1 //===-- tsan_interface_atomic.cc ------------------------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file is a part of ThreadSanitizer (TSan), a race detector.
11 //
12 //===----------------------------------------------------------------------===//
13
14 // ThreadSanitizer atomic operations are based on C++11/C1x standards.
15 // For background see C++11 standard. A slightly older, publicly
16 // available draft of the standard (not entirely up-to-date, but close enough
17 // for casual browsing) is available here:
18 // http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2011/n3242.pdf
19 // The following page contains more background information:
20 // http://www.hpl.hp.com/personal/Hans_Boehm/c++mm/
21
22 #include "sanitizer_common/sanitizer_placement_new.h"
23 #include "sanitizer_common/sanitizer_stacktrace.h"
24 #include "sanitizer_common/sanitizer_mutex.h"
25 #include "tsan_flags.h"
26 #include "tsan_rtl.h"
27
28 using namespace __tsan; // NOLINT
29
30 // These should match declarations from public tsan_interface_atomic.h header.
31 typedef unsigned char a8;
32 typedef unsigned short a16; // NOLINT
33 typedef unsigned int a32;
34 typedef unsigned long long a64; // NOLINT
35 #if !defined(SANITIZER_GO) && (defined(__SIZEOF_INT128__) \
36 || (__clang_major__ * 100 + __clang_minor__ >= 302)) && !defined(__mips64)
37 __extension__ typedef __int128 a128;
38 # define __TSAN_HAS_INT128 1
39 #else
40 # define __TSAN_HAS_INT128 0
41 #endif
42
43 #if !defined(SANITIZER_GO) && __TSAN_HAS_INT128
44 // Protects emulation of 128-bit atomic operations.
45 static StaticSpinMutex mutex128;
46 #endif
47
48 // Part of ABI, do not change.
49 // http://llvm.org/viewvc/llvm-project/libcxx/trunk/include/atomic?view=markup
50 typedef enum {
51 mo_relaxed,
52 mo_consume,
53 mo_acquire,
54 mo_release,
55 mo_acq_rel,
56 mo_seq_cst
57 } morder;
58
IsLoadOrder(morder mo)59 static bool IsLoadOrder(morder mo) {
60 return mo == mo_relaxed || mo == mo_consume
61 || mo == mo_acquire || mo == mo_seq_cst;
62 }
63
IsStoreOrder(morder mo)64 static bool IsStoreOrder(morder mo) {
65 return mo == mo_relaxed || mo == mo_release || mo == mo_seq_cst;
66 }
67
IsReleaseOrder(morder mo)68 static bool IsReleaseOrder(morder mo) {
69 return mo == mo_release || mo == mo_acq_rel || mo == mo_seq_cst;
70 }
71
IsAcquireOrder(morder mo)72 static bool IsAcquireOrder(morder mo) {
73 return mo == mo_consume || mo == mo_acquire
74 || mo == mo_acq_rel || mo == mo_seq_cst;
75 }
76
IsAcqRelOrder(morder mo)77 static bool IsAcqRelOrder(morder mo) {
78 return mo == mo_acq_rel || mo == mo_seq_cst;
79 }
80
func_xchg(volatile T * v,T op)81 template<typename T> T func_xchg(volatile T *v, T op) {
82 T res = __sync_lock_test_and_set(v, op);
83 // __sync_lock_test_and_set does not contain full barrier.
84 __sync_synchronize();
85 return res;
86 }
87
func_add(volatile T * v,T op)88 template<typename T> T func_add(volatile T *v, T op) {
89 return __sync_fetch_and_add(v, op);
90 }
91
func_sub(volatile T * v,T op)92 template<typename T> T func_sub(volatile T *v, T op) {
93 return __sync_fetch_and_sub(v, op);
94 }
95
func_and(volatile T * v,T op)96 template<typename T> T func_and(volatile T *v, T op) {
97 return __sync_fetch_and_and(v, op);
98 }
99
func_or(volatile T * v,T op)100 template<typename T> T func_or(volatile T *v, T op) {
101 return __sync_fetch_and_or(v, op);
102 }
103
func_xor(volatile T * v,T op)104 template<typename T> T func_xor(volatile T *v, T op) {
105 return __sync_fetch_and_xor(v, op);
106 }
107
func_nand(volatile T * v,T op)108 template<typename T> T func_nand(volatile T *v, T op) {
109 // clang does not support __sync_fetch_and_nand.
110 T cmp = *v;
111 for (;;) {
112 T newv = ~(cmp & op);
113 T cur = __sync_val_compare_and_swap(v, cmp, newv);
114 if (cmp == cur)
115 return cmp;
116 cmp = cur;
117 }
118 }
119
func_cas(volatile T * v,T cmp,T xch)120 template<typename T> T func_cas(volatile T *v, T cmp, T xch) {
121 return __sync_val_compare_and_swap(v, cmp, xch);
122 }
123
124 // clang does not support 128-bit atomic ops.
125 // Atomic ops are executed under tsan internal mutex,
126 // here we assume that the atomic variables are not accessed
127 // from non-instrumented code.
128 #if !defined(__GCC_HAVE_SYNC_COMPARE_AND_SWAP_16) && !defined(SANITIZER_GO) \
129 && __TSAN_HAS_INT128
func_xchg(volatile a128 * v,a128 op)130 a128 func_xchg(volatile a128 *v, a128 op) {
131 SpinMutexLock lock(&mutex128);
132 a128 cmp = *v;
133 *v = op;
134 return cmp;
135 }
136
func_add(volatile a128 * v,a128 op)137 a128 func_add(volatile a128 *v, a128 op) {
138 SpinMutexLock lock(&mutex128);
139 a128 cmp = *v;
140 *v = cmp + op;
141 return cmp;
142 }
143
func_sub(volatile a128 * v,a128 op)144 a128 func_sub(volatile a128 *v, a128 op) {
145 SpinMutexLock lock(&mutex128);
146 a128 cmp = *v;
147 *v = cmp - op;
148 return cmp;
149 }
150
func_and(volatile a128 * v,a128 op)151 a128 func_and(volatile a128 *v, a128 op) {
152 SpinMutexLock lock(&mutex128);
153 a128 cmp = *v;
154 *v = cmp & op;
155 return cmp;
156 }
157
func_or(volatile a128 * v,a128 op)158 a128 func_or(volatile a128 *v, a128 op) {
159 SpinMutexLock lock(&mutex128);
160 a128 cmp = *v;
161 *v = cmp | op;
162 return cmp;
163 }
164
func_xor(volatile a128 * v,a128 op)165 a128 func_xor(volatile a128 *v, a128 op) {
166 SpinMutexLock lock(&mutex128);
167 a128 cmp = *v;
168 *v = cmp ^ op;
169 return cmp;
170 }
171
func_nand(volatile a128 * v,a128 op)172 a128 func_nand(volatile a128 *v, a128 op) {
173 SpinMutexLock lock(&mutex128);
174 a128 cmp = *v;
175 *v = ~(cmp & op);
176 return cmp;
177 }
178
func_cas(volatile a128 * v,a128 cmp,a128 xch)179 a128 func_cas(volatile a128 *v, a128 cmp, a128 xch) {
180 SpinMutexLock lock(&mutex128);
181 a128 cur = *v;
182 if (cur == cmp)
183 *v = xch;
184 return cur;
185 }
186 #endif
187
188 template<typename T>
SizeLog()189 static int SizeLog() {
190 if (sizeof(T) <= 1)
191 return kSizeLog1;
192 else if (sizeof(T) <= 2)
193 return kSizeLog2;
194 else if (sizeof(T) <= 4)
195 return kSizeLog4;
196 else
197 return kSizeLog8;
198 // For 16-byte atomics we also use 8-byte memory access,
199 // this leads to false negatives only in very obscure cases.
