1 // This file is part of Eigen, a lightweight C++ template library 2 // for linear algebra. 3 // 4 // Copyright (C) 2012 Desire Nuentsa <desire.nuentsa_wakam@inria.fr> 5 // 6 // This Source Code Form is subject to the terms of the Mozilla 7 // Public License v. 2.0. If a copy of the MPL was not distributed 8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. 9 10 #ifndef EIGEN_SUITESPARSEQRSUPPORT_H 11 #define EIGEN_SUITESPARSEQRSUPPORT_H 12 13 namespace Eigen { 14 15 template<typename MatrixType> class SPQR; 16 template<typename SPQRType> struct SPQRMatrixQReturnType; 17 template<typename SPQRType> struct SPQRMatrixQTransposeReturnType; 18 template <typename SPQRType, typename Derived> struct SPQR_QProduct; 19 namespace internal { 20 template <typename SPQRType> struct traits<SPQRMatrixQReturnType<SPQRType> > 21 { 22 typedef typename SPQRType::MatrixType ReturnType; 23 }; 24 template <typename SPQRType> struct traits<SPQRMatrixQTransposeReturnType<SPQRType> > 25 { 26 typedef typename SPQRType::MatrixType ReturnType; 27 }; 28 template <typename SPQRType, typename Derived> struct traits<SPQR_QProduct<SPQRType, Derived> > 29 { 30 typedef typename Derived::PlainObject ReturnType; 31 }; 32 } // End namespace internal 33 34 /** 35 * \ingroup SPQRSupport_Module 36 * \class SPQR 37 * \brief Sparse QR factorization based on SuiteSparseQR library 38 * 39 * This class is used to perform a multithreaded and multifrontal rank-revealing QR decomposition 40 * of sparse matrices. The result is then used to solve linear leasts_square systems. 41 * Clearly, a QR factorization is returned such that A*P = Q*R where : 42 * 43 * P is the column permutation. Use colsPermutation() to get it. 44 * 45 * Q is the orthogonal matrix represented as Householder reflectors. 46 * Use matrixQ() to get an expression and matrixQ().transpose() to get the transpose. 47 * You can then apply it to a vector. 48 * 49 * R is the sparse triangular factor. Use matrixQR() to get it as SparseMatrix. 50 * NOTE : The Index type of R is always UF_long. You can get it with SPQR::Index 51 * 52 * \tparam _MatrixType The type of the sparse matrix A, must be a column-major SparseMatrix<> 53 * NOTE 54 * 55 */ 56 template<typename _MatrixType> 57 class SPQR 58 { 59 public: 60 typedef typename _MatrixType::Scalar Scalar; 61 typedef typename _MatrixType::RealScalar RealScalar; 62 typedef UF_long Index ; 63 typedef SparseMatrix<Scalar, ColMajor, Index> MatrixType; 64 typedef PermutationMatrix<Dynamic, Dynamic> PermutationType; 65 public: 66 SPQR() 67 : m_isInitialized(false), m_ordering(SPQR_ORDERING_DEFAULT), m_allow_tol(SPQR_DEFAULT_TOL), m_tolerance (NumTraits<Scalar>::epsilon()), m_useDefaultThreshold(true) 68 { 69 cholmod_l_start(&m_cc); 70 } 71 72 SPQR(const _MatrixType& matrix) 73 : m_isInitialized(false), m_ordering(SPQR_ORDERING_DEFAULT), m_allow_tol(SPQR_DEFAULT_TOL), m_tolerance (NumTraits<Scalar>::epsilon()), m_useDefaultThreshold(true) 74 { 75 cholmod_l_start(&m_cc); 76 compute(matrix); 77 } 78 79 ~SPQR() 80 { 81 SPQR_free(); 82 cholmod_l_finish(&m_cc); 83 } 84 void SPQR_free() 85 { 86 cholmod_l_free_sparse(&m_H, &m_cc); 87 cholmod_l_free_sparse(&m_cR, &m_cc); 88 cholmod_l_free_dense(&m_HTau, &m_cc); 89 std::free(m_E); 90 std::free(m_HPinv); 91 } 92 93 void compute(const _MatrixType& matrix) 94 { 95 if(m_isInitialized) SPQR_free(); 96 97 MatrixType mat(matrix); 98 99 /* Compute the default threshold as in MatLab, see: 100 * Tim Davis, "Algorithm 915, SuiteSparseQR: Multifrontal Multithreaded Rank-Revealing 101 * Sparse QR Factorization, ACM Trans. on Math. Soft. 38(1), 2011, Page 8:3 102 */ 103 RealScalar pivotThreshold = m_tolerance; 104 if(m_useDefaultThreshold) 105 { 106 using std::max; 107 RealScalar max2Norm = 0.0; 108 for (int j = 0; j < mat.cols(); j++) max2Norm = (max)(max2Norm, mat.col(j).norm()); 109 if(max2Norm==RealScalar(0)) 110 max2Norm = RealScalar(1); 111 pivotThreshold = 20 * (mat.rows() + mat.cols()) * max2Norm * NumTraits<RealScalar>::epsilon(); 