1 //===--- CacheTokens.cpp - Caching of lexer tokens for PTH support --------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This provides a possible implementation of PTH support for Clang that is
11 // based on caching lexed tokens and identifiers.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "clang/Frontend/Utils.h"
16 #include "clang/Basic/Diagnostic.h"
17 #include "clang/Basic/FileManager.h"
18 #include "clang/Basic/FileSystemStatCache.h"
19 #include "clang/Basic/IdentifierTable.h"
20 #include "clang/Basic/SourceManager.h"
21 #include "clang/Lex/Lexer.h"
22 #include "clang/Lex/PTHManager.h"
23 #include "clang/Lex/Preprocessor.h"
24 #include "llvm/ADT/StringExtras.h"
25 #include "llvm/ADT/StringMap.h"
26 #include "llvm/Support/EndianStream.h"
27 #include "llvm/Support/FileSystem.h"
28 #include "llvm/Support/MemoryBuffer.h"
29 #include "llvm/Support/OnDiskHashTable.h"
30 #include "llvm/Support/Path.h"
31 #include "llvm/Support/raw_ostream.h"
32
33 // FIXME: put this somewhere else?
34 #ifndef S_ISDIR
35 #define S_ISDIR(x) (((x)&_S_IFDIR)!=0)
36 #endif
37
38 using namespace clang;
39
40 //===----------------------------------------------------------------------===//
41 // PTH-specific stuff.
42 //===----------------------------------------------------------------------===//
43
44 typedef uint32_t Offset;
45
46 namespace {
47 class PTHEntry {
48 Offset TokenData, PPCondData;
49
50 public:
PTHEntry()51 PTHEntry() {}
52
PTHEntry(Offset td,Offset ppcd)53 PTHEntry(Offset td, Offset ppcd)
54 : TokenData(td), PPCondData(ppcd) {}
55
getTokenOffset() const56 Offset getTokenOffset() const { return TokenData; }
getPPCondTableOffset() const57 Offset getPPCondTableOffset() const { return PPCondData; }
58 };
59
60
61 class PTHEntryKeyVariant {
62 union { const FileEntry* FE; const char* Path; };
63 enum { IsFE = 0x1, IsDE = 0x2, IsNoExist = 0x0 } Kind;
64 FileData *Data;
65
66 public:
PTHEntryKeyVariant(const FileEntry * fe)67 PTHEntryKeyVariant(const FileEntry *fe) : FE(fe), Kind(IsFE), Data(nullptr) {}
68
PTHEntryKeyVariant(FileData * Data,const char * path)69 PTHEntryKeyVariant(FileData *Data, const char *path)
70 : Path(path), Kind(IsDE), Data(new FileData(*Data)) {}
71
PTHEntryKeyVariant(const char * path)72 explicit PTHEntryKeyVariant(const char *path)
73 : Path(path), Kind(IsNoExist), Data(nullptr) {}
74
isFile() const75 bool isFile() const { return Kind == IsFE; }
76
getString() const77 StringRef getString() const {
78 return Kind == IsFE ? FE->getName() : Path;
79 }
80
getKind() const81 unsigned getKind() const { return (unsigned) Kind; }
82
EmitData(raw_ostream & Out)83 void EmitData(raw_ostream& Out) {
84 using namespace llvm::support;
85 endian::Writer<little> LE(Out);
86 switch (Kind) {
87 case IsFE: {
88 // Emit stat information.
89 llvm::sys::fs::UniqueID UID = FE->getUniqueID();
90 LE.write<uint64_t>(UID.getFile());
91 LE.write<uint64_t>(UID.getDevice());
92 LE.write<uint64_t>(FE->getModificationTime());
93 LE.write<uint64_t>(FE->getSize());
94 } break;
95 case IsDE:
96 // Emit stat information.