200 }
201
202 #ifndef SANITIZER_GO
to_atomic(const volatile a8 * a)203 static atomic_uint8_t *to_atomic(const volatile a8 *a) {
204 return reinterpret_cast<atomic_uint8_t *>(const_cast<a8 *>(a));
205 }
206
to_atomic(const volatile a16 * a)207 static atomic_uint16_t *to_atomic(const volatile a16 *a) {
208 return reinterpret_cast<atomic_uint16_t *>(const_cast<a16 *>(a));
209 }
210 #endif
211
to_atomic(const volatile a32 * a)212 static atomic_uint32_t *to_atomic(const volatile a32 *a) {
213 return reinterpret_cast<atomic_uint32_t *>(const_cast<a32 *>(a));
214 }
215
to_atomic(const volatile a64 * a)216 static atomic_uint64_t *to_atomic(const volatile a64 *a) {
217 return reinterpret_cast<atomic_uint64_t *>(const_cast<a64 *>(a));
218 }
219
to_mo(morder mo)220 static memory_order to_mo(morder mo) {
221 switch (mo) {
222 case mo_relaxed: return memory_order_relaxed;
223 case mo_consume: return memory_order_consume;
224 case mo_acquire: return memory_order_acquire;
225 case mo_release: return memory_order_release;
226 case mo_acq_rel: return memory_order_acq_rel;
227 case mo_seq_cst: return memory_order_seq_cst;
228 }
229 CHECK(0);
230 return memory_order_seq_cst;
231 }
232
233 template<typename T>
NoTsanAtomicLoad(const volatile T * a,morder mo)234 static T NoTsanAtomicLoad(const volatile T *a, morder mo) {
235 return atomic_load(to_atomic(a), to_mo(mo));
236 }
237
238 #if __TSAN_HAS_INT128 && !defined(SANITIZER_GO)
NoTsanAtomicLoad(const volatile a128 * a,morder mo)239 static a128 NoTsanAtomicLoad(const volatile a128 *a, morder mo) {
240 SpinMutexLock lock(&mutex128);
241 return *a;
242 }
243 #endif
244
245 template<typename T>
AtomicLoad(ThreadState * thr,uptr pc,const volatile T * a,morder mo)246 static T AtomicLoad(ThreadState *thr, uptr pc, const volatile T *a,
247 morder mo) {
248 CHECK(IsLoadOrder(mo));
249 // This fast-path is critical for performance.
250 // Assume the access is atomic.
251 if (!IsAcquireOrder(mo)) {
252 MemoryReadAtomic(thr, pc, (uptr)a, SizeLog<T>());
253 return NoTsanAtomicLoad(a, mo);
254 }
255 SyncVar *s = ctx->metamap.GetOrCreateAndLock(thr, pc, (uptr)a, false);
256 AcquireImpl(thr, pc, &s->clock);
257 T v = NoTsanAtomicLoad(a, mo);
258 s->mtx.ReadUnlock();
259 MemoryReadAtomic(thr, pc, (uptr)a, SizeLog<T>());
260 return v;
261 }
262
263 template<typename T>
NoTsanAtomicStore(volatile T * a,T v,morder mo)264 static void NoTsanAtomicStore(volatile T *a, T v, morder mo) {
265 atomic_store(to_atomic(a), v, to_mo(mo));
266 }
267
268 #if __TSAN_HAS_INT128 && !defined(SANITIZER_GO)
NoTsanAtomicStore(volatile a128 * a,a128 v,morder mo)269 static void NoTsanAtomicStore(volatile a128 *a, a128 v, morder mo) {
270 SpinMutexLock lock(&mutex128);
271 *a = v;
272 }
273 #endif
274
275 template<typename T>
AtomicStore(ThreadState * thr,uptr pc,volatile T * a,T v,morder mo)276 static void AtomicStore(ThreadState *thr, uptr pc, volatile T *a, T v,
277 morder mo) {
278 CHECK(IsStoreOrder(mo));
279 MemoryWriteAtomic(thr, pc, (uptr)a, SizeLog<T>());
280 // This fast-path is critical for performance.
281 // Assume the access is atomic.
282 // Strictly saying even relaxed store cuts off release sequence,
283 // so must reset the clock.
284 if (!IsReleaseOrder(mo)) {
285 NoTsanAtomicStore(a, v, mo);
286 return;
287 }
288 __sync_synchronize();
289 SyncVar *s = ctx->metamap.GetOrCreateAndLock(thr, pc, (uptr)a, true);
290 thr->fast_state.IncrementEpoch();
291 // Can't increment epoch w/o writing to the trace as well.
292 TraceAddEvent(thr, thr->fast_state, EventTypeMop, 0);
293 ReleaseImpl(thr, pc, &s->clock);
294 NoTsanAtomicStore(a, v, mo);
295 s->mtx.Unlock();
296 }
297
298 template<typename T, T (*F)(volatile T *v, T op)>
AtomicRMW(ThreadState * thr,uptr pc,volatile T * a,T v,morder mo)299 static T AtomicRMW(ThreadState *thr, uptr pc, volatile T *a, T v, morder mo) {
300 MemoryWriteAtomic(thr, pc, (uptr)a, SizeLog<T>());
301 SyncVar *s = 0;
302 if (mo != mo_relaxed) {
303 s = ctx->metamap.GetOrCreateAndLock(thr, pc, (uptr)a, true);
304 thr->fast_state.IncrementEpoch();
305 // Can't increment epoch w/o writing to the trace as well.
