• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
5 //
6 // This Source Code Form is subject to the terms of the Mozilla
7 // Public License v. 2.0. If a copy of the MPL was not distributed
8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9 
10 #ifndef EIGEN_ANGLEAXIS_H
11 #define EIGEN_ANGLEAXIS_H
12 
13 namespace Eigen {
14 
15 /** \geometry_module \ingroup Geometry_Module
16   *
17   * \class AngleAxis
18   *
19   * \brief Represents a 3D rotation as a rotation angle around an arbitrary 3D axis
20   *
21   * \param _Scalar the scalar type, i.e., the type of the coefficients.
22   *
23   * \warning When setting up an AngleAxis object, the axis vector \b must \b be \b normalized.
24   *
25   * The following two typedefs are provided for convenience:
26   * \li \c AngleAxisf for \c float
27   * \li \c AngleAxisd for \c double
28   *
29   * Combined with MatrixBase::Unit{X,Y,Z}, AngleAxis can be used to easily
30   * mimic Euler-angles. Here is an example:
31   * \include AngleAxis_mimic_euler.cpp
32   * Output: \verbinclude AngleAxis_mimic_euler.out
33   *
34   * \note This class is not aimed to be used to store a rotation transformation,
35   * but rather to make easier the creation of other rotation (Quaternion, rotation Matrix)
36   * and transformation objects.
37   *
38   * \sa class Quaternion, class Transform, MatrixBase::UnitX()
39   */
40 
41 namespace internal {
42 template<typename _Scalar> struct traits<AngleAxis<_Scalar> >
43 {
44   typedef _Scalar Scalar;
45 };
46 }
47 
48 template<typename _Scalar>
49 class AngleAxis : public RotationBase<AngleAxis<_Scalar>,3>
50 {
51   typedef RotationBase<AngleAxis<_Scalar>,3> Base;
52 
53 public:
54 
55   using Base::operator*;
56 
57   enum { Dim = 3 };
58   /** the scalar type of the coefficients */
59   typedef _Scalar Scalar;
60   typedef Matrix<Scalar,3,3> Matrix3;
61   typedef Matrix<Scalar,3,1> Vector3;
62   typedef Quaternion<Scalar> QuaternionType;
63 
64 protected:
65 
66   Vector3 m_axis;
67   Scalar m_angle;
68 
69 public:
70 
71   /** Default constructor without initialization. */
72   AngleAxis() {}
73   /** Constructs and initialize the angle-axis rotation from an \a angle in radian
74     * and an \a axis which \b must \b be \b normalized.
75     *
76     * \warning If the \a axis vector is not normalized, then the angle-axis object
77     *          represents an invalid rotation. */
78   template<typename Derived>
79   inline AngleAxis(const Scalar& angle, const MatrixBase<Derived>& axis) : m_axis(axis), m_angle(angle) {}
80   /** Constructs and initialize the angle-axis rotation from a quaternion \a q. */
81   template<typename QuatDerived> inline explicit AngleAxis(const QuaternionBase<QuatDerived>& q) { *this = q; }
82   /** Constructs and initialize the angle-axis rotation from a 3x3 rotation matrix. */
83   template<typename Derived>
84   inline explicit AngleAxis(const MatrixBase<Derived>& m) { *this = m; }
85 
86   Scalar angle() const { return m_angle; }
87   Scalar& angle() { return m_angle; }
88 
89   const Vector3& axis() const { return m_axis; }
90   Vector3& axis() { return m_axis; }
91 
92   /** Concatenates two rotations */
93   inline QuaternionType operator* (const AngleAxis& other) const
94   { return QuaternionType(*this) * QuaternionType(other); }
95 
96   /** Concatenates two rotations */
97   inline QuaternionType operator* (const QuaternionType& other) const
98   { return QuaternionType(*this) * other; }
99 
100   /** Concatenates two rotations */
101   friend inline QuaternionType operator* (const QuaternionType& a, const AngleAxis& b)
102   { return a * QuaternionType(b); }
103 
104   /** \returns the inverse rotation, i.e., an angle-axis with opposite rotation angle */
105   AngleAxis inverse() const
106   { return AngleAxis(-m_angle, m_axis); }
107 
108   template<class QuatDerived>
109   AngleAxis& operator=(const QuaternionBase<QuatDerived>& q);
110   template<typename Derived>
111   AngleAxis& operator=(const MatrixBase<Derived>& m);
112 
113   template<typename Derived>
114   AngleAxis& fromRotationMatrix(const MatrixBase<Derived>& m);
115   Matrix3 toRotationMatrix(void) const;
116 
117   /** \returns \c *this with scalar type casted to \a NewScalarType
118     *
119     * Note that if \a NewScalarType is equal to the current scalar type of \c *this
120     * then this function smartly returns a const reference to \c *this.