97 LE.write<uint64_t>(Data->UniqueID.getFile());
98 LE.write<uint64_t>(Data->UniqueID.getDevice());
99 LE.write<uint64_t>(Data->ModTime);
100 LE.write<uint64_t>(Data->Size);
101 delete Data;
102 break;
103 default:
104 break;
105 }
106 }
107
getRepresentationLength() const108 unsigned getRepresentationLength() const {
109 return Kind == IsNoExist ? 0 : 4 * 8;
110 }
111 };
112
113 class FileEntryPTHEntryInfo {
114 public:
115 typedef PTHEntryKeyVariant key_type;
116 typedef key_type key_type_ref;
117
118 typedef PTHEntry data_type;
119 typedef const PTHEntry& data_type_ref;
120
121 typedef unsigned hash_value_type;
122 typedef unsigned offset_type;
123
ComputeHash(PTHEntryKeyVariant V)124 static hash_value_type ComputeHash(PTHEntryKeyVariant V) {
125 return llvm::HashString(V.getString());
126 }
127
128 static std::pair<unsigned,unsigned>
EmitKeyDataLength(raw_ostream & Out,PTHEntryKeyVariant V,const PTHEntry & E)129 EmitKeyDataLength(raw_ostream& Out, PTHEntryKeyVariant V,
130 const PTHEntry& E) {
131 using namespace llvm::support;
132 endian::Writer<little> LE(Out);
133
134 unsigned n = V.getString().size() + 1 + 1;
135 LE.write<uint16_t>(n);
136
137 unsigned m = V.getRepresentationLength() + (V.isFile() ? 4 + 4 : 0);
138 LE.write<uint8_t>(m);
139
140 return std::make_pair(n, m);
141 }
142
EmitKey(raw_ostream & Out,PTHEntryKeyVariant V,unsigned n)143 static void EmitKey(raw_ostream& Out, PTHEntryKeyVariant V, unsigned n){
144 using namespace llvm::support;
145 // Emit the entry kind.
146 endian::Writer<little>(Out).write<uint8_t>((unsigned)V.getKind());
147 // Emit the string.
148 Out.write(V.getString().data(), n - 1);
149 }
150
EmitData(raw_ostream & Out,PTHEntryKeyVariant V,const PTHEntry & E,unsigned)151 static void EmitData(raw_ostream& Out, PTHEntryKeyVariant V,
152 const PTHEntry& E, unsigned) {
153 using namespace llvm::support;
154 endian::Writer<little> LE(Out);
155
156 // For file entries emit the offsets into the PTH file for token data
157 // and the preprocessor blocks table.
158 if (V.isFile()) {
159 LE.write<uint32_t>(E.getTokenOffset());
160 LE.write<uint32_t>(E.getPPCondTableOffset());
161 }
162
163 // Emit any other data associated with the key (i.e., stat information).
164 V.EmitData(Out);
165 }
166 };
167
168 class OffsetOpt {
169 bool valid;
170 Offset off;
171 public:
OffsetOpt()172 OffsetOpt() : valid(false) {}
hasOffset() const173 bool hasOffset() const { return valid; }
getOffset() const174 Offset getOffset() const { assert(valid); return off; }
setOffset(Offset o)175 void setOffset(Offset o) { off = o; valid = true; }
176 };
177 } // end anonymous namespace
178
179 typedef llvm::OnDiskChainedHashTableGenerator<FileEntryPTHEntryInfo> PTHMap;
180
181 namespace {
182 class PTHWriter {
183 typedef llvm::DenseMap<const IdentifierInfo*,uint32_t> IDMap;
184 typedef llvm::StringMap<OffsetOpt, llvm::BumpPtrAllocator> CachedStrsTy;
185
186 IDMap IM;
187 raw_pwrite_stream &Out;
188 Preprocessor& PP;
189 uint32_t idcount;
190 PTHMap PM;
191 CachedStrsTy CachedStrs;
192 Offset CurStrOffset;
193 std::vector<llvm::StringMapEntry<OffsetOpt>*> StrEntries;
194
195 //// Get the persistent id for the given IdentifierInfo*.
196 uint32_t ResolveID(const IdentifierInfo* II);
197
198 /// Emit a token to the PTH file.