306 TraceAddEvent(thr, thr->fast_state, EventTypeMop, 0);
307 if (IsAcqRelOrder(mo))
308 AcquireReleaseImpl(thr, pc, &s->clock);
309 else if (IsReleaseOrder(mo))
310 ReleaseImpl(thr, pc, &s->clock);
311 else if (IsAcquireOrder(mo))
312 AcquireImpl(thr, pc, &s->clock);
313 }
314 v = F(a, v);
315 if (s)
316 s->mtx.Unlock();
317 return v;
318 }
319
320 template<typename T>
NoTsanAtomicExchange(volatile T * a,T v,morder mo)321 static T NoTsanAtomicExchange(volatile T *a, T v, morder mo) {
322 return func_xchg(a, v);
323 }
324
325 template<typename T>
NoTsanAtomicFetchAdd(volatile T * a,T v,morder mo)326 static T NoTsanAtomicFetchAdd(volatile T *a, T v, morder mo) {
327 return func_add(a, v);
328 }
329
330 template<typename T>
NoTsanAtomicFetchSub(volatile T * a,T v,morder mo)331 static T NoTsanAtomicFetchSub(volatile T *a, T v, morder mo) {
332 return func_sub(a, v);
333 }
334
335 template<typename T>
NoTsanAtomicFetchAnd(volatile T * a,T v,morder mo)336 static T NoTsanAtomicFetchAnd(volatile T *a, T v, morder mo) {
337 return func_and(a, v);
338 }
339
340 template<typename T>
NoTsanAtomicFetchOr(volatile T * a,T v,morder mo)341 static T NoTsanAtomicFetchOr(volatile T *a, T v, morder mo) {
342 return func_or(a, v);
343 }
344
345 template<typename T>
NoTsanAtomicFetchXor(volatile T * a,T v,morder mo)346 static T NoTsanAtomicFetchXor(volatile T *a, T v, morder mo) {
347 return func_xor(a, v);
348 }
349
350 template<typename T>
NoTsanAtomicFetchNand(volatile T * a,T v,morder mo)351 static T NoTsanAtomicFetchNand(volatile T *a, T v, morder mo) {
352 return func_nand(a, v);
353 }
354
355 template<typename T>
AtomicExchange(ThreadState * thr,uptr pc,volatile T * a,T v,morder mo)356 static T AtomicExchange(ThreadState *thr, uptr pc, volatile T *a, T v,
357 morder mo) {
358 return AtomicRMW<T, func_xchg>(thr, pc, a, v, mo);
359 }
360
361 template<typename T>
AtomicFetchAdd(ThreadState * thr,uptr pc,volatile T * a,T v,morder mo)362 static T AtomicFetchAdd(ThreadState *thr, uptr pc, volatile T *a, T v,
363 morder mo) {
364 return AtomicRMW<T, func_add>(thr, pc, a, v, mo);
365 }
366
367 template<typename T>
AtomicFetchSub(ThreadState * thr,uptr pc,volatile T * a,T v,morder mo)368 static T AtomicFetchSub(ThreadState *thr, uptr pc, volatile T *a, T v,
369 morder mo) {
370 return AtomicRMW<T, func_sub>(thr, pc, a, v, mo);
371 }
372
373 template<typename T>
AtomicFetchAnd(ThreadState * thr,uptr pc,volatile T * a,T v,morder mo)374 static T AtomicFetchAnd(ThreadState *thr, uptr pc, volatile T *a, T v,
375 morder mo) {
376 return AtomicRMW<T, func_and>(thr, pc, a, v, mo);
377 }
378
379 template<typename T>
AtomicFetchOr(ThreadState * thr,uptr pc,volatile T * a,T v,morder mo)380 static T AtomicFetchOr(ThreadState *thr, uptr pc, volatile T *a, T v,
381 morder mo) {
382 return AtomicRMW<T, func_or>(thr, pc, a, v, mo);
383 }
384
385 template<typename T>
AtomicFetchXor(ThreadState * thr,uptr pc,volatile T * a,T v,morder mo)386 static T AtomicFetchXor(ThreadState *thr, uptr pc, volatile T *a, T v,
387 morder mo) {
388 return AtomicRMW<T, func_xor>(thr, pc, a, v, mo);
389 }
390
391 template<typename T>
AtomicFetchNand(ThreadState * thr,uptr pc,volatile T * a,T v,morder mo)392 static T AtomicFetchNand(ThreadState *thr, uptr pc, volatile T *a, T v,
393 morder mo) {
394 return AtomicRMW<T, func_nand>(thr, pc, a, v, mo);
395 }
396
397 template<typename T>
NoTsanAtomicCAS(volatile T * a,T * c,T v,morder mo,morder fmo)398 static bool NoTsanAtomicCAS(volatile T *a, T *c, T v, morder mo, morder fmo) {
399 return atomic_compare_exchange_strong(to_atomic(a), c, v, to_mo(mo));
400 }
401
402 #if __TSAN_HAS_INT128
NoTsanAtomicCAS(volatile a128 * a,a128 * c,a128 v,morder mo,morder fmo)403 static bool NoTsanAtomicCAS(volatile a128 *a, a128 *c, a128 v,
404 morder mo, morder fmo) {
405 a128 old = *c;
406 a128 cur = func_cas(a, old, v);
407 if (cur == old)
408 return true;
409 *c = cur;
410 return false;
411 }
412 #endif
413
414 template<typename T>
NoTsanAtomicCAS(volatile T * a,T c,T v,morder mo,morder fmo)415 static T NoTsanAtomicCAS(volatile T *a, T c, T v, morder mo, morder fmo) {
416 NoTsanAtomicCAS(a, &c, v, mo, fmo);
417 return c;
418 }
419
420 template<typename T>
AtomicCAS(ThreadState * thr,uptr pc,volatile T * a,T * c,T v,morder mo,morder fmo)421 static bool AtomicCAS(ThreadState *thr, uptr pc,
422 volatile T *a, T *c, T v, morder mo, morder fmo) {
423 (void)fmo; // Unused because llvm does not pass it yet.
424 MemoryWriteAtomic(thr, pc, (uptr)a, SizeLog<T>());
425 SyncVar *s = 0;
426 bool write_lock = mo != mo_acquire && mo != mo_consume;
427 if (mo != mo_relaxed) {
428 s = ctx->metamap.GetOrCreateAndLock(thr, pc, (uptr)a, write_lock);
429 thr->fast_state.IncrementEpoch();
430 // Can't increment epoch w/o writing to the trace as well.
