• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1      SUBROUTINE DSBMV(UPLO,N,K,ALPHA,A,LDA,X,INCX,BETA,Y,INCY)
2*     .. Scalar Arguments ..
3      DOUBLE PRECISION ALPHA,BETA
4      INTEGER INCX,INCY,K,LDA,N
5      CHARACTER UPLO
6*     ..
7*     .. Array Arguments ..
8      DOUBLE PRECISION A(LDA,*),X(*),Y(*)
9*     ..
10*
11*  Purpose
12*  =======
13*
14*  DSBMV  performs the matrix-vector  operation
15*
16*     y := alpha*A*x + beta*y,
17*
18*  where alpha and beta are scalars, x and y are n element vectors and
19*  A is an n by n symmetric band matrix, with k super-diagonals.
20*
21*  Arguments
22*  ==========
23*
24*  UPLO   - CHARACTER*1.
25*           On entry, UPLO specifies whether the upper or lower
26*           triangular part of the band matrix A is being supplied as
27*           follows:
28*
29*              UPLO = 'U' or 'u'   The upper triangular part of A is
30*                                  being supplied.
31*
32*              UPLO = 'L' or 'l'   The lower triangular part of A is
33*                                  being supplied.
34*
35*           Unchanged on exit.
36*
37*  N      - INTEGER.
38*           On entry, N specifies the order of the matrix A.
39*           N must be at least zero.
40*           Unchanged on exit.
41*
42*  K      - INTEGER.
43*           On entry, K specifies the number of super-diagonals of the
44*           matrix A. K must satisfy  0 .le. K.
45*           Unchanged on exit.
46*
47*  ALPHA  - DOUBLE PRECISION.
48*           On entry, ALPHA specifies the scalar alpha.
49*           Unchanged on exit.
50*
51*  A      - DOUBLE PRECISION array of DIMENSION ( LDA, n ).
52*           Before entry with UPLO = 'U' or 'u', the leading ( k + 1 )
53*           by n part of the array A must contain the upper triangular
54*           band part of the symmetric matrix, supplied column by
55*           column, with the leading diagonal of the matrix in row
56*           ( k + 1 ) of the array, the first super-diagonal starting at
57*           position 2 in row k, and so on. The top left k by k triangle
58*           of the array A is not referenced.
59*           The following program segment will transfer the upper
60*           triangular part of a symmetric band matrix from conventional
61*           full matrix storage to band storage:
62*
63*                 DO 20, J = 1, N
64*                    M = K + 1 - J
65*                    DO 10, I = MAX( 1, J - K ), J
66*                       A( M + I, J ) = matrix( I, J )
67*              10    CONTINUE
68*              20 CONTINUE
69*
70*           Before entry with UPLO = 'L' or 'l', the leading ( k + 1 )
71*           by n part of the array A must contain the lower triangular
72*           band part of the symmetric matrix, supplied column by
73*           column, with the leading diagonal of the matrix in row 1 of
74*           the array, the first sub-diagonal starting at position 1 in
75*           row 2, and so on. The bottom right k by k triangle of the
76*           array A is not referenced.
77*           The following program segment will transfer the lower
78*           triangular part of a symmetric band matrix from conventional
79*           full matrix storage to band storage:
80*
81*                 DO 20, J = 1, N
82*                    M = 1 - J
83*                    DO 10, I = J, MIN( N, J + K )
84*                       A( M + I, J ) = matrix( I, J )
85*              10    CONTINUE
86*              20 CONTINUE
87*
88*           Unchanged on exit.
89*
90*  LDA    - INTEGER.
91*           On entry, LDA specifies the first dimension of A as declared
92*           in the calling (sub) program. LDA must be at least
93*           ( k + 1 ).
94*           Unchanged on exit.
95*
96*  X      - DOUBLE PRECISION array of DIMENSION at least
97*           ( 1 + ( n - 1 )*abs( INCX ) ).
98*           Before entry, the incremented array X must contain the
99*           vector x.
100*           Unchanged on exit.
101*
102*  INCX   - INTEGER.
103*           On entry, INCX specifies the increment for the elements of
104*           X. INCX must not be zero.
105*           Unchanged on exit.
106*
107*  BETA   - DOUBLE PRECISION.
108*           On entry, BETA specifies the scalar beta.
109*           Unchanged on exit.
110*
111*  Y      - DOUBLE PRECISION array of DIMENSION at least
112*           ( 1 + ( n - 1 )*abs( INCY ) ).
113*           Before entry, the incremented array Y must contain the
114*           vector y. On exit, Y is overwritten by the updated vector y.
115*
116*  INCY   - INTEGER.
117*           On entry, INCY specifies the increment for the elements of
118*           Y. INCY must not be zero.
119*           Unchanged on exit.
120*
121*
122*  Level 2 Blas routine.
123*
124*  -- Written on 22-October-1986.
125*     Jack Dongarra, Argonne National Lab.
126*     Jeremy Du Croz, Nag Central Office.
127*     Sven Hammarling, Nag Central Office.
128*     Richard Hanson, Sandia National Labs.
129*
130*  =====================================================================
131*
132*     .. Parameters ..
133      DOUBLE PRECISION ONE,ZERO
134      PARAMETER (ONE=1.0D+0,ZERO=0.0D+0)
135*     ..
136*     .. Local Scalars ..
137      DOUBLE PRECISION TEMP1,TEMP2
138      INTEGER I,INFO,IX,IY,J,JX,JY,KPLUS1,KX,KY,L
139*     ..
140*     .. External Functions ..
141      LOGICAL LSAME
142      EXTERNAL LSAME
143*     ..
144*     .. External Subroutines ..