199 void EmitToken(const Token& T);
200
Emit8(uint32_t V)201 void Emit8(uint32_t V) {
202 using namespace llvm::support;
203 endian::Writer<little>(Out).write<uint8_t>(V);
204 }
205
Emit16(uint32_t V)206 void Emit16(uint32_t V) {
207 using namespace llvm::support;
208 endian::Writer<little>(Out).write<uint16_t>(V);
209 }
210
Emit32(uint32_t V)211 void Emit32(uint32_t V) {
212 using namespace llvm::support;
213 endian::Writer<little>(Out).write<uint32_t>(V);
214 }
215
EmitBuf(const char * Ptr,unsigned NumBytes)216 void EmitBuf(const char *Ptr, unsigned NumBytes) {
217 Out.write(Ptr, NumBytes);
218 }
219
EmitString(StringRef V)220 void EmitString(StringRef V) {
221 using namespace llvm::support;
222 endian::Writer<little>(Out).write<uint16_t>(V.size());
223 EmitBuf(V.data(), V.size());
224 }
225
226 /// EmitIdentifierTable - Emits two tables to the PTH file. The first is
227 /// a hashtable mapping from identifier strings to persistent IDs.
228 /// The second is a straight table mapping from persistent IDs to string data
229 /// (the keys of the first table).
230 std::pair<Offset, Offset> EmitIdentifierTable();
231
232 /// EmitFileTable - Emit a table mapping from file name strings to PTH
233 /// token data.
EmitFileTable()234 Offset EmitFileTable() { return PM.Emit(Out); }
235
236 PTHEntry LexTokens(Lexer& L);
237 Offset EmitCachedSpellings();
238
239 public:
PTHWriter(raw_pwrite_stream & out,Preprocessor & pp)240 PTHWriter(raw_pwrite_stream &out, Preprocessor &pp)
241 : Out(out), PP(pp), idcount(0), CurStrOffset(0) {}
242
getPM()243 PTHMap &getPM() { return PM; }
244 void GeneratePTH(const std::string &MainFile);
245 };
246 } // end anonymous namespace
247
ResolveID(const IdentifierInfo * II)248 uint32_t PTHWriter::ResolveID(const IdentifierInfo* II) {
249 // Null IdentifierInfo's map to the persistent ID 0.
250 if (!II)
251 return 0;
252
253 IDMap::iterator I = IM.find(II);
254 if (I != IM.end())
255 return I->second; // We've already added 1.
256
257 IM[II] = ++idcount; // Pre-increment since '0' is reserved for NULL.
258 return idcount;
259 }
260
EmitToken(const Token & T)261 void PTHWriter::EmitToken(const Token& T) {
262 // Emit the token kind, flags, and length.
263 Emit32(((uint32_t) T.getKind()) | ((((uint32_t) T.getFlags())) << 8)|
264 (((uint32_t) T.getLength()) << 16));
265
266 if (!T.isLiteral()) {
267 Emit32(ResolveID(T.getIdentifierInfo()));
268 } else {
269 // We cache *un-cleaned* spellings. This gives us 100% fidelity with the
270 // source code.
271 StringRef s(T.getLiteralData(), T.getLength());
272
273 // Get the string entry.
274 auto &E = *CachedStrs.insert(std::make_pair(s, OffsetOpt())).first;
275
276 // If this is a new string entry, bump the PTH offset.
277 if (!E.second.hasOffset()) {
278 E.second.setOffset(CurStrOffset);
279 StrEntries.push_back(&E);
280 CurStrOffset += s.size() + 1;
281 }
282
283 // Emit the relative offset into the PTH file for the spelling string.
284 Emit32(E.second.getOffset());
285 }
286
287 // Emit the offset into the original source file of this token so that we
288 // can reconstruct its SourceLocation.
289 Emit32(PP.getSourceManager().getFileOffset(T.getLocation()));
290 }
291
LexTokens(Lexer & L)292 PTHEntry PTHWriter::LexTokens(Lexer& L) {
293 // Pad 0's so that we emit tokens to a 4-byte alignment.
294 // This speed up reading them back in.
295 using namespace llvm::support;
296 endian::Writer<little> LE(Out);
297 uint32_t TokenOff = Out.tell();
298 for (uint64_t N = llvm::OffsetToAlignment(TokenOff, 4); N; --N, ++TokenOff)
299 LE.write<uint8_t>(0);
300
301 // Keep track of matching '#if' ... '#endif'.