431 TraceAddEvent(thr, thr->fast_state, EventTypeMop, 0);
432 if (IsAcqRelOrder(mo))
433 AcquireReleaseImpl(thr, pc, &s->clock);
434 else if (IsReleaseOrder(mo))
435 ReleaseImpl(thr, pc, &s->clock);
436 else if (IsAcquireOrder(mo))
437 AcquireImpl(thr, pc, &s->clock);
438 }
439 T cc = *c;
440 T pr = func_cas(a, cc, v);
441 if (s) {
442 if (write_lock)
443 s->mtx.Unlock();
444 else
445 s->mtx.ReadUnlock();
446 }
447 if (pr == cc)
448 return true;
449 *c = pr;
450 return false;
451 }
452
453 template<typename T>
AtomicCAS(ThreadState * thr,uptr pc,volatile T * a,T c,T v,morder mo,morder fmo)454 static T AtomicCAS(ThreadState *thr, uptr pc,
455 volatile T *a, T c, T v, morder mo, morder fmo) {
456 AtomicCAS(thr, pc, a, &c, v, mo, fmo);
457 return c;
458 }
459
460 #ifndef SANITIZER_GO
NoTsanAtomicFence(morder mo)461 static void NoTsanAtomicFence(morder mo) {
462 __sync_synchronize();
463 }
464
AtomicFence(ThreadState * thr,uptr pc,morder mo)465 static void AtomicFence(ThreadState *thr, uptr pc, morder mo) {
466 // FIXME(dvyukov): not implemented.
467 __sync_synchronize();
468 }
469 #endif
470
471 // Interface functions follow.
472 #ifndef SANITIZER_GO
473
474 // C/C++
475
476 #define SCOPED_ATOMIC(func, ...) \
477 const uptr callpc = (uptr)__builtin_return_address(0); \
478 uptr pc = StackTrace::GetCurrentPc(); \
479 mo = flags()->force_seq_cst_atomics ? (morder)mo_seq_cst : mo; \
480 ThreadState *const thr = cur_thread(); \
481 if (thr->ignore_interceptors) \
482 return NoTsanAtomic##func(__VA_ARGS__); \
483 AtomicStatInc(thr, sizeof(*a), mo, StatAtomic##func); \
484 ScopedAtomic sa(thr, callpc, a, mo, __func__); \
485 return Atomic##func(thr, pc, __VA_ARGS__); \
486 /**/
487
488 class ScopedAtomic {
489 public:
ScopedAtomic(ThreadState * thr,uptr pc,const volatile void * a,morder mo,const char * func)490 ScopedAtomic(ThreadState *thr, uptr pc, const volatile void *a,
491 morder mo, const char *func)
492 : thr_(thr) {
493 FuncEntry(thr_, pc);
494 DPrintf("#%d: %s(%p, %d)\n", thr_->tid, func, a, mo);
495 }
~ScopedAtomic()496 ~ScopedAtomic() {
497 ProcessPendingSignals(thr_);
498 FuncExit(thr_);
499 }
500 private:
501 ThreadState *thr_;
502 };
503
AtomicStatInc(ThreadState * thr,uptr size,morder mo,StatType t)504 static void AtomicStatInc(ThreadState *thr, uptr size, morder mo, StatType t) {
505 StatInc(thr, StatAtomic);
506 StatInc(thr, t);
507 StatInc(thr, size == 1 ? StatAtomic1
508 : size == 2 ? StatAtomic2
509 : size == 4 ? StatAtomic4
510 : size == 8 ? StatAtomic8
511 : StatAtomic16);
512 StatInc(thr, mo == mo_relaxed ? StatAtomicRelaxed
513 : mo == mo_consume ? StatAtomicConsume
514 : mo == mo_acquire ? StatAtomicAcquire
515 : mo == mo_release ? StatAtomicRelease
516 : mo == mo_acq_rel ? StatAtomicAcq_Rel
517 : StatAtomicSeq_Cst);
518 }
519
520 extern "C" {
521 SANITIZER_INTERFACE_ATTRIBUTE
__tsan_atomic8_load(const volatile a8 * a,morder mo)522 a8 __tsan_atomic8_load(const volatile a8 *a, morder mo) {
523 SCOPED_ATOMIC(Load, a, mo);
524 }
525
526 SANITIZER_INTERFACE_ATTRIBUTE
__tsan_atomic16_load(const volatile a16 * a,morder mo)527 a16 __tsan_atomic16_load(const volatile a16 *a, morder mo) {
528 SCOPED_ATOMIC(Load, a, mo);
529 }
530
531 SANITIZER_INTERFACE_ATTRIBUTE
__tsan_atomic32_load(const volatile a32 * a,morder mo)532 a32 __tsan_atomic32_load(const volatile a32 *a, morder mo) {
533 SCOPED_ATOMIC(Load, a, mo);
534 }
535
536 SANITIZER_INTERFACE_ATTRIBUTE
__tsan_atomic64_load(const volatile a64 * a,morder mo)537 a64 __tsan_atomic64_load(const volatile a64 *a, morder mo) {
538 SCOPED_ATOMIC(Load, a, mo);
539 }
540
541 #if __TSAN_HAS_INT128
542 SANITIZER_INTERFACE_ATTRIBUTE
__tsan_atomic128_load(const volatile a128 * a,morder mo)543 a128 __tsan_atomic128_load(const volatile a128 *a, morder mo) {
544 SCOPED_ATOMIC(Load, a, mo);
545 }
546 #endif
547
548 SANITIZER_INTERFACE_ATTRIBUTE
__tsan_atomic8_store(volatile a8 * a,a8 v,morder mo)549 void __tsan_atomic8_store(volatile a8 *a, a8 v, morder mo) {
550 SCOPED_ATOMIC(Store, a, v, mo);
551 }
552
553 SANITIZER_INTERFACE_ATTRIBUTE
__tsan_atomic16_store(volatile a16 * a,a16 v,morder mo)554 void __tsan_atomic16_store(volatile a16 *a, a16 v, morder mo) {
555 SCOPED_ATOMIC(Store, a, v, mo);
