• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2012 Desire Nuentsa <desire.nuentsa_wakam@inria.fr>
5 //
6 // This Source Code Form is subject to the terms of the Mozilla
7 // Public License v. 2.0. If a copy of the MPL was not distributed
8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9 
10 #ifndef EIGEN_SUITESPARSEQRSUPPORT_H
11 #define EIGEN_SUITESPARSEQRSUPPORT_H
12 
13 namespace Eigen {
14 
15   template<typename MatrixType> class SPQR;
16   template<typename SPQRType> struct SPQRMatrixQReturnType;
17   template<typename SPQRType> struct SPQRMatrixQTransposeReturnType;
18   template <typename SPQRType, typename Derived> struct SPQR_QProduct;
19   namespace internal {
20     template <typename SPQRType> struct traits<SPQRMatrixQReturnType<SPQRType> >
21     {
22       typedef typename SPQRType::MatrixType ReturnType;
23     };
24     template <typename SPQRType> struct traits<SPQRMatrixQTransposeReturnType<SPQRType> >
25     {
26       typedef typename SPQRType::MatrixType ReturnType;
27     };
28     template <typename SPQRType, typename Derived> struct traits<SPQR_QProduct<SPQRType, Derived> >
29     {
30       typedef typename Derived::PlainObject ReturnType;
31     };
32   } // End namespace internal
33 
34 /**
35  * \ingroup SPQRSupport_Module
36  * \class SPQR
37  * \brief Sparse QR factorization based on SuiteSparseQR library
38  *
39  * This class is used to perform a multithreaded and multifrontal rank-revealing QR decomposition
40  * of sparse matrices. The result is then used to solve linear leasts_square systems.
41  * Clearly, a QR factorization is returned such that A*P = Q*R where :
42  *
43  * P is the column permutation. Use colsPermutation() to get it.
44  *
45  * Q is the orthogonal matrix represented as Householder reflectors.
46  * Use matrixQ() to get an expression and matrixQ().transpose() to get the transpose.
47  * You can then apply it to a vector.
48  *
49  * R is the sparse triangular factor. Use matrixQR() to get it as SparseMatrix.
50  * NOTE : The Index type of R is always UF_long. You can get it with SPQR::Index
51  *
52  * \tparam _MatrixType The type of the sparse matrix A, must be a column-major SparseMatrix<>
53  * NOTE
54  *
55  */
56 template<typename _MatrixType>
57 class SPQR
58 {
59   public:
60     typedef typename _MatrixType::Scalar Scalar;
61     typedef typename _MatrixType::RealScalar RealScalar;
62     typedef UF_long Index ;
63     typedef SparseMatrix<Scalar, ColMajor, Index> MatrixType;
64     typedef PermutationMatrix<Dynamic, Dynamic> PermutationType;
65   public:
66     SPQR()
67       : m_isInitialized(false), m_ordering(SPQR_ORDERING_DEFAULT), m_allow_tol(SPQR_DEFAULT_TOL), m_tolerance (NumTraits<Scalar>::epsilon()), m_useDefaultThreshold(true)
68     {
69       cholmod_l_start(&m_cc);
70     }
71 
72     SPQR(const _MatrixType& matrix)
73     : m_isInitialized(false), m_ordering(SPQR_ORDERING_DEFAULT), m_allow_tol(SPQR_DEFAULT_TOL), m_tolerance (NumTraits<Scalar>::epsilon()), m_useDefaultThreshold(true)
74     {
75       cholmod_l_start(&m_cc);
76       compute(matrix);
77     }
78 
79     ~SPQR()
80     {
81       SPQR_free();
82       cholmod_l_finish(&m_cc);
83     }
84     void SPQR_free()
85     {
86       cholmod_l_free_sparse(&m_H, &m_cc);
87       cholmod_l_free_sparse(&m_cR, &m_cc);
88       cholmod_l_free_dense(&m_HTau, &m_cc);
89       std::free(m_E);
90       std::free(m_HPinv);
91     }
92 
93     void compute(const _MatrixType& matrix)
94     {
95       if(m_isInitialized) SPQR_free();
96 
97       MatrixType mat(matrix);
98 
99       /* Compute the default threshold as in MatLab, see:
100        * Tim Davis, "Algorithm 915, SuiteSparseQR: Multifrontal Multithreaded Rank-Revealing
101        * Sparse QR Factorization, ACM Trans. on Math. Soft. 38(1), 2011, Page 8:3
102        */
103       RealScalar pivotThreshold = m_tolerance;
104       if(m_useDefaultThreshold)
105       {
106         using std::max;
107         RealScalar max2Norm = 0.0;
108         for (int j = 0; j < mat.cols(); j++) max2Norm = (max)(max2Norm, mat.col(j).norm());
109         if(max2Norm==RealScalar(0))
110           max2Norm = RealScalar(1);
111         pivotThreshold = 20 * (mat.rows() + mat.cols()) * max2Norm * NumTraits<RealScalar>::epsilon();
112       }
113 
114       cholmod_sparse A;
115       A = viewAsCholmod(mat);
116       Index col = matrix.cols();
117       m_rank = SuiteSparseQR<Scalar>(m_ordering, pivotThreshold, col, &A,
118                              &m_cR, &m_E, &m_H, &m_HPinv, &m_HTau, &m_cc);
119 
120       if (!m_cR)
121       {
122         m_info = NumericalIssue;
123         m_isInitialized = false;
124         return;
125       }
126       m_info = Success;
127       m_isInitialized = true;
128       m_isRUpToDate = false;
129     }
130     /**
131      * Get the number of rows of the input matrix and the Q matrix
132      */
133     inline Index rows() const {return m_cR->nrow; }
134 
135     /**
136      * Get the number of columns of the input matrix.