302 typedef std::vector<std::pair<Offset, unsigned> > PPCondTable;
303 PPCondTable PPCond;
304 std::vector<unsigned> PPStartCond;
305 bool ParsingPreprocessorDirective = false;
306 Token Tok;
307
308 do {
309 L.LexFromRawLexer(Tok);
310 NextToken:
311
312 if ((Tok.isAtStartOfLine() || Tok.is(tok::eof)) &&
313 ParsingPreprocessorDirective) {
314 // Insert an eod token into the token cache. It has the same
315 // position as the next token that is not on the same line as the
316 // preprocessor directive. Observe that we continue processing
317 // 'Tok' when we exit this branch.
318 Token Tmp = Tok;
319 Tmp.setKind(tok::eod);
320 Tmp.clearFlag(Token::StartOfLine);
321 Tmp.setIdentifierInfo(nullptr);
322 EmitToken(Tmp);
323 ParsingPreprocessorDirective = false;
324 }
325
326 if (Tok.is(tok::raw_identifier)) {
327 PP.LookUpIdentifierInfo(Tok);
328 EmitToken(Tok);
329 continue;
330 }
331
332 if (Tok.is(tok::hash) && Tok.isAtStartOfLine()) {
333 // Special processing for #include. Store the '#' token and lex
334 // the next token.
335 assert(!ParsingPreprocessorDirective);
336 Offset HashOff = (Offset) Out.tell();
337
338 // Get the next token.
339 Token NextTok;
340 L.LexFromRawLexer(NextTok);
341
342 // If we see the start of line, then we had a null directive "#". In
343 // this case, discard both tokens.
344 if (NextTok.isAtStartOfLine())
345 goto NextToken;
346
347 // The token is the start of a directive. Emit it.
348 EmitToken(Tok);
349 Tok = NextTok;
350
351 // Did we see 'include'/'import'/'include_next'?
352 if (Tok.isNot(tok::raw_identifier)) {
353 EmitToken(Tok);
354 continue;
355 }
356
357 IdentifierInfo* II = PP.LookUpIdentifierInfo(Tok);
358 tok::PPKeywordKind K = II->getPPKeywordID();
359
360 ParsingPreprocessorDirective = true;
361
362 switch (K) {
363 case tok::pp_not_keyword:
364 // Invalid directives "#foo" can occur in #if 0 blocks etc, just pass
365 // them through.
366 default:
367 break;
368
369 case tok::pp_include:
370 case tok::pp_import:
371 case tok::pp_include_next: {
372 // Save the 'include' token.
373 EmitToken(Tok);
374 // Lex the next token as an include string.
375 L.setParsingPreprocessorDirective(true);
376 L.LexIncludeFilename(Tok);
377 L.setParsingPreprocessorDirective(false);
378 assert(!Tok.isAtStartOfLine());
379 if (Tok.is(tok::raw_identifier))
380 PP.LookUpIdentifierInfo(Tok);
381
382 break;
383 }
384 case tok::pp_if:
385 case tok::pp_ifdef:
386 case tok::pp_ifndef: {
387 // Add an entry for '#if' and friends. We initially set the target
388 // index to 0. This will get backpatched when we hit #endif.
389 PPStartCond.push_back(PPCond.size());
390 PPCond.push_back(std::make_pair(HashOff, 0U));
391 break;
392 }
393 case tok::pp_endif: {
394 // Add an entry for '#endif'. We set the target table index to itself.
395 // This will later be set to zero when emitting to the PTH file. We
396 // use 0 for uninitialized indices because that is easier to debug.
397 unsigned index = PPCond.size();
398 // Backpatch the opening '#if' entry.
399 assert(!PPStartCond.empty());
400 assert(PPCond.size() > PPStartCond.back());
401 assert(PPCond[PPStartCond.back()].second == 0);
402 PPCond[PPStartCond.back()].second = index;
403 PPStartCond.pop_back();
404 // Add the new entry to PPCond.
405 PPCond.push_back(std::make_pair(HashOff, index));
406 EmitToken(Tok);
407
408 // Some files have gibberish on the same line as '#endif'.
