• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /***************************************************************************/
2 /*                                                                         */
3 /*  ftcalc.c                                                               */
4 /*                                                                         */
5 /*    Arithmetic computations (body).                                      */
6 /*                                                                         */
7 /*  Copyright 1996-2016 by                                                 */
8 /*  David Turner, Robert Wilhelm, and Werner Lemberg.                      */
9 /*                                                                         */
10 /*  This file is part of the FreeType project, and may only be used,       */
11 /*  modified, and distributed under the terms of the FreeType project      */
12 /*  license, LICENSE.TXT.  By continuing to use, modify, or distribute     */
13 /*  this file you indicate that you have read the license and              */
14 /*  understand and accept it fully.                                        */
15 /*                                                                         */
16 /***************************************************************************/
17 
18   /*************************************************************************/
19   /*                                                                       */
20   /* Support for 1-complement arithmetic has been totally dropped in this  */
21   /* release.  You can still write your own code if you need it.           */
22   /*                                                                       */
23   /*************************************************************************/
24 
25   /*************************************************************************/
26   /*                                                                       */
27   /* Implementing basic computation routines.                              */
28   /*                                                                       */
29   /* FT_MulDiv(), FT_MulFix(), FT_DivFix(), FT_RoundFix(), FT_CeilFix(),   */
30   /* and FT_FloorFix() are declared in freetype.h.                         */
31   /*                                                                       */
32   /*************************************************************************/
33 
34 
35 #include <ft2build.h>
36 #include FT_GLYPH_H
37 #include FT_TRIGONOMETRY_H
38 #include FT_INTERNAL_CALC_H
39 #include FT_INTERNAL_DEBUG_H
40 #include FT_INTERNAL_OBJECTS_H
41 
42 
43 #ifdef FT_MULFIX_ASSEMBLER
44 #undef FT_MulFix
45 #endif
46 
47 /* we need to emulate a 64-bit data type if a real one isn't available */
48 
49 #ifndef FT_LONG64
50 
51   typedef struct  FT_Int64_
52   {
53     FT_UInt32  lo;
54     FT_UInt32  hi;
55 
56   } FT_Int64;
57 
58 #endif /* !FT_LONG64 */
59 
60 
61   /*************************************************************************/
62   /*                                                                       */
63   /* The macro FT_COMPONENT is used in trace mode.  It is an implicit      */
64   /* parameter of the FT_TRACE() and FT_ERROR() macros, used to print/log  */
65   /* messages during execution.                                            */
66   /*                                                                       */
67 #undef  FT_COMPONENT
68 #define FT_COMPONENT  trace_calc
69 
70 
71   /* transfer sign leaving a positive number */
72 #define FT_MOVE_SIGN( x, s ) \
73   FT_BEGIN_STMNT             \
74     if ( x < 0 )             \
75     {                        \
76       x = -x;                \
77       s = -s;                \
78     }                        \
79   FT_END_STMNT
80 
81   /* The following three functions are available regardless of whether */
82   /* FT_LONG64 is defined.                                             */
83 
84   /* documentation is in freetype.h */
85 
86   FT_EXPORT_DEF( FT_Fixed )
FT_RoundFix(FT_Fixed a)87   FT_RoundFix( FT_Fixed  a )
88   {