556 }
557
558 SANITIZER_INTERFACE_ATTRIBUTE
__tsan_atomic32_store(volatile a32 * a,a32 v,morder mo)559 void __tsan_atomic32_store(volatile a32 *a, a32 v, morder mo) {
560 SCOPED_ATOMIC(Store, a, v, mo);
561 }
562
563 SANITIZER_INTERFACE_ATTRIBUTE
__tsan_atomic64_store(volatile a64 * a,a64 v,morder mo)564 void __tsan_atomic64_store(volatile a64 *a, a64 v, morder mo) {
565 SCOPED_ATOMIC(Store, a, v, mo);
566 }
567
568 #if __TSAN_HAS_INT128
569 SANITIZER_INTERFACE_ATTRIBUTE
__tsan_atomic128_store(volatile a128 * a,a128 v,morder mo)570 void __tsan_atomic128_store(volatile a128 *a, a128 v, morder mo) {
571 SCOPED_ATOMIC(Store, a, v, mo);
572 }
573 #endif
574
575 SANITIZER_INTERFACE_ATTRIBUTE
__tsan_atomic8_exchange(volatile a8 * a,a8 v,morder mo)576 a8 __tsan_atomic8_exchange(volatile a8 *a, a8 v, morder mo) {
577 SCOPED_ATOMIC(Exchange, a, v, mo);
578 }
579
580 SANITIZER_INTERFACE_ATTRIBUTE
__tsan_atomic16_exchange(volatile a16 * a,a16 v,morder mo)581 a16 __tsan_atomic16_exchange(volatile a16 *a, a16 v, morder mo) {
582 SCOPED_ATOMIC(Exchange, a, v, mo);
583 }
584
585 SANITIZER_INTERFACE_ATTRIBUTE
__tsan_atomic32_exchange(volatile a32 * a,a32 v,morder mo)586 a32 __tsan_atomic32_exchange(volatile a32 *a, a32 v, morder mo) {
587 SCOPED_ATOMIC(Exchange, a, v, mo);
588 }
589
590 SANITIZER_INTERFACE_ATTRIBUTE
__tsan_atomic64_exchange(volatile a64 * a,a64 v,morder mo)591 a64 __tsan_atomic64_exchange(volatile a64 *a, a64 v, morder mo) {
592 SCOPED_ATOMIC(Exchange, a, v, mo);
593 }
594
595 #if __TSAN_HAS_INT128
596 SANITIZER_INTERFACE_ATTRIBUTE
__tsan_atomic128_exchange(volatile a128 * a,a128 v,morder mo)597 a128 __tsan_atomic128_exchange(volatile a128 *a, a128 v, morder mo) {
598 SCOPED_ATOMIC(Exchange, a, v, mo);
599 }
600 #endif
601
602 SANITIZER_INTERFACE_ATTRIBUTE
__tsan_atomic8_fetch_add(volatile a8 * a,a8 v,morder mo)603 a8 __tsan_atomic8_fetch_add(volatile a8 *a, a8 v, morder mo) {
604 SCOPED_ATOMIC(FetchAdd, a, v, mo);
605 }
606
607 SANITIZER_INTERFACE_ATTRIBUTE
__tsan_atomic16_fetch_add(volatile a16 * a,a16 v,morder mo)608 a16 __tsan_atomic16_fetch_add(volatile a16 *a, a16 v, morder mo) {
609 SCOPED_ATOMIC(FetchAdd, a, v, mo);
610 }
611
612 SANITIZER_INTERFACE_ATTRIBUTE
__tsan_atomic32_fetch_add(volatile a32 * a,a32 v,morder mo)613 a32 __tsan_atomic32_fetch_add(volatile a32 *a, a32 v, morder mo) {
614 SCOPED_ATOMIC(FetchAdd, a, v, mo);
615 }
616
617 SANITIZER_INTERFACE_ATTRIBUTE
__tsan_atomic64_fetch_add(volatile a64 * a,a64 v,morder mo)618 a64 __tsan_atomic64_fetch_add(volatile a64 *a, a64 v, morder mo) {
619 SCOPED_ATOMIC(FetchAdd, a, v, mo);
620 }
621
622 #if __TSAN_HAS_INT128
623 SANITIZER_INTERFACE_ATTRIBUTE
__tsan_atomic128_fetch_add(volatile a128 * a,a128 v,morder mo)624 a128 __tsan_atomic128_fetch_add(volatile a128 *a, a128 v, morder mo) {
625 SCOPED_ATOMIC(FetchAdd, a, v, mo);
626 }
627 #endif
628
629 SANITIZER_INTERFACE_ATTRIBUTE
__tsan_atomic8_fetch_sub(volatile a8 * a,a8 v,morder mo)630 a8 __tsan_atomic8_fetch_sub(volatile a8 *a, a8 v, morder mo) {
631 SCOPED_ATOMIC(FetchSub, a, v, mo);
632 }
633
634 SANITIZER_INTERFACE_ATTRIBUTE
__tsan_atomic16_fetch_sub(volatile a16 * a,a16 v,morder mo)635 a16 __tsan_atomic16_fetch_sub(volatile a16 *a, a16 v, morder mo) {
636 SCOPED_ATOMIC(FetchSub, a, v, mo);
637 }
638
639 SANITIZER_INTERFACE_ATTRIBUTE
__tsan_atomic32_fetch_sub(volatile a32 * a,a32 v,morder mo)640 a32 __tsan_atomic32_fetch_sub(volatile a32 *a, a32 v, morder mo) {
641 SCOPED_ATOMIC(FetchSub, a, v, mo);
642 }
643
644 SANITIZER_INTERFACE_ATTRIBUTE
__tsan_atomic64_fetch_sub(volatile a64 * a,a64 v,morder mo)645 a64 __tsan_atomic64_fetch_sub(volatile a64 *a, a64 v, morder mo) {
646 SCOPED_ATOMIC(FetchSub, a, v, mo);
647 }
648
649 #if __TSAN_HAS_INT128
650 SANITIZER_INTERFACE_ATTRIBUTE
__tsan_atomic128_fetch_sub(volatile a128 * a,a128 v,morder mo)651 a128 __tsan_atomic128_fetch_sub(volatile a128 *a, a128 v, morder mo) {
652 SCOPED_ATOMIC(FetchSub, a, v, mo);
653 }
654 #endif
655
656 SANITIZER_INTERFACE_ATTRIBUTE