145      EXTERNAL XERBLA
146*     ..
147*     .. Intrinsic Functions ..
148      INTRINSIC MAX,MIN
149*     ..
150*
151*     Test the input parameters.
152*
153      INFO = 0
154      IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN
155          INFO = 1
156      ELSE IF (N.LT.0) THEN
157          INFO = 2
158      ELSE IF (K.LT.0) THEN
159          INFO = 3
160      ELSE IF (LDA.LT. (K+1)) THEN
161          INFO = 6
162      ELSE IF (INCX.EQ.0) THEN
163          INFO = 8
164      ELSE IF (INCY.EQ.0) THEN
165          INFO = 11
166      END IF
167      IF (INFO.NE.0) THEN
168          CALL XERBLA('DSBMV ',INFO)
169          RETURN
170      END IF
171*
172*     Quick return if possible.
173*
174      IF ((N.EQ.0) .OR. ((ALPHA.EQ.ZERO).AND. (BETA.EQ.ONE))) RETURN
175*
176*     Set up the start points in  X  and  Y.
177*
178      IF (INCX.GT.0) THEN
179          KX = 1
180      ELSE
181          KX = 1 - (N-1)*INCX
182      END IF
183      IF (INCY.GT.0) THEN
184          KY = 1
185      ELSE
186          KY = 1 - (N-1)*INCY
187      END IF
188*
189*     Start the operations. In this version the elements of the array A
190*     are accessed sequentially with one pass through A.
191*
192*     First form  y := beta*y.
193*
194      IF (BETA.NE.ONE) THEN
195          IF (INCY.EQ.1) THEN
196              IF (BETA.EQ.ZERO) THEN
197                  DO 10 I = 1,N
198                      Y(I) = ZERO
199   10             CONTINUE
200              ELSE
201                  DO 20 I = 1,N
202                      Y(I) = BETA*Y(I)
203   20             CONTINUE
204              END IF
205          ELSE
206              IY = KY
207              IF (BETA.EQ.ZERO) THEN
208                  DO 30 I = 1,N
209                      Y(IY) = ZERO
210                      IY = IY + INCY
211   30             CONTINUE
212              ELSE
213                  DO 40 I = 1,N
214                      Y(IY) = BETA*Y(IY)
215                      IY = IY + INCY
216   40             CONTINUE
217              END IF
218          END IF
219      END IF
220      IF (ALPHA.EQ.ZERO) RETURN
221      IF (LSAME(UPLO,'U')) THEN
222*
223*        Form  y  when upper triangle of A is stored.
224*
225          KPLUS1 = K + 1
226          IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN
227              DO 60 J = 1,N
228                  TEMP1 = ALPHA*X(J)
229                  TEMP2 = ZERO
230                  L = KPLUS1 - J
231                  DO 50 I = MAX(1,J-K),J - 1
232                      Y(I) = Y(I) + TEMP1*A(L+I,J)
233                      TEMP2 = TEMP2 + A(L+I,J)*X(I)
234   50             CONTINUE
235                  Y(J) = Y(J) + TEMP1*A(KPLUS1,J) + ALPHA*TEMP2
236   60         CONTINUE
237          ELSE
238              JX = KX
239              JY = KY
240              DO 80 J = 1,N
241                  TEMP1 = ALPHA*X(JX)
242                  TEMP2 = ZERO
243                  IX = KX
244                  IY = KY
245                  L = KPLUS1 - J
246                  DO 70 I = MAX(1,J-K),J - 1
247                      Y(IY) = Y(IY) + TEMP1*A(L+I,J)
248                      TEMP2 = TEMP2 + A(L+I,J)*X(IX)
249                      IX = IX + INCX
250                      IY = IY + INCY
251   70             CONTINUE
252                  Y(JY) = Y(JY) + TEMP1*A(KPLUS1,J) + ALPHA*TEMP2
253                  JX = JX + INCX
254                  JY = JY + INCY
255                  IF (J.GT.K) THEN
256                      KX = KX + INCX
257                      KY = KY + INCY
258                  END IF
259   80         CONTINUE
260          END IF
261      ELSE
262*
263*        Form  y  when lower triangle of A is stored.
264*
265          IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN
266              DO 100 J = 1,N
267                  TEMP1 = ALPHA*X(J)
268                  TEMP2 = ZERO
269                  Y(J) = Y(J) + TEMP1*A(1,J)
270                  L = 1 - J
271                  DO 90 I = J + 1,MIN(N,J+K)
272                      Y(I) = Y(I) + TEMP1*A(L+I,J)
273                      TEMP2 = TEMP2 + A(L+I,J)*X(I)
274   90             CONTINUE
275                  Y(J) = Y(J) + ALPHA*TEMP2
276  100         CONTINUE
277          ELSE
278              JX = KX
279              JY = KY
280              DO 120 J = 1,N
281                  TEMP1 = ALPHA*X(JX)
282                  TEMP2 = ZERO
283                  Y(JY) = Y(JY) + TEMP1*A(1,J)
284                  L = 1 - J
285                  IX = JX
286                  IY = JY
287                  DO 110 I = J + 1,MIN(N,J+K)
288                      IX = IX + INCX
289                      IY = IY + INCY
290                      Y(IY) = Y(IY) + TEMP1*A(L+I,J)
291                      TEMP2 = TEMP2 + A(L+I,J)*X(IX)
292  110             CONTINUE
293                  Y(JY) = Y(JY) + ALPHA*TEMP2
294                  JX = JX + INCX
295                  JY = JY + INCY
296  120         CONTINUE
297          END IF
298      END IF
299*
300      RETURN
301*
302*     End of DSBMV .
303*
304      END
305