89     return ( a + 0x8000L - ( a < 0 ) ) & ~0xFFFFL;
90   }
91 
92 
93   /* documentation is in freetype.h */
94 
95   FT_EXPORT_DEF( FT_Fixed )
FT_CeilFix(FT_Fixed a)96   FT_CeilFix( FT_Fixed  a )
97   {
98     return ( a + 0xFFFFL ) & ~0xFFFFL;
99   }
100 
101 
102   /* documentation is in freetype.h */
103 
104   FT_EXPORT_DEF( FT_Fixed )
FT_FloorFix(FT_Fixed a)105   FT_FloorFix( FT_Fixed  a )
106   {
107     return a & ~0xFFFFL;
108   }
109 
110 #ifndef FT_MSB
111 
112   FT_BASE_DEF ( FT_Int )
FT_MSB(FT_UInt32 z)113   FT_MSB( FT_UInt32 z )
114   {
115     FT_Int  shift = 0;
116 
117 
118     /* determine msb bit index in `shift' */
119     if ( z & 0xFFFF0000UL )
120     {
121       z     >>= 16;
122       shift  += 16;
123     }
124     if ( z & 0x0000FF00UL )
125     {
126       z     >>= 8;
127       shift  += 8;
128     }
129     if ( z & 0x000000F0UL )
130     {
131       z     >>= 4;
132       shift  += 4;
133     }
134     if ( z & 0x0000000CUL )
135     {
136       z     >>= 2;
137       shift  += 2;
138     }
139     if ( z & 0x00000002UL )
140     {
141    /* z     >>= 1; */
142       shift  += 1;
143     }
144 
145     return shift;
146   }
147 
148 #endif /* !FT_MSB */
149 
150 
151   /* documentation is in ftcalc.h */
152 
153   FT_BASE_DEF( FT_Fixed )
FT_Hypot(FT_Fixed x,FT_Fixed y)154   FT_Hypot( FT_Fixed  x,
155             FT_Fixed  y )
156   {
157     FT_Vector  v;
158 
159 
160     v.x = x;
161     v.y = y;
162 
163     return FT_Vector_Length( &v );
164   }
165 
166 
167 #ifdef FT_LONG64
168 
169 
170   /* documentation is in freetype.h */
171 
172   FT_EXPORT_DEF( FT_Long )
FT_MulDiv(FT_Long a_,FT_Long b_,FT_Long c_)173   FT_MulDiv( FT_Long  a_,
174              FT_Long  b_,
175              FT_Long  c_ )
176   {
177     FT_Int     s = 1;
178     FT_UInt64  a, b, c, d;
179     FT_Long    d_;
180 
181 
182     FT_MOVE_SIGN( a_, s );
183     FT_MOVE_SIGN( b_, s );
184     FT_MOVE_SIGN( c_, s );
185 
186     a = (FT_UInt64)a_;
187     b = (FT_UInt64)b_;
188     c = (FT_UInt64)c_;
189 
190     d = c > 0 ? ( a * b + ( c >> 1 ) ) / c
191               : 0x7FFFFFFFUL;
192 
193     d_ = (FT_Long)d;
194 
195     return s < 0 ? -d_ : d_;
196   }
197 
198 
199   /* documentation is in ftcalc.h */
200 
201   FT_BASE_DEF( FT_Long )
FT_MulDiv_No_Round(FT_Long a_,FT_Long b_,FT_Long c_)202   FT_MulDiv_No_Round( FT_Long  a_,
203                       FT_Long  b_,
204                       FT_Long  c_ )
205   {
206     FT_Int     s = 1;
207     FT_UInt64  a, b, c, d;
208     FT_Long    d_;
209 
210 
211     FT_MOVE_SIGN( a_, s );
212     FT_MOVE_SIGN( b_, s );
213     FT_MOVE_SIGN( c_, s );
214 
215     a = (FT_UInt64)a_;
216     b = (FT_UInt64)b_;
217     c = (FT_UInt64)c_;
218 
219     d = c > 0 ? a * b / c
220               : 0x7FFFFFFFUL;
221 
222     d_ = (FT_Long)d;
223 
224     return s < 0 ? -d_ : d_;
225   }
226 
227 
228   /* documentation is in freetype.h */
229 
230   FT_EXPORT_DEF( FT_Long )
FT_MulFix(FT_Long a_,FT_Long b_)231   FT_MulFix( FT_Long  a_,
232              FT_Long  b_ )
233   {
234 #ifdef FT_MULFIX_ASSEMBLER
235 
236     return FT_MULFIX_ASSEMBLER( (FT_Int32)a_, (FT_Int32)b_ );
237 
238 #else
239 
240     FT_Int64  ab = (FT_Int64)a_ * (FT_Int64)b_;
241 
242     /* this requires arithmetic right shift of signed numbers */
243     return (FT_Long)( ( ab + 0x8000L - ( ab < 0 ) ) >> 16 );
244 
245 #endif /* FT_MULFIX_ASSEMBLER */
246   }
247 
248 
249   /* documentation is in freetype.h */
250 
251   FT_EXPORT_DEF( FT_Long )
FT_DivFix(FT_Long a_,FT_Long b_)252   FT_DivFix( FT_Long  a_,
253              FT_Long  b_ )
254   {
255     FT_Int     s = 1;
256     FT_UInt64  a, b, q;
257     FT_Long    q_;
258 
259 
260     FT_MOVE_SIGN( a_, s );
261     FT_MOVE_SIGN( b_, s );
262 
263     a = (FT_UInt64)a_;
264     b = (FT_UInt64)b_;
265 
266     q = b > 0 ? ( ( a << 16 ) + ( b >> 1 ) ) / b
267               : 0x7FFFFFFFUL;
268 
269     q_ = (FT_Long)q;
270 
271     return s < 0 ? -q_ : q_;
272   }
273 
274 
275 #else /* !FT_LONG64 */
276 
277 
278   static void
ft_multo64(FT_UInt32 x,FT_UInt32 y,FT_Int64 * z)279   ft_multo64( FT_UInt32  x,
280               FT_UInt32  y,