409 // Discard these tokens.
410 do
411 L.LexFromRawLexer(Tok);
412 while (Tok.isNot(tok::eof) && !Tok.isAtStartOfLine());
413 // We have the next token in hand.
414 // Don't immediately lex the next one.
415 goto NextToken;
416 }
417 case tok::pp_elif:
418 case tok::pp_else: {
419 // Add an entry for #elif or #else.
420 // This serves as both a closing and opening of a conditional block.
421 // This means that its entry will get backpatched later.
422 unsigned index = PPCond.size();
423 // Backpatch the previous '#if' entry.
424 assert(!PPStartCond.empty());
425 assert(PPCond.size() > PPStartCond.back());
426 assert(PPCond[PPStartCond.back()].second == 0);
427 PPCond[PPStartCond.back()].second = index;
428 PPStartCond.pop_back();
429 // Now add '#elif' as a new block opening.
430 PPCond.push_back(std::make_pair(HashOff, 0U));
431 PPStartCond.push_back(index);
432 break;
433 }
434 }
435 }
436
437 EmitToken(Tok);
438 }
439 while (Tok.isNot(tok::eof));
440
441 assert(PPStartCond.empty() && "Error: imblanced preprocessor conditionals.");
442
443 // Next write out PPCond.
444 Offset PPCondOff = (Offset) Out.tell();
445
446 // Write out the size of PPCond so that clients can identifer empty tables.
447 Emit32(PPCond.size());
448
449 for (unsigned i = 0, e = PPCond.size(); i!=e; ++i) {
450 Emit32(PPCond[i].first - TokenOff);
451 uint32_t x = PPCond[i].second;
452 assert(x != 0 && "PPCond entry not backpatched.");
453 // Emit zero for #endifs. This allows us to do checking when
454 // we read the PTH file back in.
455 Emit32(x == i ? 0 : x);
456 }
457
458 return PTHEntry(TokenOff, PPCondOff);
459 }
460
EmitCachedSpellings()461 Offset PTHWriter::EmitCachedSpellings() {
462 // Write each cached strings to the PTH file.
463 Offset SpellingsOff = Out.tell();
464
465 for (std::vector<llvm::StringMapEntry<OffsetOpt>*>::iterator
466 I = StrEntries.begin(), E = StrEntries.end(); I!=E; ++I)
467 EmitBuf((*I)->getKeyData(), (*I)->getKeyLength()+1 /*nul included*/);
468
469 return SpellingsOff;
470 }
471
swap32le(uint32_t X)472 static uint32_t swap32le(uint32_t X) {
473 return llvm::support::endian::byte_swap<uint32_t, llvm::support::little>(X);
474 }
475
pwrite32le(raw_pwrite_stream & OS,uint32_t Val,uint64_t & Off)476 static void pwrite32le(raw_pwrite_stream &OS, uint32_t Val, uint64_t &Off) {
477 uint32_t LEVal = swap32le(Val);
478 OS.pwrite(reinterpret_cast<const char *>(&LEVal), 4, Off);
479 Off += 4;
480 }
481
GeneratePTH(const std::string & MainFile)482 void PTHWriter::GeneratePTH(const std::string &MainFile) {
483 // Generate the prologue.
484 Out << "cfe-pth" << '\0';
485 Emit32(PTHManager::Version);
486
487 // Leave 4 words for the prologue.
488 Offset PrologueOffset = Out.tell();
489 for (unsigned i = 0; i < 4; ++i)
490 Emit32(0);
491
492 // Write the name of the MainFile.
493 if (!MainFile.empty()) {
494 EmitString(MainFile);
495 } else {
496 // String with 0 bytes.
497 Emit16(0);
498 }
499 Emit8(0);
500
501 // Iterate over all the files in SourceManager. Create a lexer
502 // for each file and cache the tokens.
503 SourceManager &SM = PP.getSourceManager();
504 const LangOptions &LOpts = PP.getLangOpts();
505
506 for (SourceManager::fileinfo_iterator I = SM.fileinfo_begin(),
507 E = SM.fileinfo_end(); I != E; ++I) {
508 const SrcMgr::ContentCache &C = *I->second;
509 const FileEntry *FE = C.OrigEntry;
510
511 // FIXME: Handle files with non-absolute paths.