112 } 113 114 cholmod_sparse A; 115 A = viewAsCholmod(mat); 116 Index col = matrix.cols(); 117 m_rank = SuiteSparseQR<Scalar>(m_ordering, pivotThreshold, col, &A, 118 &m_cR, &m_E, &m_H, &m_HPinv, &m_HTau, &m_cc); 119 120 if (!m_cR) 121 { 122 m_info = NumericalIssue; 123 m_isInitialized = false; 124 return; 125 } 126 m_info = Success; 127 m_isInitialized = true; 128 m_isRUpToDate = false; 129 } 130 /** 131 * Get the number of rows of the input matrix and the Q matrix 132 */ 133 inline Index rows() const {return m_cR->nrow; } 134 135 /** 136 * Get the number of columns of the input matrix. 137 */ 138 inline Index cols() const { return m_cR->ncol; } 139 140 /** \returns the solution X of \f$ A X = B \f$ using the current decomposition of A. 141 * 142 * \sa compute() 143 */ 144 template<typename Rhs> 145 inline const internal::solve_retval<SPQR, Rhs> solve(const MatrixBase<Rhs>& B) const 146 { 147 eigen_assert(m_isInitialized && " The QR factorization should be computed first, call compute()"); 148 eigen_assert(this->rows()==B.rows() 149 && "SPQR::solve(): invalid number of rows of the right hand side matrix B"); 150 return internal::solve_retval<SPQR, Rhs>(*this, B.derived()); 151 } 152 153 template<typename Rhs, typename Dest> 154 void _solve(const MatrixBase<Rhs> &b, MatrixBase<Dest> &dest) const 155 { 156 eigen_assert(m_isInitialized && " The QR factorization should be computed first, call compute()"); 157 eigen_assert(b.cols()==1 && "This method is for vectors only"); 158 159 //Compute Q^T * b 160 typename Dest::PlainObject y, y2; 161 y = matrixQ().transpose() * b; 162 163 // Solves with the triangular matrix R 164 Index rk = this->rank(); 165 y2 = y; 166 y.resize((std::max)(cols(),Index(y.rows())),y.cols()); 167 y.topRows(rk) = this->matrixR().topLeftCorner(rk, rk).template triangularView<Upper>().solve(y2.topRows(rk)); 168 169 // Apply the column permutation 170 // colsPermutation() performs a copy of the permutation, 171 // so let's apply it manually: 172 for(Index i = 0; i < rk; ++i) dest.row(m_E[i]) = y.row(i); 173 for(Index i = rk; i < cols(); ++i) dest.row(m_E[i]).setZero(); 174 175 // y.bottomRows(y.rows()-rk).setZero(); 176 // dest = colsPermutation() * y.topRows(cols()); 177 178 m_info = Success; 179 } 180 181 /** \returns the sparse triangular factor R. It is a sparse matrix 182 */ 183 const MatrixType matrixR() const 184 { 185 eigen_assert(m_isInitialized && " The QR factorization should be computed first, call compute()"); 186 if(!m_isRUpToDate) { 187 m_R = viewAsEigen<Scalar,ColMajor, typename MatrixType::Index>(*m_cR); 188 m_isRUpToDate = true; 189 } 190 return m_R; 191 } 192 /// Get an expression of the matrix Q 193 SPQRMatrixQReturnType<SPQR> matrixQ() const 194 { 195 return SPQRMatrixQReturnType<SPQR>(*this); 196 } 197 /// Get the permutation that was applied to columns of A 198 PermutationType colsPermutation() const 199 { 200 eigen_assert(m_isInitialized && "Decomposition is not initialized."); 201 Index n = m_cR->ncol; 202 PermutationType colsPerm(n); 203 for(Index j = 0; j <n; j++) colsPerm.indices()(j) = m_E[j]; 204 return colsPerm; 205 206 } 207 /** 208 * Gets the rank of the matrix. 209 * It should be equal to matrixQR().cols if the matrix is full-rank 210 */ 211 Index rank() const 212 { 213 eigen_assert(m_isInitialized && "Decomposition is not initialized."); 214 return m_cc.SPQR_istat[4]; 215 } 216 /// Set the fill-reducing ordering method to be used 217 void setSPQROrdering(int ord) { m_ordering = ord;} 218 /// Set the tolerance tol to treat columns with 2-norm < =tol as zero 219 void setPivotThreshold(const RealScalar& tol) 220 { 221 m_useDefaultThreshold = false; 222 m_tolerance = tol; 223 } 224 225 /** \returns a pointer to the SPQR workspace */ 226 cholmod_common *cholmodCommon() const { return &m_cc; } 227 228 229 /** \brief Reports whether previous computation was successful. 