__tsan_atomic8_fetch_and(volatile a8 * a,a8 v,morder mo)657 a8 __tsan_atomic8_fetch_and(volatile a8 *a, a8 v, morder mo) {
658 SCOPED_ATOMIC(FetchAnd, a, v, mo);
659 }
660
661 SANITIZER_INTERFACE_ATTRIBUTE
__tsan_atomic16_fetch_and(volatile a16 * a,a16 v,morder mo)662 a16 __tsan_atomic16_fetch_and(volatile a16 *a, a16 v, morder mo) {
663 SCOPED_ATOMIC(FetchAnd, a, v, mo);
664 }
665
666 SANITIZER_INTERFACE_ATTRIBUTE
__tsan_atomic32_fetch_and(volatile a32 * a,a32 v,morder mo)667 a32 __tsan_atomic32_fetch_and(volatile a32 *a, a32 v, morder mo) {
668 SCOPED_ATOMIC(FetchAnd, a, v, mo);
669 }
670
671 SANITIZER_INTERFACE_ATTRIBUTE
__tsan_atomic64_fetch_and(volatile a64 * a,a64 v,morder mo)672 a64 __tsan_atomic64_fetch_and(volatile a64 *a, a64 v, morder mo) {
673 SCOPED_ATOMIC(FetchAnd, a, v, mo);
674 }
675
676 #if __TSAN_HAS_INT128
677 SANITIZER_INTERFACE_ATTRIBUTE
__tsan_atomic128_fetch_and(volatile a128 * a,a128 v,morder mo)678 a128 __tsan_atomic128_fetch_and(volatile a128 *a, a128 v, morder mo) {
679 SCOPED_ATOMIC(FetchAnd, a, v, mo);
680 }
681 #endif
682
683 SANITIZER_INTERFACE_ATTRIBUTE
__tsan_atomic8_fetch_or(volatile a8 * a,a8 v,morder mo)684 a8 __tsan_atomic8_fetch_or(volatile a8 *a, a8 v, morder mo) {
685 SCOPED_ATOMIC(FetchOr, a, v, mo);
686 }
687
688 SANITIZER_INTERFACE_ATTRIBUTE
__tsan_atomic16_fetch_or(volatile a16 * a,a16 v,morder mo)689 a16 __tsan_atomic16_fetch_or(volatile a16 *a, a16 v, morder mo) {
690 SCOPED_ATOMIC(FetchOr, a, v, mo);
691 }
692
693 SANITIZER_INTERFACE_ATTRIBUTE
__tsan_atomic32_fetch_or(volatile a32 * a,a32 v,morder mo)694 a32 __tsan_atomic32_fetch_or(volatile a32 *a, a32 v, morder mo) {
695 SCOPED_ATOMIC(FetchOr, a, v, mo);
696 }
697
698 SANITIZER_INTERFACE_ATTRIBUTE
__tsan_atomic64_fetch_or(volatile a64 * a,a64 v,morder mo)699 a64 __tsan_atomic64_fetch_or(volatile a64 *a, a64 v, morder mo) {
700 SCOPED_ATOMIC(FetchOr, a, v, mo);
701 }
702
703 #if __TSAN_HAS_INT128
704 SANITIZER_INTERFACE_ATTRIBUTE
__tsan_atomic128_fetch_or(volatile a128 * a,a128 v,morder mo)705 a128 __tsan_atomic128_fetch_or(volatile a128 *a, a128 v, morder mo) {
706 SCOPED_ATOMIC(FetchOr, a, v, mo);
707 }
708 #endif
709
710 SANITIZER_INTERFACE_ATTRIBUTE
__tsan_atomic8_fetch_xor(volatile a8 * a,a8 v,morder mo)711 a8 __tsan_atomic8_fetch_xor(volatile a8 *a, a8 v, morder mo) {
712 SCOPED_ATOMIC(FetchXor, a, v, mo);
713 }
714
715 SANITIZER_INTERFACE_ATTRIBUTE
__tsan_atomic16_fetch_xor(volatile a16 * a,a16 v,morder mo)716 a16 __tsan_atomic16_fetch_xor(volatile a16 *a, a16 v, morder mo) {
717 SCOPED_ATOMIC(FetchXor, a, v, mo);
718 }
719
720 SANITIZER_INTERFACE_ATTRIBUTE
__tsan_atomic32_fetch_xor(volatile a32 * a,a32 v,morder mo)721 a32 __tsan_atomic32_fetch_xor(volatile a32 *a, a32 v, morder mo) {
722 SCOPED_ATOMIC(FetchXor, a, v, mo);
723 }
724
725 SANITIZER_INTERFACE_ATTRIBUTE
__tsan_atomic64_fetch_xor(volatile a64 * a,a64 v,morder mo)726 a64 __tsan_atomic64_fetch_xor(volatile a64 *a, a64 v, morder mo) {
727 SCOPED_ATOMIC(FetchXor, a, v, mo);
728 }
729
730 #if __TSAN_HAS_INT128
731 SANITIZER_INTERFACE_ATTRIBUTE
__tsan_atomic128_fetch_xor(volatile a128 * a,a128 v,morder mo)732 a128 __tsan_atomic128_fetch_xor(volatile a128 *a, a128 v, morder mo) {
733 SCOPED_ATOMIC(FetchXor, a, v, mo);
734 }
735 #endif
736
737 SANITIZER_INTERFACE_ATTRIBUTE
__tsan_atomic8_fetch_nand(volatile a8 * a,a8 v,morder mo)738 a8 __tsan_atomic8_fetch_nand(volatile a8 *a, a8 v, morder mo) {
739 SCOPED_ATOMIC(FetchNand, a, v, mo);
740 }
741
742 SANITIZER_INTERFACE_ATTRIBUTE
__tsan_atomic16_fetch_nand(volatile a16 * a,a16 v,morder mo)743 a16 __tsan_atomic16_fetch_nand(volatile a16 *a, a16 v, morder mo) {
744 SCOPED_ATOMIC(FetchNand, a, v, mo);
745 }
746
747 SANITIZER_INTERFACE_ATTRIBUTE
__tsan_atomic32_fetch_nand(volatile a32 * a,a32 v,morder mo)748 a32 __tsan_atomic32_fetch_nand(volatile a32 *a, a32 v, morder mo) {
749 SCOPED_ATOMIC(FetchNand, a, v, mo);
750 }
751
752 SANITIZER_INTERFACE_ATTRIBUTE
__tsan_atomic64_fetch_nand(volatile a64 * a,a64 v,morder mo)753 a64 __tsan_atomic64_fetch_nand(volatile a64 *a, a64 v, morder mo) {
754 SCOPED_ATOMIC(FetchNand, a, v, mo);
755 }
756
757 #if __TSAN_HAS_INT128
758 SANITIZER_INTERFACE_ATTRIBUTE