512 if (llvm::sys::path::is_relative(FE->getName()))
513 continue;
514
515 const llvm::MemoryBuffer *B = C.getBuffer(PP.getDiagnostics(), SM);
516 if (!B) continue;
517
518 FileID FID = SM.createFileID(FE, SourceLocation(), SrcMgr::C_User);
519 const llvm::MemoryBuffer *FromFile = SM.getBuffer(FID);
520 Lexer L(FID, FromFile, SM, LOpts);
521 PM.insert(FE, LexTokens(L));
522 }
523
524 // Write out the identifier table.
525 const std::pair<Offset,Offset> &IdTableOff = EmitIdentifierTable();
526
527 // Write out the cached strings table.
528 Offset SpellingOff = EmitCachedSpellings();
529
530 // Write out the file table.
531 Offset FileTableOff = EmitFileTable();
532
533 // Finally, write the prologue.
534 uint64_t Off = PrologueOffset;
535 pwrite32le(Out, IdTableOff.first, Off);
536 pwrite32le(Out, IdTableOff.second, Off);
537 pwrite32le(Out, FileTableOff, Off);
538 pwrite32le(Out, SpellingOff, Off);
539 }
540
541 namespace {
542 /// StatListener - A simple "interpose" object used to monitor stat calls
543 /// invoked by FileManager while processing the original sources used
544 /// as input to PTH generation. StatListener populates the PTHWriter's
545 /// file map with stat information for directories as well as negative stats.
546 /// Stat information for files are populated elsewhere.
547 class StatListener : public FileSystemStatCache {
548 PTHMap &PM;
549 public:
StatListener(PTHMap & pm)550 StatListener(PTHMap &pm) : PM(pm) {}
~StatListener()551 ~StatListener() override {}
552
getStat(const char * Path,FileData & Data,bool isFile,std::unique_ptr<vfs::File> * F,vfs::FileSystem & FS)553 LookupResult getStat(const char *Path, FileData &Data, bool isFile,
554 std::unique_ptr<vfs::File> *F,
555 vfs::FileSystem &FS) override {
556 LookupResult Result = statChained(Path, Data, isFile, F, FS);
557
558 if (Result == CacheMissing) // Failed 'stat'.
559 PM.insert(PTHEntryKeyVariant(Path), PTHEntry());
560 else if (Data.IsDirectory) {
561 // Only cache directories with absolute paths.
562 if (llvm::sys::path::is_relative(Path))
563 return Result;
564
565 PM.insert(PTHEntryKeyVariant(&Data, Path), PTHEntry());
566 }
567
568 return Result;
569 }
570 };
571 } // end anonymous namespace
572
CacheTokens(Preprocessor & PP,raw_pwrite_stream * OS)573 void clang::CacheTokens(Preprocessor &PP, raw_pwrite_stream *OS) {
574 // Get the name of the main file.
575 const SourceManager &SrcMgr = PP.getSourceManager();
576 const FileEntry *MainFile = SrcMgr.getFileEntryForID(SrcMgr.getMainFileID());
577 SmallString<128> MainFilePath(MainFile->getName());
578
579 llvm::sys::fs::make_absolute(MainFilePath);
580
581 // Create the PTHWriter.
582 PTHWriter PW(*OS, PP);
583
584 // Install the 'stat' system call listener in the FileManager.
585 auto StatCacheOwner = llvm::make_unique<StatListener>(PW.getPM());
586 StatListener *StatCache = StatCacheOwner.get();
587 PP.getFileManager().addStatCache(std::move(StatCacheOwner),
588 /*AtBeginning=*/true);
589
590 // Lex through the entire file. This will populate SourceManager with
591 // all of the header information.
592 Token Tok;
593 PP.EnterMainSourceFile();
594 do { PP.Lex(Tok); } while (Tok.isNot(tok::eof));
595
596 // Generate the PTH file.