281               FT_Int64  *z )
282   {
283     FT_UInt32  lo1, hi1, lo2, hi2, lo, hi, i1, i2;
284 
285 
286     lo1 = x & 0x0000FFFFU;  hi1 = x >> 16;
287     lo2 = y & 0x0000FFFFU;  hi2 = y >> 16;
288 
289     lo = lo1 * lo2;
290     i1 = lo1 * hi2;
291     i2 = lo2 * hi1;
292     hi = hi1 * hi2;
293 
294     /* Check carry overflow of i1 + i2 */
295     i1 += i2;
296     hi += (FT_UInt32)( i1 < i2 ) << 16;
297 
298     hi += i1 >> 16;
299     i1  = i1 << 16;
300 
301     /* Check carry overflow of i1 + lo */
302     lo += i1;
303     hi += ( lo < i1 );
304 
305     z->lo = lo;
306     z->hi = hi;
307   }
308 
309 
310   static FT_UInt32
ft_div64by32(FT_UInt32 hi,FT_UInt32 lo,FT_UInt32 y)311   ft_div64by32( FT_UInt32  hi,
312                 FT_UInt32  lo,
313                 FT_UInt32  y )
314   {
315     FT_UInt32  r, q;
316     FT_Int     i;
317 
318 
319     if ( hi >= y )
320       return (FT_UInt32)0x7FFFFFFFL;
321 
322     /* We shift as many bits as we can into the high register, perform     */
323     /* 32-bit division with modulo there, then work through the remaining  */
324     /* bits with long division. This optimization is especially noticeable */
325     /* for smaller dividends that barely use the high register.            */
326 
327     i = 31 - FT_MSB( hi );
328     r = ( hi << i ) | ( lo >> ( 32 - i ) ); lo <<= i; /* left 64-bit shift */
329     q = r / y;
330     r -= q * y;   /* remainder */
331 
332     i = 32 - i;   /* bits remaining in low register */
333     do
334     {
335       q <<= 1;
336       r   = ( r << 1 ) | ( lo >> 31 ); lo <<= 1;
337 
338       if ( r >= y )
339       {
340         r -= y;
341         q |= 1;
342       }
343     } while ( --i );
344 
345     return q;
346   }
347 
348 
349   static void
FT_Add64(FT_Int64 * x,FT_Int64 * y,FT_Int64 * z)350   FT_Add64( FT_Int64*  x,
351             FT_Int64*  y,
352             FT_Int64  *z )
353   {
354     FT_UInt32  lo, hi;
355 
356 
357     lo = x->lo + y->lo;
358     hi = x->hi + y->hi + ( lo < x->lo );
359 
360     z->lo = lo;
361     z->hi = hi;
362   }
363 
364 
365   /*  The FT_MulDiv function has been optimized thanks to ideas from     */
366   /*  Graham Asher and Alexei Podtelezhnikov.  The trick is to optimize  */
367   /*  a rather common case when everything fits within 32-bits.          */
368   /*                                                                     */
369   /*  We compute 'a*b+c/2', then divide it by 'c' (all positive values). */
370   /*                                                                     */
371   /*  The product of two positive numbers never exceeds the square of    */
372   /*  its mean values.  Therefore, we always avoid the overflow by       */
373   /*  imposing                                                           */
374   /*                                                                     */
375   /*    (a + b) / 2 <= sqrt(X - c/2)    ,                                */
376   /*                                                                     */
377   /*  where X = 2^32 - 1, the maximum unsigned 32-bit value, and using   */
378   /*  unsigned arithmetic.  Now we replace `sqrt' with a linear function */
379   /*  that is smaller or equal for all values of c in the interval       */
380   /*  [0;X/2]; it should be equal to sqrt(X) and sqrt(3X/4) at the       */
381   /*  endpoints.  Substituting the linear solution and explicit numbers  */
382   /*  we get                                                             */
383   /*                                                                     */
384   /*    a + b <= 131071.99 - c / 122291.84    .                          */
385   /*                                                                     */
386   /*  In practice, we should use a faster and even stronger inequality   */
387   /*                                                                     */
388   /*    a + b <= 131071 - (c >> 16)                                      */
389   /*                                                                     */
390   /*  or, alternatively,                                                 */
