodeGenInfo(Types));
7606   case llvm::Triple::xcore:
7607     return *(TheTargetCodeGenInfo = new XCoreTargetCodeGenInfo(Types));
7608   }
7609 }
7610