137      */
138     inline Index cols() const { return m_cR->ncol; }
139 
140       /** \returns the solution X of \f$ A X = B \f$ using the current decomposition of A.
141       *
142       * \sa compute()
143       */
144     template<typename Rhs>
145     inline const internal::solve_retval<SPQR, Rhs> solve(const MatrixBase<Rhs>& B) const
146     {
147       eigen_assert(m_isInitialized && " The QR factorization should be computed first, call compute()");
148       eigen_assert(this->rows()==B.rows()
149                     && "SPQR::solve(): invalid number of rows of the right hand side matrix B");
150           return internal::solve_retval<SPQR, Rhs>(*this, B.derived());
151     }
152 
153     template<typename Rhs, typename Dest>
154     void _solve(const MatrixBase<Rhs> &b, MatrixBase<Dest> &dest) const
155     {
156       eigen_assert(m_isInitialized && " The QR factorization should be computed first, call compute()");
157       eigen_assert(b.cols()==1 && "This method is for vectors only");
158 
159       //Compute Q^T * b
160       typename Dest::PlainObject y, y2;
161       y = matrixQ().transpose() * b;
162 
163       // Solves with the triangular matrix R
164       Index rk = this->rank();
165       y2 = y;
166       y.resize((std::max)(cols(),Index(y.rows())),y.cols());
167       y.topRows(rk) = this->matrixR().topLeftCorner(rk, rk).template triangularView<Upper>().solve(y2.topRows(rk));
168 
169       // Apply the column permutation
170       // colsPermutation() performs a copy of the permutation,
171       // so let's apply it manually:
172       for(Index i = 0; i < rk; ++i) dest.row(m_E[i]) = y.row(i);
173       for(Index i = rk; i < cols(); ++i) dest.row(m_E[i]).setZero();
174 
175 //       y.bottomRows(y.rows()-rk).setZero();
176 //       dest = colsPermutation() * y.topRows(cols());
177 
178       m_info = Success;
179     }
180 
181     /** \returns the sparse triangular factor R. It is a sparse matrix
182      */
183     const MatrixType matrixR() const
184     {
185       eigen_assert(m_isInitialized && " The QR factorization should be computed first, call compute()");
186       if(!m_isRUpToDate) {
187         m_R = viewAsEigen<Scalar,ColMajor, typename MatrixType::Index>(*m_cR);
188         m_isRUpToDate = true;
189       }
190       return m_R;
191     }
192     /// Get an expression of the matrix Q
193     SPQRMatrixQReturnType<SPQR> matrixQ() const
194     {
195       return SPQRMatrixQReturnType<SPQR>(*this);
196     }
197     /// Get the permutation that was applied to columns of A
198     PermutationType colsPermutation() const
199     {
200       eigen_assert(m_isInitialized && "Decomposition is not initialized.");
201       Index n = m_cR->ncol;
202       PermutationType colsPerm(n);
203       for(Index j = 0; j <n; j++) colsPerm.indices()(j) = m_E[j];
204       return colsPerm;
205 
206     }
207     /**
208      * Gets the rank of the matrix.
209      * It should be equal to matrixQR().cols if the matrix is full-rank
210      */
211     Index rank() const
212     {
213       eigen_assert(m_isInitialized && "Decomposition is not initialized.");
214       return m_cc.SPQR_istat[4];
215     }
216     /// Set the fill-reducing ordering method to be used
217     void setSPQROrdering(int ord) { m_ordering = ord;}
218     /// Set the tolerance tol to treat columns with 2-norm < =tol as zero
219     void setPivotThreshold(const RealScalar& tol)
220     {
221       m_useDefaultThreshold = false;
222       m_tolerance = tol;
223     }
224 
225     /** \returns a pointer to the SPQR workspace */
226     cholmod_common *cholmodCommon() const { return &m_cc; }
227 
228 
229     /** \brief Reports whether previous computation was successful.