391   /*                                                                     */
392   /*    a + b <= 129894 - (c >> 17)    .                                 */
393   /*                                                                     */
394   /*  FT_MulFix, on the other hand, is optimized for a small value of    */
395   /*  the first argument, when the second argument can be much larger.   */
396   /*  This can be achieved by scaling the second argument and the limit  */
397   /*  in the above inequalities.  For example,                           */
398   /*                                                                     */
399   /*    a + (b >> 8) <= (131071 >> 4)                                    */
400   /*                                                                     */
401   /*  covers the practical range of use. The actual test below is a bit  */
402   /*  tighter to avoid the border case overflows.                        */
403   /*                                                                     */
404   /*  In the case of FT_DivFix, the exact overflow check                 */
405   /*                                                                     */
406   /*    a << 16 <= X - c/2                                               */
407   /*                                                                     */
408   /*  is scaled down by 2^16 and we use                                  */
409   /*                                                                     */
410   /*    a <= 65535 - (c >> 17)    .                                      */
411 
412   /* documentation is in freetype.h */
413 
414   FT_EXPORT_DEF( FT_Long )
FT_MulDiv(FT_Long a_,FT_Long b_,FT_Long c_)415   FT_MulDiv( FT_Long  a_,
416              FT_Long  b_,
417              FT_Long  c_ )
418   {
419     FT_Int     s = 1;
420     FT_UInt32  a, b, c;
421 
422 
423     /* XXX: this function does not allow 64-bit arguments */
424 
425     FT_MOVE_SIGN( a_, s );
426     FT_MOVE_SIGN( b_, s );
427     FT_MOVE_SIGN( c_, s );
428 
429     a = (FT_UInt32)a_;
430     b = (FT_UInt32)b_;
431     c = (FT_UInt32)c_;
432 
433     if ( c == 0 )
434       a = 0x7FFFFFFFUL;
435 
436     else if ( a + b <= 129894UL - ( c >> 17 ) )
437       a = ( a * b + ( c >> 1 ) ) / c;
438 
439     else
440     {
441       FT_Int64  temp, temp2;
442 
443 
444       ft_multo64( a, b, &temp );
445 
446       temp2.hi = 0;
447       temp2.lo = c >> 1;
448 
449       FT_Add64( &temp, &temp2, &temp );
450 
451       /* last attempt to ditch long division */
452       a = temp.hi == 0 ? temp.lo / c
453                        : ft_div64by32( temp.hi, temp.lo, c );
454     }
455 
456     a_ = (FT_Long)a;
457 
458     return s < 0 ? -a_ : a_;
459   }
460 
461 
462   FT_BASE_DEF( FT_Long )
FT_MulDiv_No_Round(FT_Long a_,FT_Long b_,FT_Long c_)463   FT_MulDiv_No_Round( FT_Long  a_,
464                       FT_Long  b_,
465                       FT_Long  c_ )
466   {
467     FT_Int     s = 1;
468     FT_UInt32  a, b, c;
469 
470 
471     /* XXX: this function does not allow 64-bit arguments */
472 
473     FT_MOVE_SIGN( a_, s );
474     FT_MOVE_SIGN( b_, s );
475     FT_MOVE_SIGN( c_, s );
476 
477     a = (FT_UInt32)a_;
478     b = (FT_UInt32)b_;
479     c = (FT_UInt32)c_;
480 
481     if ( c == 0 )
482       a = 0x7FFFFFFFUL;
483 
484     else if ( a + b <= 131071UL )
485       a = a * b / c;
486 
487     else
488     {
489       FT_Int64  temp;
490 
491 
492       ft_multo64( a, b, &temp );
493 
494       /* last attempt to ditch long division */
495       a = temp.hi == 0 ? temp.lo / c
496                        : ft_div64by32( temp.hi, temp.lo, c );
497     }
498 
499     a_ = (FT_Long)a;
500 
501     return s < 0 ? -a_ : a_;
502   }
503 
504 
505   /* documentation is in freetype.h */
506 
507   FT_EXPORT_DEF( FT_Long )
FT_MulFix(FT_Long a_,FT_Long b_)508   FT_MulFix( FT_Long  a_,
509              FT_Long  b_ )
510   {
511 #ifdef FT_MULFIX_ASSEMBLER
512 
513     return FT_MULFIX_ASSEMBLER( a_, b_ );
514 
515 #elif 0
516 
517     /*
518      *  This code is nonportable.  See comment below.