__tsan_atomic128_fetch_nand(volatile a128 * a,a128 v,morder mo)759 a128 __tsan_atomic128_fetch_nand(volatile a128 *a, a128 v, morder mo) {
760 SCOPED_ATOMIC(FetchNand, a, v, mo);
761 }
762 #endif
763
764 SANITIZER_INTERFACE_ATTRIBUTE
__tsan_atomic8_compare_exchange_strong(volatile a8 * a,a8 * c,a8 v,morder mo,morder fmo)765 int __tsan_atomic8_compare_exchange_strong(volatile a8 *a, a8 *c, a8 v,
766 morder mo, morder fmo) {
767 SCOPED_ATOMIC(CAS, a, c, v, mo, fmo);
768 }
769
770 SANITIZER_INTERFACE_ATTRIBUTE
__tsan_atomic16_compare_exchange_strong(volatile a16 * a,a16 * c,a16 v,morder mo,morder fmo)771 int __tsan_atomic16_compare_exchange_strong(volatile a16 *a, a16 *c, a16 v,
772 morder mo, morder fmo) {
773 SCOPED_ATOMIC(CAS, a, c, v, mo, fmo);
774 }
775
776 SANITIZER_INTERFACE_ATTRIBUTE
__tsan_atomic32_compare_exchange_strong(volatile a32 * a,a32 * c,a32 v,morder mo,morder fmo)777 int __tsan_atomic32_compare_exchange_strong(volatile a32 *a, a32 *c, a32 v,
778 morder mo, morder fmo) {
779 SCOPED_ATOMIC(CAS, a, c, v, mo, fmo);
780 }
781
782 SANITIZER_INTERFACE_ATTRIBUTE
__tsan_atomic64_compare_exchange_strong(volatile a64 * a,a64 * c,a64 v,morder mo,morder fmo)783 int __tsan_atomic64_compare_exchange_strong(volatile a64 *a, a64 *c, a64 v,
784 morder mo, morder fmo) {
785 SCOPED_ATOMIC(CAS, a, c, v, mo, fmo);
786 }
787
788 #if __TSAN_HAS_INT128
789 SANITIZER_INTERFACE_ATTRIBUTE
__tsan_atomic128_compare_exchange_strong(volatile a128 * a,a128 * c,a128 v,morder mo,morder fmo)790 int __tsan_atomic128_compare_exchange_strong(volatile a128 *a, a128 *c, a128 v,
791 morder mo, morder fmo) {
792 SCOPED_ATOMIC(CAS, a, c, v, mo, fmo);
793 }
794 #endif
795
796 SANITIZER_INTERFACE_ATTRIBUTE
__tsan_atomic8_compare_exchange_weak(volatile a8 * a,a8 * c,a8 v,morder mo,morder fmo)797 int __tsan_atomic8_compare_exchange_weak(volatile a8 *a, a8 *c, a8 v,
798 morder mo, morder fmo) {
799 SCOPED_ATOMIC(CAS, a, c, v, mo, fmo);
800 }
801
802 SANITIZER_INTERFACE_ATTRIBUTE
__tsan_atomic16_compare_exchange_weak(volatile a16 * a,a16 * c,a16 v,morder mo,morder fmo)803 int __tsan_atomic16_compare_exchange_weak(volatile a16 *a, a16 *c, a16 v,
804 morder mo, morder fmo) {
805 SCOPED_ATOMIC(CAS, a, c, v, mo, fmo);
806 }
807
808 SANITIZER_INTERFACE_ATTRIBUTE
__tsan_atomic32_compare_exchange_weak(volatile a32 * a,a32 * c,a32 v,morder mo,morder fmo)809 int __tsan_atomic32_compare_exchange_weak(volatile a32 *a, a32 *c, a32 v,
810 morder mo, morder fmo) {
811 SCOPED_ATOMIC(CAS, a, c, v, mo, fmo);
812 }
813
814 SANITIZER_INTERFACE_ATTRIBUTE
__tsan_atomic64_compare_exchange_weak(volatile a64 * a,a64 * c,a64 v,morder mo,morder fmo)815 int __tsan_atomic64_compare_exchange_weak(volatile a64 *a, a64 *c, a64 v,
816 morder mo, morder fmo) {
817 SCOPED_ATOMIC(CAS, a, c, v, mo, fmo);
818 }
819
820 #if __TSAN_HAS_INT128
821 SANITIZER_INTERFACE_ATTRIBUTE
__tsan_atomic128_compare_exchange_weak(volatile a128 * a,a128 * c,a128 v,morder mo,morder fmo)822 int __tsan_atomic128_compare_exchange_weak(volatile a128 *a, a128 *c, a128 v,
823 morder mo, morder fmo) {
824 SCOPED_ATOMIC(CAS, a, c, v, mo, fmo);
825 }
826 #endif
827
828 SANITIZER_INTERFACE_ATTRIBUTE
__tsan_atomic8_compare_exchange_val(volatile a8 * a,a8 c,a8 v,morder mo,morder fmo)829 a8 __tsan_atomic8_compare_exchange_val(volatile a8 *a, a8 c, a8 v,
830 morder mo, morder fmo) {
831 SCOPED_ATOMIC(CAS, a, c, v, mo, fmo);
832 }
833
834 SANITIZER_INTERFACE_ATTRIBUTE
__tsan_atomic16_compare_exchange_val(volatile a16 * a,a16 c,a16 v,morder mo,morder fmo)835 a16 __tsan_atomic16_compare_exchange_val(volatile a16 *a, a16 c, a16 v,
836 morder mo, morder fmo) {
837 SCOPED_ATOMIC(CAS, a, c, v, mo, fmo);
838 }
839
840 SANITIZER_INTERFACE_ATTRIBUTE
__tsan_atomic32_compare_exchange_val(volatile a32 * a,a32 c,a32 v,morder mo,morder fmo)841 a32 __tsan_atomic32_compare_exchange_val(volatile a32 *a, a32 c, a32 v,
842 morder mo, morder fmo) {
843 SCOPED_ATOMIC(CAS, a, c, v, mo, fmo);
844 }
845
846 SANITIZER_INTERFACE_ATTRIBUTE
__tsan_atomic64_compare_exchange_val(volatile a64 * a,a64 c,a64 v,morder mo,morder fmo)847 a64 __tsan_atomic64_compare_exchange_val(volatile a64 *a, a64 c, a64 v,
848 morder mo, morder fmo) {
