• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra. Eigen itself is part of the KDE project.
3 //
4 // Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
5 // Copyright (C) 2008 Benoit Jacob <jacob.benoit.1@gmail.com>
6 //
7 // This Source Code Form is subject to the terms of the Mozilla
8 // Public License v. 2.0. If a copy of the MPL was not distributed
9 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
10 
11 #include "main.h"
12 #include <Eigen/LU>
13 
inverse(const MatrixType & m)14 template<typename MatrixType> void inverse(const MatrixType& m)
15 {
16   /* this test covers the following files:
17      Inverse.h
18   */
19   int rows = m.rows();
20   int cols = m.cols();
21 
22   typedef typename MatrixType::Scalar Scalar;
23   typedef typename NumTraits<Scalar>::Real RealScalar;
24   typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, 1> VectorType;
25 
26   MatrixType m1 = MatrixType::Random(rows, cols),
27              m2(rows, cols),
28              identity = MatrixType::Identity(rows, rows);
29 
30   while(ei_abs(m1.determinant()) < RealScalar(0.1) && rows <= 8)
31   {
32     m1 = MatrixType::Random(rows, cols);
33   }
34 
35   m2 = m1.inverse();
36   VERIFY_IS_APPROX(m1, m2.inverse() );
37 
38   m1.computeInverse(&m2);
39   VERIFY_IS_APPROX(m1, m2.inverse() );
40 
41   VERIFY_IS_APPROX((Scalar(2)*m2).inverse(), m2.inverse()*Scalar(0.5));
42 
43   VERIFY_IS_APPROX(identity, m1.inverse() * m1 );
44   VERIFY_IS_APPROX(identity, m1 * m1.inverse() );
45 
46   VERIFY_IS_APPROX(m1, m1.inverse().inverse() );
47 
48   // since for the general case we implement separately row-major and col-major, test that
49   VERIFY_IS_APPROX(m1.transpose().inverse(), m1.inverse().transpose());
50 }
51 
test_eigen2_inverse()52 void test_eigen2_inverse()
53 {
54   for(int i = 0; i < g_repeat; i++) {
55     CALL_SUBTEST_1( inverse(Matrix<double,1,1>()) );
56     CALL_SUBTEST_2( inverse(Matrix2d()) );
57     CALL_SUBTEST_3( inverse(Matrix3f()) );
58     CALL_SUBTEST_4( inverse(Matrix4f()) );
59     CALL_SUBTEST_5( inverse(MatrixXf(8,8)) );
60     CALL_SUBTEST_6( inverse(MatrixXcd(7,7)) );
61   }
62 }
63