519      *
520      *  However, on a platform where right-shift of a signed quantity fills
521      *  the leftmost bits by copying the sign bit, it might be faster.
522      */
523 
524     FT_Long    sa, sb;
525     FT_UInt32  a, b;
526 
527 
528     /*
529      *  This is a clever way of converting a signed number `a' into its
530      *  absolute value (stored back into `a') and its sign.  The sign is
531      *  stored in `sa'; 0 means `a' was positive or zero, and -1 means `a'
532      *  was negative.  (Similarly for `b' and `sb').
533      *
534      *  Unfortunately, it doesn't work (at least not portably).
535      *
536      *  It makes the assumption that right-shift on a negative signed value
537      *  fills the leftmost bits by copying the sign bit.  This is wrong.
538      *  According to K&R 2nd ed, section `A7.8 Shift Operators' on page 206,
539      *  the result of right-shift of a negative signed value is
540      *  implementation-defined.  At least one implementation fills the
541      *  leftmost bits with 0s (i.e., it is exactly the same as an unsigned
542      *  right shift).  This means that when `a' is negative, `sa' ends up
543      *  with the value 1 rather than -1.  After that, everything else goes
544      *  wrong.
545      */
546     sa = ( a_ >> ( sizeof ( a_ ) * 8 - 1 ) );
547     a  = ( a_ ^ sa ) - sa;
548     sb = ( b_ >> ( sizeof ( b_ ) * 8 - 1 ) );
549     b  = ( b_ ^ sb ) - sb;
550 
551     a = (FT_UInt32)a_;
552     b = (FT_UInt32)b_;
553 
554     if ( a + ( b >> 8 ) <= 8190UL )
555       a = ( a * b + 0x8000U ) >> 16;
556     else
557     {
558       FT_UInt32  al = a & 0xFFFFUL;
559 
560 
561       a = ( a >> 16 ) * b + al * ( b >> 16 ) +
562           ( ( al * ( b & 0xFFFFUL ) + 0x8000UL ) >> 16 );
563     }
564 
565     sa ^= sb;
566     a   = ( a ^ sa ) - sa;
567 
568     return (FT_Long)a;
569 
570 #else /* 0 */
571 
572     FT_Int     s = 1;
573     FT_UInt32  a, b;
574 
575 
576     /* XXX: this function does not allow 64-bit arguments */
577 
578     FT_MOVE_SIGN( a_, s );
579     FT_MOVE_SIGN( b_, s );
580 
581     a = (FT_UInt32)a_;
582     b = (FT_UInt32)b_;
583 
584     if ( a + ( b >> 8 ) <= 8190UL )
585       a = ( a * b + 0x8000UL ) >> 16;
586     else
587     {
588       FT_UInt32  al = a & 0xFFFFUL;
589 
590 
591       a = ( a >> 16 ) * b + al * ( b >> 16 ) +
592           ( ( al * ( b & 0xFFFFUL ) + 0x8000UL ) >> 16 );
593     }
594 
595     a_ = (FT_Long)a;
596 
597     return s < 0 ? -a_ : a_;
598 
599 #endif /* 0 */
600 
601   }
602 
603 
604   /* documentation is in freetype.h */
605 
606   FT_EXPORT_DEF( FT_Long )
FT_DivFix(FT_Long a_,FT_Long b_)607   FT_DivFix( FT_Long  a_,
608              FT_Long  b_ )
609   {
610     FT_Int     s = 1;
611     FT_UInt32  a, b, q;
612     FT_Long    q_;
613 
614 
615     /* XXX: this function does not allow 64-bit arguments */
616 
617     FT_MOVE_SIGN( a_, s );
618     FT_MOVE_SIGN( b_, s );
619 
620     a = (FT_UInt32)a_;
621     b = (FT_UInt32)b_;
622 
623     if ( b == 0 )
624     {
625       /* check for division by 0 */
626       q = 0x7FFFFFFFUL;
627     }
628     else if ( a <= 65535UL - ( b >> 17 ) )
629     {
630       /* compute result directly */
631       q = ( ( a << 16 ) + ( b >> 1 ) ) / b;
632     }
633     else
634     {
635       /* we need more bits; we have to do it by hand */
636       FT_Int64  temp, temp2;
637 
638 
639       temp.hi  = a >> 16;
640       temp.lo  = a << 16;
641       temp2.hi = 0;
642       temp2.lo = b >> 1;
643 
644       FT_Add64( &temp, &temp2, &temp );
