• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra. Eigen itself is part of the KDE project.
3 //
4 // Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
5 //
6 // This Source Code Form is subject to the terms of the Mozilla
7 // Public License v. 2.0. If a copy of the MPL was not distributed
8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9 
10 #include "main.h"
11 
adjoint(const MatrixType & m)12 template<typename MatrixType> void adjoint(const MatrixType& m)
13 {
14   /* this test covers the following files:
15      Transpose.h Conjugate.h Dot.h
16   */
17 
18   typedef typename MatrixType::Scalar Scalar;
19   typedef typename NumTraits<Scalar>::Real RealScalar;
20   typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType;
21   typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime> SquareMatrixType;
22   int rows = m.rows();
23   int cols = m.cols();
24 
25   RealScalar largerEps = test_precision<RealScalar>();
26   if (ei_is_same_type<RealScalar,float>::ret)
27     largerEps = RealScalar(1e-3f);
28 
29   MatrixType m1 = MatrixType::Random(rows, cols),
30              m2 = MatrixType::Random(rows, cols),
31              m3(rows, cols),
32              square = SquareMatrixType::Random(rows, rows);
33   VectorType v1 = VectorType::Random(rows),
34              v2 = VectorType::Random(rows),
35              v3 = VectorType::Random(rows),
36              vzero = VectorType::Zero(rows);
37 
38   Scalar s1 = ei_random<Scalar>(),
39          s2 = ei_random<Scalar>();
40 
41   // check basic compatibility of adjoint, transpose, conjugate
42   VERIFY_IS_APPROX(m1.transpose().conjugate().adjoint(),    m1);
43   VERIFY_IS_APPROX(m1.adjoint().conjugate().transpose(),    m1);
44 
45   // check multiplicative behavior
46   VERIFY_IS_APPROX((m1.adjoint() * m2).adjoint(),           m2.adjoint() * m1);
47   VERIFY_IS_APPROX((s1 * m1).adjoint(),                     ei_conj(s1) * m1.adjoint());
48 
49   // check basic properties of dot, norm, norm2
50   typedef typename NumTraits<Scalar>::Real RealScalar;
51   VERIFY(ei_isApprox((s1 * v1 + s2 * v2).eigen2_dot(v3),   s1 * v1.eigen2_dot(v3) + s2 * v2.eigen2_dot(v3), largerEps));
52   VERIFY(ei_isApprox(v3.eigen2_dot(s1 * v1 + s2 * v2),     ei_conj(s1)*v3.eigen2_dot(v1)+ei_conj(s2)*v3.eigen2_dot(v2), largerEps));
53   VERIFY_IS_APPROX(ei_conj(v1.eigen2_dot(v2)),               v2.eigen2_dot(v1));
54   VERIFY_IS_APPROX(ei_real(v1.eigen2_dot(v1)),               v1.squaredNorm());
55   if(NumTraits<Scalar>::HasFloatingPoint)
56     VERIFY_IS_APPROX(v1.squaredNorm(),                      v1.norm() * v1.norm());
57   VERIFY_IS_MUCH_SMALLER_THAN(ei_abs(vzero.eigen2_dot(v1)),  static_cast<RealScalar>(1));
58   if(NumTraits<Scalar>::HasFloatingPoint)
59     VERIFY_IS_MUCH_SMALLER_THAN(vzero.norm(),         static_cast<RealScalar>(1));
60 
61   // check compatibility of dot and adjoint
62   VERIFY(ei_isApprox(v1.eigen2_dot(square * v2), (square.adjoint() * v1).eigen2_dot(v2), largerEps));
63 
64   // like in testBasicStuff, test operator() to check const-qualification
65   int r = ei_random<int>(0, rows-1),
66       c = ei_random<int>(0, cols-1);
67   VERIFY_IS_APPROX(m1.conjugate()(r,c), ei_conj(m1(r,c)));
68   VERIFY_IS_APPROX(m1.adjoint()(c,r), ei_conj(m1(r,c)));
69 
70   if(NumTraits<Scalar>::HasFloatingPoint)
71   {
72     // check that Random().normalized() works: tricky as the random xpr must be evaluated by
73     // normalized() in order to produce a consistent result.
74     VERIFY_IS_APPROX(VectorType::Random(rows).normalized().norm(), RealScalar(1));
75   }
76 
77   // check inplace transpose
78   m3 = m1;
79   m3.transposeInPlace();
80   VERIFY_IS_APPROX(m3,m1.transpose());
81   m3.transposeInPlace();
82   VERIFY_IS_APPROX(m3,m1);
83 
84 }
85 
test_eigen2_adjoint()86 void test_eigen2_adjoint()
87 {
88   for(int i = 0; i < g_repeat; i++) {
89     CALL_SUBTEST_1( adjoint(Matrix<float, 1, 1>()) );
90     CALL_SUBTEST_2( adjoint(Matrix3d()) );
91     CALL_SUBTEST_3( adjoint(Matrix4f()) );
92     CALL_SUBTEST_4( adjoint(MatrixXcf(4, 4)) );
93     CALL_SUBTEST_5( adjoint(MatrixXi(8, 12)) );
94     CALL_SUBTEST_6( adjoint(MatrixXf(21, 21)) );
95   }
96   // test a large matrix only once
97   CALL_SUBTEST_7( adjoint(Matrix<float, 100, 100>()) );
98 }
99 
100