849 SCOPED_ATOMIC(CAS, a, c, v, mo, fmo);
850 }
851
852 #if __TSAN_HAS_INT128
853 SANITIZER_INTERFACE_ATTRIBUTE
__tsan_atomic128_compare_exchange_val(volatile a128 * a,a128 c,a128 v,morder mo,morder fmo)854 a128 __tsan_atomic128_compare_exchange_val(volatile a128 *a, a128 c, a128 v,
855 morder mo, morder fmo) {
856 SCOPED_ATOMIC(CAS, a, c, v, mo, fmo);
857 }
858 #endif
859
860 SANITIZER_INTERFACE_ATTRIBUTE
__tsan_atomic_thread_fence(morder mo)861 void __tsan_atomic_thread_fence(morder mo) {
862 char* a = 0;
863 SCOPED_ATOMIC(Fence, mo);
864 }
865
866 SANITIZER_INTERFACE_ATTRIBUTE
__tsan_atomic_signal_fence(morder mo)867 void __tsan_atomic_signal_fence(morder mo) {
868 }
869 } // extern "C"
870
871 #else // #ifndef SANITIZER_GO
872
873 // Go
874
875 #define ATOMIC(func, ...) \
876 if (thr->ignore_sync) { \
877 NoTsanAtomic##func(__VA_ARGS__); \
878 } else { \
879 FuncEntry(thr, cpc); \
880 Atomic##func(thr, pc, __VA_ARGS__); \
881 FuncExit(thr); \
882 } \
883 /**/
884
885 #define ATOMIC_RET(func, ret, ...) \
886 if (thr->ignore_sync) { \
887 (ret) = NoTsanAtomic##func(__VA_ARGS__); \
888 } else { \
889 FuncEntry(thr, cpc); \
890 (ret) = Atomic##func(thr, pc, __VA_ARGS__); \
891 FuncExit(thr); \
892 } \
893 /**/
894
895 extern "C" {
896 SANITIZER_INTERFACE_ATTRIBUTE
__tsan_go_atomic32_load(ThreadState * thr,uptr cpc,uptr pc,u8 * a)897 void __tsan_go_atomic32_load(ThreadState *thr, uptr cpc, uptr pc, u8 *a) {
898 ATOMIC_RET(Load, *(a32*)(a+8), *(a32**)a, mo_acquire);
899 }
900
901 SANITIZER_INTERFACE_ATTRIBUTE
__tsan_go_atomic64_load(ThreadState * thr,uptr cpc,uptr pc,u8 * a)902 void __tsan_go_atomic64_load(ThreadState *thr, uptr cpc, uptr pc, u8 *a) {
903 ATOMIC_RET(Load, *(a64*)(a+8), *(a64**)a, mo_acquire);
904 }
905
906 SANITIZER_INTERFACE_ATTRIBUTE
__tsan_go_atomic32_store(ThreadState * thr,uptr cpc,uptr pc,u8 * a)907 void __tsan_go_atomic32_store(ThreadState *thr, uptr cpc, uptr pc, u8 *a) {
908 ATOMIC(Store, *(a32**)a, *(a32*)(a+8), mo_release);
909 }
910
911 SANITIZER_INTERFACE_ATTRIBUTE
__tsan_go_atomic64_store(ThreadState * thr,uptr cpc,uptr pc,u8 * a)912 void __tsan_go_atomic64_store(ThreadState *thr, uptr cpc, uptr pc, u8 *a) {
913 ATOMIC(Store, *(a64**)a, *(a64*)(a+8), mo_release);
914 }
915
916 SANITIZER_INTERFACE_ATTRIBUTE
__tsan_go_atomic32_fetch_add(ThreadState * thr,uptr cpc,uptr pc,u8 * a)917 void __tsan_go_atomic32_fetch_add(ThreadState *thr, uptr cpc, uptr pc, u8 *a) {
918 ATOMIC_RET(FetchAdd, *(a32*)(a+16), *(a32**)a, *(a32*)(a+8), mo_acq_rel);
919 }
920
921 SANITIZER_INTERFACE_ATTRIBUTE
__tsan_go_atomic64_fetch_add(ThreadState * thr,uptr cpc,uptr pc,u8 * a)922 void __tsan_go_atomic64_fetch_add(ThreadState *thr, uptr cpc, uptr pc, u8 *a) {
923 ATOMIC_RET(FetchAdd, *(a64*)(a+16), *(a64**)a, *(a64*)(a+8), mo_acq_rel);
924 }
925
926 SANITIZER_INTERFACE_ATTRIBUTE
__tsan_go_atomic32_exchange(ThreadState * thr,uptr cpc,uptr pc,u8 * a)927 void __tsan_go_atomic32_exchange(ThreadState *thr, uptr cpc, uptr pc, u8 *a) {
928 ATOMIC_RET(Exchange, *(a32*)(a+16), *(a32**)a, *(a32*)(a+8), mo_acq_rel);
929 }
930
931 SANITIZER_INTERFACE_ATTRIBUTE
__tsan_go_atomic64_exchange(ThreadState * thr,uptr cpc,uptr pc,u8 * a)932 void __tsan_go_atomic64_exchange(ThreadState *thr, uptr cpc, uptr pc, u8 *a) {
933 ATOMIC_RET(Exchange, *(a64*)(a+16), *(a64**)a, *(a64*)(a+8), mo_acq_rel);
934 }
935
936 SANITIZER_INTERFACE_ATTRIBUTE
__tsan_go_atomic32_compare_exchange(ThreadState * thr,uptr cpc,uptr pc,u8 * a)937 void __tsan_go_atomic32_compare_exchange(
938 ThreadState *thr, uptr cpc, uptr pc, u8 *a) {
939 a32 cur = 0;
940 a32 cmp = *(a32*)(a+8);
941 ATOMIC_RET(CAS, cur, *(a32**)a, cmp, *(a32*)(a+12), mo_acq_rel, mo_acquire);
942 *(bool*)(a+16) = (cur == cmp);
943 }
944
945 SANITIZER_INTERFACE_ATTRIBUTE
__tsan_go_atomic64_compare_exchange(ThreadState * thr,uptr cpc,uptr pc,u8 * a)946 void __tsan_go_atomic64_compare_exchange(
947 ThreadState *thr, uptr cpc, uptr pc, u8 *a) {
948 a64 cur = 0;
949 a64 cmp = *(a64*)(a+8);
950 ATOMIC_RET(CAS, cur, *(a64**)a, cmp, *(a64*)(a+16), mo_acq_rel, mo_acquire);
951 *(bool*)(a+24) = (cur == cmp);
952 }
953 } // extern "C"
954 #endif // #ifndef SANITIZER_GO
955