645       q = ft_div64by32( temp.hi, temp.lo, b );
646     }
647 
648     q_ = (FT_Long)q;
649 
650     return s < 0 ? -q_ : q_;
651   }
652 
653 
654 #endif /* !FT_LONG64 */
655 
656 
657   /* documentation is in ftglyph.h */
658 
659   FT_EXPORT_DEF( void )
FT_Matrix_Multiply(const FT_Matrix * a,FT_Matrix * b)660   FT_Matrix_Multiply( const FT_Matrix*  a,
661                       FT_Matrix        *b )
662   {
663     FT_Fixed  xx, xy, yx, yy;
664 
665 
666     if ( !a || !b )
667       return;
668 
669     xx = FT_MulFix( a->xx, b->xx ) + FT_MulFix( a->xy, b->yx );
670     xy = FT_MulFix( a->xx, b->xy ) + FT_MulFix( a->xy, b->yy );
671     yx = FT_MulFix( a->yx, b->xx ) + FT_MulFix( a->yy, b->yx );
672     yy = FT_MulFix( a->yx, b->xy ) + FT_MulFix( a->yy, b->yy );
673 
674     b->xx = xx;  b->xy = xy;
675     b->yx = yx;  b->yy = yy;
676   }
677 
678 
679   /* documentation is in ftglyph.h */
680 
681   FT_EXPORT_DEF( FT_Error )
FT_Matrix_Invert(FT_Matrix * matrix)682   FT_Matrix_Invert( FT_Matrix*  matrix )
683   {
684     FT_Pos  delta, xx, yy;
685 
686 
687     if ( !matrix )
688       return FT_THROW( Invalid_Argument );
689 
690     /* compute discriminant */
691     delta = FT_MulFix( matrix->xx, matrix->yy ) -
692             FT_MulFix( matrix->xy, matrix->yx );
693 
694     if ( !delta )
695       return FT_THROW( Invalid_Argument );  /* matrix can't be inverted */
696 
697     matrix->xy = - FT_DivFix( matrix->xy, delta );
698     matrix->yx = - FT_DivFix( matrix->yx, delta );
699 
700     xx = matrix->xx;
701     yy = matrix->yy;
702 
703     matrix->xx = FT_DivFix( yy, delta );
704     matrix->yy = FT_DivFix( xx, delta );
705 
706     return FT_Err_Ok;
707   }
708 
709 
710   /* documentation is in ftcalc.h */
711 
712   FT_BASE_DEF( void )
FT_Matrix_Multiply_Scaled(const FT_Matrix * a,FT_Matrix * b,FT_Long scaling)713   FT_Matrix_Multiply_Scaled( const FT_Matrix*  a,
714                              FT_Matrix        *b,
715                              FT_Long           scaling )
716   {
717     FT_Fixed  xx, xy, yx, yy;
718 
719     FT_Long   val = 0x10000L * scaling;
720 
721 
722     if ( !a || !b )
723       return;
724 
725     xx = FT_MulDiv( a->xx, b->xx, val ) + FT_MulDiv( a->xy, b->yx, val );
726     xy = FT_MulDiv( a->xx, b->xy, val ) + FT_MulDiv( a->xy, b->yy, val );
727     yx = FT_MulDiv( a->yx, b->xx, val ) + FT_MulDiv( a->yy, b->yx, val );
728     yy = FT_MulDiv( a->yx, b->xy, val ) + FT_MulDiv( a->yy, b->yy, val );
729 
730     b->xx = xx;  b->xy = xy;
731     b->yx = yx;  b->yy = yy;
732   }
733 
734 
735   /* documentation is in ftcalc.h */
736 
737   FT_BASE_DEF( void )
FT_Vector_Transform_Scaled(FT_Vector * vector,const FT_Matrix * matrix,FT_Long scaling)738   FT_Vector_Transform_Scaled( FT_Vector*        vector,
739                               const FT_Matrix*  matrix,
740                               FT_Long           scaling )
741   {
742     FT_Pos   xz, yz;
743 
744     FT_Long  val = 0x10000L * scaling;
745 
746 
747     if ( !vector || !matrix )
748       return;
749 
750     xz = FT_MulDiv( vector->x, matrix->xx, val ) +
751          FT_MulDiv( vector->y, matrix->xy, val );
752 
753     yz = FT_MulDiv( vector->x, matrix->yx, val ) +
754          FT_MulDiv( vector->y, matrix->yy, val );
755 
756     vector->x = xz;
757     vector->y = yz;
758   }
759 
760 
761   /* documentation is in ftcalc.h */
762 
763   FT_BASE_DEF( FT_UInt32 )
FT_Vector_NormLen(FT_Vector * vector)764   FT_Vector_NormLen( FT_Vector*  vector )
765   {
766     FT_Int32   x_ = vector->x;
767     FT_Int32   y_ = vector->y;