230 * 231 * \returns \c Success if computation was succesful, 232 * \c NumericalIssue if the sparse QR can not be computed 233 */ 234 ComputationInfo info() const 235 { 236 eigen_assert(m_isInitialized && "Decomposition is not initialized."); 237 return m_info; 238 } 239 protected: 240 bool m_isInitialized; 241 bool m_analysisIsOk; 242 bool m_factorizationIsOk; 243 mutable bool m_isRUpToDate; 244 mutable ComputationInfo m_info; 245 int m_ordering; // Ordering method to use, see SPQR's manual 246 int m_allow_tol; // Allow to use some tolerance during numerical factorization. 247 RealScalar m_tolerance; // treat columns with 2-norm below this tolerance as zero 248 mutable cholmod_sparse *m_cR; // The sparse R factor in cholmod format 249 mutable MatrixType m_R; // The sparse matrix R in Eigen format 250 mutable Index *m_E; // The permutation applied to columns 251 mutable cholmod_sparse *m_H; //The householder vectors 252 mutable Index *m_HPinv; // The row permutation of H 253 mutable cholmod_dense *m_HTau; // The Householder coefficients 254 mutable Index m_rank; // The rank of the matrix 255 mutable cholmod_common m_cc; // Workspace and parameters 256 bool m_useDefaultThreshold; // Use default threshold 257 template<typename ,typename > friend struct SPQR_QProduct; 258 }; 259 260 template <typename SPQRType, typename Derived> 261 struct SPQR_QProduct : ReturnByValue<SPQR_QProduct<SPQRType,Derived> > 262 { 263 typedef typename SPQRType::Scalar Scalar; 264 typedef typename SPQRType::Index Index; 265 //Define the constructor to get reference to argument types 266 SPQR_QProduct(const SPQRType& spqr, const Derived& other, bool transpose) : m_spqr(spqr),m_other(other),m_transpose(transpose) {} 267 268 inline Index rows() const { return m_transpose ? m_spqr.rows() : m_spqr.cols(); } 269 inline Index cols() const { return m_other.cols(); } 270 // Assign to a vector 271 template<typename ResType> 272 void evalTo(ResType& res) const 273 { 274 cholmod_dense y_cd; 275 cholmod_dense *x_cd; 276 int method = m_transpose ? SPQR_QTX : SPQR_QX; 277 cholmod_common *cc = m_spqr.cholmodCommon(); 278 y_cd = viewAsCholmod(m_other.const_cast_derived()); 279 x_cd = SuiteSparseQR_qmult<Scalar>(method, m_spqr.m_H, m_spqr.m_HTau, m_spqr.m_HPinv, &y_cd, cc); 280 res = Matrix<Scalar,ResType::RowsAtCompileTime,ResType::ColsAtCompileTime>::Map(reinterpret_cast<Scalar*>(x_cd->x), x_cd->nrow, x_cd->ncol); 281 cholmod_l_free_dense(&x_cd, cc); 282 } 283 const SPQRType& m_spqr; 284 const Derived& m_other; 285 bool m_transpose; 286 287 }; 288 template<typename SPQRType> 289 struct SPQRMatrixQReturnType{ 290 291 SPQRMatrixQReturnType(const SPQRType& spqr) : m_spqr(spqr) {} 292 template<typename Derived> 293 SPQR_QProduct<SPQRType, Derived> operator*(const MatrixBase<Derived>& other) 294 { 295 return SPQR_QProduct<SPQRType,Derived>(m_spqr,other.derived(),false); 296 } 297 SPQRMatrixQTransposeReturnType<SPQRType> adjoint() const 298 { 299 return SPQRMatrixQTransposeReturnType<SPQRType>(m_spqr); 300 } 301 // To use for operations with the transpose of Q 302 SPQRMatrixQTransposeReturnType<SPQRType> transpose() const 303 { 304 return SPQRMatrixQTransposeReturnType<SPQRType>(m_spqr); 305 } 306 const SPQRType& m_spqr; 307 }; 308 309 template<typename SPQRType> 310 struct SPQRMatrixQTransposeReturnType{ 311 SPQRMatrixQTransposeReturnType(const SPQRType& spqr) : m_spqr(spqr) {} 312 template<typename Derived> 313 SPQR_QProduct<SPQRType,Derived> operator*(const MatrixBase<Derived>& other) 314 { 315 return SPQR_QProduct<SPQRType,Derived>(m_spqr,other.derived(), true); 316 } 317 const SPQRType& m_spqr; 318 }; 319 320 namespace internal { 321 322 template<typename _MatrixType, typename Rhs> 323 struct solve_retval<SPQR<_MatrixType>, Rhs> 324 : solve_retval_base<SPQR<_MatrixType>, Rhs> 325 { 326 typedef SPQR<_MatrixType> Dec; 327 EIGEN_MAKE_SOLVE_HELPERS(Dec,Rhs) 328 329 template<typename Dest> void evalTo(Dest& dst) const 330 { 331 dec()._solve(rhs(),dst); 332 } 333 }; 334 335 } // end namespace internal 336 337 }// End namespace Eigen 338 #endif 339