597 PP.getFileManager().removeStatCache(StatCache);
598 PW.GeneratePTH(MainFilePath.str());
599 }
600
601 //===----------------------------------------------------------------------===//
602
603 namespace {
604 class PTHIdKey {
605 public:
606 const IdentifierInfo* II;
607 uint32_t FileOffset;
608 };
609
610 class PTHIdentifierTableTrait {
611 public:
612 typedef PTHIdKey* key_type;
613 typedef key_type key_type_ref;
614
615 typedef uint32_t data_type;
616 typedef data_type data_type_ref;
617
618 typedef unsigned hash_value_type;
619 typedef unsigned offset_type;
620
ComputeHash(PTHIdKey * key)621 static hash_value_type ComputeHash(PTHIdKey* key) {
622 return llvm::HashString(key->II->getName());
623 }
624
625 static std::pair<unsigned,unsigned>
EmitKeyDataLength(raw_ostream & Out,const PTHIdKey * key,uint32_t)626 EmitKeyDataLength(raw_ostream& Out, const PTHIdKey* key, uint32_t) {
627 using namespace llvm::support;
628 unsigned n = key->II->getLength() + 1;
629 endian::Writer<little>(Out).write<uint16_t>(n);
630 return std::make_pair(n, sizeof(uint32_t));
631 }
632
EmitKey(raw_ostream & Out,PTHIdKey * key,unsigned n)633 static void EmitKey(raw_ostream& Out, PTHIdKey* key, unsigned n) {
634 // Record the location of the key data. This is used when generating
635 // the mapping from persistent IDs to strings.
636 key->FileOffset = Out.tell();
637 Out.write(key->II->getNameStart(), n);
638 }
639
EmitData(raw_ostream & Out,PTHIdKey *,uint32_t pID,unsigned)640 static void EmitData(raw_ostream& Out, PTHIdKey*, uint32_t pID,
641 unsigned) {
642 using namespace llvm::support;
643 endian::Writer<little>(Out).write<uint32_t>(pID);
644 }
645 };
646 } // end anonymous namespace
647
648 /// EmitIdentifierTable - Emits two tables to the PTH file. The first is
649 /// a hashtable mapping from identifier strings to persistent IDs. The second
650 /// is a straight table mapping from persistent IDs to string data (the
651 /// keys of the first table).
652 ///
EmitIdentifierTable()653 std::pair<Offset,Offset> PTHWriter::EmitIdentifierTable() {
654 // Build two maps:
655 // (1) an inverse map from persistent IDs -> (IdentifierInfo*,Offset)
656 // (2) a map from (IdentifierInfo*, Offset)* -> persistent IDs
657
658 // Note that we use 'calloc', so all the bytes are 0.
659 PTHIdKey *IIDMap = (PTHIdKey*)calloc(idcount, sizeof(PTHIdKey));
660
661 // Create the hashtable.
662 llvm::OnDiskChainedHashTableGenerator<PTHIdentifierTableTrait> IIOffMap;
663
664 // Generate mapping from persistent IDs -> IdentifierInfo*.
665 for (IDMap::iterator I = IM.begin(), E = IM.end(); I != E; ++I) {
666 // Decrement by 1 because we are using a vector for the lookup and
667 // 0 is reserved for NULL.
668 assert(I->second > 0);
669 assert(I->second-1 < idcount);
670 unsigned idx = I->second-1;
671
672 // Store the mapping from persistent ID to IdentifierInfo*
673 IIDMap[idx].II = I->first;
674
675 // Store the reverse mapping in a hashtable.
676 IIOffMap.insert(&IIDMap[idx], I->second);
677 }
678
679 // Write out the inverse map first. This causes the PCIDKey entries to
680 // record PTH file offsets for the string data. This is used to write
681 // the second table.
682 Offset StringTableOffset = IIOffMap.Emit(Out);
683
684 // Now emit the table mapping from persistent IDs to PTH file offsets.
685 Offset IDOff = Out.tell();
686 Emit32(idcount); // Emit the number of identifiers.
687 for (unsigned i = 0 ; i < idcount; ++i)
688 Emit32(IIDMap[i].FileOffset);
689
690 // Finally, release the inverse map.
691 free(IIDMap);
692
693 return std::make_pair(IDOff, StringTableOffset);
694 }
695