121     */
122   template<typename NewScalarType>
123   inline typename internal::cast_return_type<AngleAxis,AngleAxis<NewScalarType> >::type cast() const
124   { return typename internal::cast_return_type<AngleAxis,AngleAxis<NewScalarType> >::type(*this); }
125 
126   /** Copy constructor with scalar type conversion */
127   template<typename OtherScalarType>
128   inline explicit AngleAxis(const AngleAxis<OtherScalarType>& other)
129   {
130     m_axis = other.axis().template cast<Scalar>();
131     m_angle = Scalar(other.angle());
132   }
133 
134   static inline const AngleAxis Identity() { return AngleAxis(0, Vector3::UnitX()); }
135 
136   /** \returns \c true if \c *this is approximately equal to \a other, within the precision
137     * determined by \a prec.
138     *
139     * \sa MatrixBase::isApprox() */
140   bool isApprox(const AngleAxis& other, const typename NumTraits<Scalar>::Real& prec = NumTraits<Scalar>::dummy_precision()) const
141   { return m_axis.isApprox(other.m_axis, prec) && internal::isApprox(m_angle,other.m_angle, prec); }
142 };
143 
144 /** \ingroup Geometry_Module
145   * single precision angle-axis type */
146 typedef AngleAxis<float> AngleAxisf;
147 /** \ingroup Geometry_Module
148   * double precision angle-axis type */
149 typedef AngleAxis<double> AngleAxisd;
150 
151 /** Set \c *this from a \b unit quaternion.
152   * The axis is normalized.
153   *
154   * \warning As any other method dealing with quaternion, if the input quaternion
155   *          is not normalized then the result is undefined.
156   */
157 template<typename Scalar>
158 template<typename QuatDerived>
159 AngleAxis<Scalar>& AngleAxis<Scalar>::operator=(const QuaternionBase<QuatDerived>& q)
160 {
161   using std::acos;
162   using std::min;
163   using std::max;
164   using std::sqrt;
165   Scalar n2 = q.vec().squaredNorm();
166   if (n2 < NumTraits<Scalar>::dummy_precision()*NumTraits<Scalar>::dummy_precision())
167   {
168     m_angle = 0;
169     m_axis << 1, 0, 0;
170   }
171   else
172   {
173     m_angle = Scalar(2)*acos((min)((max)(Scalar(-1),q.w()),Scalar(1)));
174     m_axis = q.vec() / sqrt(n2);
175   }
176   return *this;
177 }
178 
179 /** Set \c *this from a 3x3 rotation matrix \a mat.
180   */
181 template<typename Scalar>
182 template<typename Derived>
183 AngleAxis<Scalar>& AngleAxis<Scalar>::operator=(const MatrixBase<Derived>& mat)
184 {
185   // Since a direct conversion would not be really faster,
186   // let's use the robust Quaternion implementation:
187   return *this = QuaternionType(mat);
188 }
189 
190 /**
191 * \brief Sets \c *this from a 3x3 rotation matrix.
192 **/
193 template<typename Scalar>
194 template<typename Derived>
195 AngleAxis<Scalar>& AngleAxis<Scalar>::fromRotationMatrix(const MatrixBase<Derived>& mat)
196 {
197   return *this = QuaternionType(mat);
198 }
199 
200 /** Constructs and \returns an equivalent 3x3 rotation matrix.
201   */
202 template<typename Scalar>
203 typename AngleAxis<Scalar>::Matrix3
204 AngleAxis<Scalar>::toRotationMatrix(void) const
205 {
206   using std::sin;
207   using std::cos;
208   Matrix3 res;
209   Vector3 sin_axis  = sin(m_angle) * m_axis;
210   Scalar c = cos(m_angle);
211   Vector3 cos1_axis = (Scalar(1)-c) * m_axis;
212 
213   Scalar tmp;
214   tmp = cos1_axis.x() * m_axis.y();
215   res.coeffRef(0,1) = tmp - sin_axis.z();
216   res.coeffRef(1,0) = tmp + sin_axis.z();
217 
218   tmp = cos1_axis.x() * m_axis.z();
219   res.coeffRef(0,2) = tmp + sin_axis.y();
220   res.coeffRef(2,0) = tmp - sin_axis.y();
221 
222   tmp = cos1_axis.y() * m_axis.z();
223   res.coeffRef(1,2) = tmp - sin_axis.x();
224   res.coeffRef(2,1) = tmp + sin_axis.x();
225 
226   res.diagonal() = (cos1_axis.cwiseProduct(m_axis)).array() + c;
227 
228   return res;
229 }
230 
231 } // end namespace Eigen
232 
233 #endif // EIGEN_ANGLEAXIS_H
234