230       *
231       * \returns \c Success if computation was succesful,
232       *          \c NumericalIssue if the sparse QR can not be computed
233       */
234     ComputationInfo info() const
235     {
236       eigen_assert(m_isInitialized && "Decomposition is not initialized.");
237       return m_info;
238     }
239   protected:
240     bool m_isInitialized;
241     bool m_analysisIsOk;
242     bool m_factorizationIsOk;
243     mutable bool m_isRUpToDate;
244     mutable ComputationInfo m_info;
245     int m_ordering; // Ordering method to use, see SPQR's manual
246     int m_allow_tol; // Allow to use some tolerance during numerical factorization.
247     RealScalar m_tolerance; // treat columns with 2-norm below this tolerance as zero
248     mutable cholmod_sparse *m_cR; // The sparse R factor in cholmod format
249     mutable MatrixType m_R; // The sparse matrix R in Eigen format
250     mutable Index *m_E; // The permutation applied to columns
251     mutable cholmod_sparse *m_H;  //The householder vectors
252     mutable Index *m_HPinv; // The row permutation of H
253     mutable cholmod_dense *m_HTau; // The Householder coefficients
254     mutable Index m_rank; // The rank of the matrix
255     mutable cholmod_common m_cc; // Workspace and parameters
256     bool m_useDefaultThreshold;     // Use default threshold
257     template<typename ,typename > friend struct SPQR_QProduct;
258 };
259 
260 template <typename SPQRType, typename Derived>
261 struct SPQR_QProduct : ReturnByValue<SPQR_QProduct<SPQRType,Derived> >
262 {
263   typedef typename SPQRType::Scalar Scalar;
264   typedef typename SPQRType::Index Index;
265   //Define the constructor to get reference to argument types
266   SPQR_QProduct(const SPQRType& spqr, const Derived& other, bool transpose) : m_spqr(spqr),m_other(other),m_transpose(transpose) {}
267 
268   inline Index rows() const { return m_transpose ? m_spqr.rows() : m_spqr.cols(); }
269   inline Index cols() const { return m_other.cols(); }
270   // Assign to a vector
271   template<typename ResType>
272   void evalTo(ResType& res) const
273   {
274     cholmod_dense y_cd;
275     cholmod_dense *x_cd;
276     int method = m_transpose ? SPQR_QTX : SPQR_QX;
277     cholmod_common *cc = m_spqr.cholmodCommon();
278     y_cd = viewAsCholmod(m_other.const_cast_derived());
279     x_cd = SuiteSparseQR_qmult<Scalar>(method, m_spqr.m_H, m_spqr.m_HTau, m_spqr.m_HPinv, &y_cd, cc);
280     res = Matrix<Scalar,ResType::RowsAtCompileTime,ResType::ColsAtCompileTime>::Map(reinterpret_cast<Scalar*>(x_cd->x), x_cd->nrow, x_cd->ncol);
281     cholmod_l_free_dense(&x_cd, cc);
282   }
283   const SPQRType& m_spqr;
284   const Derived& m_other;
285   bool m_transpose;
286 
287 };
288 template<typename SPQRType>
289 struct SPQRMatrixQReturnType{
290 
291   SPQRMatrixQReturnType(const SPQRType& spqr) : m_spqr(spqr) {}
292   template<typename Derived>
293   SPQR_QProduct<SPQRType, Derived> operator*(const MatrixBase<Derived>& other)
294   {
295     return SPQR_QProduct<SPQRType,Derived>(m_spqr,other.derived(),false);
296   }
297   SPQRMatrixQTransposeReturnType<SPQRType> adjoint() const
298   {
299     return SPQRMatrixQTransposeReturnType<SPQRType>(m_spqr);
300   }
301   // To use for operations with the transpose of Q
302   SPQRMatrixQTransposeReturnType<SPQRType> transpose() const
303   {
304     return SPQRMatrixQTransposeReturnType<SPQRType>(m_spqr);
305   }
306   const SPQRType& m_spqr;
307 };
308 
309 template<typename SPQRType>
310 struct SPQRMatrixQTransposeReturnType{
311   SPQRMatrixQTransposeReturnType(const SPQRType& spqr) : m_spqr(spqr) {}
312   template<typename Derived>
313   SPQR_QProduct<SPQRType,Derived> operator*(const MatrixBase<Derived>& other)
314   {
315     return SPQR_QProduct<SPQRType,Derived>(m_spqr,other.derived(), true);
316   }
317   const SPQRType& m_spqr;
318 };
319 
320 namespace internal {
321 
322 template<typename _MatrixType, typename Rhs>
323 struct solve_retval<SPQR<_MatrixType>, Rhs>
324   : solve_retval_base<SPQR<_MatrixType>, Rhs>
325 {
326   typedef SPQR<_MatrixType> Dec;
327   EIGEN_MAKE_SOLVE_HELPERS(Dec,Rhs)
328 
329   template<typename Dest> void evalTo(Dest& dst) const
330   {
331     dec()._solve(rhs(),dst);
332   }
333 };
334 
335 } // end namespace internal
336 
337 }// End namespace Eigen
338 #endif
339