• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2010,2012 Jitse Niesen <jitse@maths.leeds.ac.uk>
5 //
6 // This Source Code Form is subject to the terms of the Mozilla
7 // Public License v. 2.0. If a copy of the MPL was not distributed
8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9 
10 #include "main.h"
11 #include <limits>
12 #include <Eigen/Eigenvalues>
13 
schur(int size=MatrixType::ColsAtCompileTime)14 template<typename MatrixType> void schur(int size = MatrixType::ColsAtCompileTime)
15 {
16   typedef typename ComplexSchur<MatrixType>::ComplexScalar ComplexScalar;
17   typedef typename ComplexSchur<MatrixType>::ComplexMatrixType ComplexMatrixType;
18 
19   // Test basic functionality: T is triangular and A = U T U*
20   for(int counter = 0; counter < g_repeat; ++counter) {
21     MatrixType A = MatrixType::Random(size, size);
22     ComplexSchur<MatrixType> schurOfA(A);
23     VERIFY_IS_EQUAL(schurOfA.info(), Success);
24     ComplexMatrixType U = schurOfA.matrixU();
25     ComplexMatrixType T = schurOfA.matrixT();
26     for(int row = 1; row < size; ++row) {
27       for(int col = 0; col < row; ++col) {
28 	VERIFY(T(row,col) == (typename MatrixType::Scalar)0);
29       }
30     }
31     VERIFY_IS_APPROX(A.template cast<ComplexScalar>(), U * T * U.adjoint());
32   }
33 
34   // Test asserts when not initialized
35   ComplexSchur<MatrixType> csUninitialized;
36   VERIFY_RAISES_ASSERT(csUninitialized.matrixT());
37   VERIFY_RAISES_ASSERT(csUninitialized.matrixU());
38   VERIFY_RAISES_ASSERT(csUninitialized.info());
39 
40   // Test whether compute() and constructor returns same result
41   MatrixType A = MatrixType::Random(size, size);
42   ComplexSchur<MatrixType> cs1;
43   cs1.compute(A);
44   ComplexSchur<MatrixType> cs2(A);
45   VERIFY_IS_EQUAL(cs1.info(), Success);
46   VERIFY_IS_EQUAL(cs2.info(), Success);
47   VERIFY_IS_EQUAL(cs1.matrixT(), cs2.matrixT());
48   VERIFY_IS_EQUAL(cs1.matrixU(), cs2.matrixU());
49 
50   // Test maximum number of iterations
51   ComplexSchur<MatrixType> cs3;
52   cs3.setMaxIterations(ComplexSchur<MatrixType>::m_maxIterationsPerRow * size).compute(A);
53   VERIFY_IS_EQUAL(cs3.info(), Success);
54   VERIFY_IS_EQUAL(cs3.matrixT(), cs1.matrixT());
55   VERIFY_IS_EQUAL(cs3.matrixU(), cs1.matrixU());
56   cs3.setMaxIterations(1).compute(A);
57   VERIFY_IS_EQUAL(cs3.info(), size > 1 ? NoConvergence : Success);
58   VERIFY_IS_EQUAL(cs3.getMaxIterations(), 1);
59 
60   MatrixType Atriangular = A;
61   Atriangular.template triangularView<StrictlyLower>().setZero();
62   cs3.setMaxIterations(1).compute(Atriangular); // triangular matrices do not need any iterations
63   VERIFY_IS_EQUAL(cs3.info(), Success);
64   VERIFY_IS_EQUAL(cs3.matrixT(), Atriangular.template cast<ComplexScalar>());
65   VERIFY_IS_EQUAL(cs3.matrixU(), ComplexMatrixType::Identity(size, size));
66 
67   // Test computation of only T, not U
68   ComplexSchur<MatrixType> csOnlyT(A, false);
69   VERIFY_IS_EQUAL(csOnlyT.info(), Success);
70   VERIFY_IS_EQUAL(cs1.matrixT(), csOnlyT.matrixT());
71   VERIFY_RAISES_ASSERT(csOnlyT.matrixU());
72 
73   if (size > 1)
74   {
75     // Test matrix with NaN
76     A(0,0) = std::numeric_limits<typename MatrixType::RealScalar>::quiet_NaN();
77     ComplexSchur<MatrixType> csNaN(A);
78     VERIFY_IS_EQUAL(csNaN.info(), NoConvergence);
79   }
80 }
81 
test_schur_complex()82 void test_schur_complex()
83 {
84   CALL_SUBTEST_1(( schur<Matrix4cd>() ));
85   CALL_SUBTEST_2(( schur<MatrixXcf>(internal::random<int>(1,EIGEN_TEST_MAX_SIZE/4)) ));
86   CALL_SUBTEST_3(( schur<Matrix<std::complex<float>, 1, 1> >() ));
87   CALL_SUBTEST_4(( schur<Matrix<float, 3, 3, Eigen::RowMajor> >() ));
88 
89   // Test problem size constructors
90   CALL_SUBTEST_5(ComplexSchur<MatrixXf>(10));
91 }
92