768     FT_Int32   b, z;
769     FT_UInt32  x, y, u, v, l;
770     FT_Int     sx = 1, sy = 1, shift;
771 
772 
773     FT_MOVE_SIGN( x_, sx );
774     FT_MOVE_SIGN( y_, sy );
775 
776     x = (FT_UInt32)x_;
777     y = (FT_UInt32)y_;
778 
779     /* trivial cases */
780     if ( x == 0 )
781     {
782       if ( y > 0 )
783         vector->y = sy * 0x10000;
784       return y;
785     }
786     else if ( y == 0 )
787     {
788       if ( x > 0 )
789         vector->x = sx * 0x10000;
790       return x;
791     }
792 
793     /* Estimate length and prenormalize by shifting so that */
794     /* the new approximate length is between 2/3 and 4/3.   */
795     /* The magic constant 0xAAAAAAAAUL (2/3 of 2^32) helps  */
796     /* achieve this in 16.16 fixed-point representation.    */
797     l = x > y ? x + ( y >> 1 )
798               : y + ( x >> 1 );
799 
800     shift  = 31 - FT_MSB( l );
801     shift -= 15 + ( l >= ( 0xAAAAAAAAUL >> shift ) );
802 
803     if ( shift > 0 )
804     {
805       x <<= shift;
806       y <<= shift;
807 
808       /* re-estimate length for tiny vectors */
809       l = x > y ? x + ( y >> 1 )
810                 : y + ( x >> 1 );
811     }
812     else
813     {
814       x >>= -shift;
815       y >>= -shift;
816       l >>= -shift;
817     }
818 
819     /* lower linear approximation for reciprocal length minus one */
820     b = 0x10000 - (FT_Int32)l;
821 
822     x_ = (FT_Int32)x;
823     y_ = (FT_Int32)y;
824 
825     /* Newton's iterations */
826     do
827     {
828       u = (FT_UInt32)( x_ + ( x_ * b >> 16 ) );
829       v = (FT_UInt32)( y_ + ( y_ * b >> 16 ) );
830 
831       /* Normalized squared length in the parentheses approaches 2^32. */
832       /* On two's complement systems, converting to signed gives the   */
833       /* difference with 2^32 even if the expression wraps around.     */
834       z = -(FT_Int32)( u * u + v * v ) / 0x200;
835       z = z * ( ( 0x10000 + b ) >> 8 ) / 0x10000;
836 
837       b += z;
838 
839     } while ( z > 0 );
840 
841     vector->x = sx < 0 ? -(FT_Pos)u : (FT_Pos)u;
842     vector->y = sy < 0 ? -(FT_Pos)v : (FT_Pos)v;
843 
844     /* Conversion to signed helps to recover from likely wrap around */
845     /* in calculating the prenormalized length, because it gives the */
846     /* correct difference with 2^32 on two's complement systems.     */
847     l = (FT_UInt32)( 0x10000 + (FT_Int32)( u * x + v * y ) / 0x10000 );
848     if ( shift > 0 )
849       l = ( l + ( 1 << ( shift - 1 ) ) ) >> shift;
850     else
851       l <<= -shift;
852 
853     return l;
854   }
855 
856 
857 #if 0
858 
859   /* documentation is in ftcalc.h */
860 
861   FT_BASE_DEF( FT_Int32 )
862   FT_SqrtFixed( FT_Int32  x )
863   {
864     FT_UInt32  root, rem_hi, rem_lo, test_div;
865     FT_Int     count;
866 
867 
868     root = 0;
869 
870     if ( x > 0 )
871     {
872       rem_hi = 0;
873       rem_lo = (FT_UInt32)x;
874       count  = 24;
875       do
876       {
877         rem_hi   = ( rem_hi << 2 ) | ( rem_lo >> 30 );
878         rem_lo <<= 2;
879         root   <<= 1;
880         test_div = ( root << 1 ) + 1;
881 
882         if ( rem_hi >= test_div )
883         {
884           rem_hi -= test_div;
885           root   += 1;
886         }
887       } while ( --count );
888     }
889 
890     return (FT_Int32)root;
891   }
892 
893 #endif /* 0 */
894 
895 
896   /* documentation is in ftcalc.h */
897 
898   FT_BASE_DEF( FT_Int )
ft_corner_orientation(FT_Pos in_x,FT_Pos in_y,FT_Pos out_x,FT_Pos out_y)899   ft_corner_orientation( FT_Pos  in_x,
900                          FT_Pos  in_y,
901                          FT_Pos  out_x,
902                          FT_Pos  out_y )
903   {
904 #ifdef FT_LONG64
905 
906     FT_Int64  delta = (FT_Int64)in_x * out_y - (FT_Int64)in_y * out_x;
907 
908 
909     return ( delta > 0 ) - ( delta < 0 );
910 
911 #else
912 
913     FT_Int  result;
914 
915 
916     if ( (FT_ULong)FT_ABS( in_x ) + (FT_ULong)FT_ABS( out_y ) <= 131071UL &&
917          (FT_ULong)FT_ABS( in_y ) + (FT_ULong)FT_ABS( out_x ) <= 131071UL )
918     {
919       FT_Long  z1 = in_x * out_y;
920       FT_Long  z2 = in_y * out_x;
921 
922 
923       if ( z1 > z2 )
924         result = +1;
925       else if ( z1 < z2 )
926         result = -1;
927       else
928         result = 0;
929     }
930     else /* products might overflow 32 bits */
931     {
932       FT_Int64  z1, z2;
933 
934 
935       /* XXX: this function does not allow 64-bit arguments */
936       ft_multo64( (FT_UInt32)in_x, (FT_UInt32)out_y, &z1 );
937       ft_multo64( (FT_UInt32)in_y, (FT_UInt32)out_x, &z2 );
938 
939       if ( z1.hi > z2.hi )
940         result = +1;
941       else if ( z1.hi < z2.hi )
942         result = -1;
943       else if ( z1.lo > z2.lo )
944         result = +1;
945       else if ( z1.lo < z2.lo )
946         result = -1;
947       else
948         result = 0;
949     }
950 
951     /* XXX: only the sign of return value, +1/0/-1 must be used */
952     return result;
953 
954 #endif
955   }
956 
957 
958   /* documentation is in ftcalc.h */
959 
960   FT_BASE_DEF( FT_Int )
ft_corner_is_flat(FT_Pos in_x,FT_Pos in_y,FT_Pos out_x,FT_Pos out_y)961   ft_corner_is_flat( FT_Pos  in_x,
962                      FT_Pos  in_y,
963                      FT_Pos  out_x,
964                      FT_Pos  out_y )
965   {
966     FT_Pos  ax = in_x + out_x;
967     FT_Pos  ay = in_y + out_y;
968 
969     FT_Pos  d_in, d_out, d_hypot;
970 
971 
972     /* The idea of this function is to compare the length of the */
973     /* hypotenuse with the `in' and `out' length.  The `corner'  */
974     /* represented by `in' and `out' is flat if the hypotenuse's */
975     /* length isn't too large.                                   */
976     /*                                                           */
977     /* This approach has the advantage that the angle between    */
978     /* `in' and `out' is not checked.  In case one of the two    */
979     /* vectors is `dominant', this is, much larger than the      */
980     /* other vector, we thus always have a flat corner.          */
981     /*                                                           */
982     /*                hypotenuse                                 */
983     /*       x---------------------------x                       */
984     /*        \                      /                           */
985     /*         \                /                                */
986     /*      in  \          /  out                                */
987     /*           \    /                                          */
988     /*            o                                              */
989     /*              Point                                        */
990 
991     d_in    = FT_HYPOT(  in_x,  in_y );
992     d_out   = FT_HYPOT( out_x, out_y );
993     d_hypot = FT_HYPOT(    ax,    ay );
994 
995     /* now do a simple length comparison: */
996     /*                                    */
997     /*   d_in + d_out < 17/16 d_hypot     */
998 
999     return ( d_in + d_out - d_hypot ) < ( d_hypot >> 4 );
1000   }
1001 
1002 
1003 /* END */
1004