1 /*
2 **********************************************************************
3 * Copyright (C) 2000-2015, International Business Machines
4 * Corporation and others. All Rights Reserved.
5 **********************************************************************
6 * file name: ucnv_lmb.cpp
7 * encoding: US-ASCII
8 * tab size: 4 (not used)
9 * indentation:4
10 *
11 * created on: 2000feb09
12 * created by: Brendan Murray
13 * extensively hacked up by: Jim Snyder-Grant
14 *
15 * Modification History:
16 *
17 * Date Name Description
18 *
19 * 06/20/2000 helena OS/400 port changes; mostly typecast.
20 * 06/27/2000 Jim Snyder-Grant Deal with partial characters and small buffers.
21 * Add comments to document LMBCS format and implementation
22 * restructured order & breakdown of functions
23 * 06/28/2000 helena Major rewrite for the callback API changes.
24 */
25
26 #include "unicode/utypes.h"
27
28 #if !UCONFIG_NO_CONVERSION && !UCONFIG_NO_LEGACY_CONVERSION && !UCONFIG_ONLY_HTML_CONVERSION
29
30 #include "unicode/ucnv_err.h"
31 #include "unicode/ucnv.h"
32 #include "unicode/uset.h"
33 #include "cmemory.h"
34 #include "cstring.h"
35 #include "uassert.h"
36 #include "ucnv_imp.h"
37 #include "ucnv_bld.h"
38 #include "ucnv_cnv.h"
39
40 #ifdef EBCDIC_RTL
41 #include "ascii_a.h"
42 #endif
43
44 /*
45 LMBCS
46
47 (Lotus Multi-Byte Character Set)
48
49 LMBCS was invented in the late 1980's and is primarily used in Lotus Notes
50 databases and in Lotus 1-2-3 files. Programmers who work with the APIs
51 into these products will sometimes need to deal with strings in this format.
52
53 The code in this file provides an implementation for an ICU converter of
54 LMBCS to and from Unicode.
55
56 Since the LMBCS character set is only sparsely documented in existing
57 printed or online material, we have added extensive annotation to this
58 file to serve as a guide to understanding LMBCS.
59
60 LMBCS was originally designed with these four sometimes-competing design goals:
61
62 -Provide encodings for the characters in 12 existing national standards
63 (plus a few other characters)
64 -Minimal memory footprint
65 -Maximal speed of conversion into the existing national character sets
66 -No need to track a changing state as you interpret a string.
67
68
69 All of the national character sets LMBCS was trying to encode are 'ANSI'
70 based, in that the bytes from 0x20 - 0x7F are almost exactly the
71 same common Latin unaccented characters and symbols in all character sets.
72
73 So, in order to help meet the speed & memory design goals, the common ANSI
74 bytes from 0x20-0x7F are represented by the same single-byte values in LMBCS.
75
76 The general LMBCS code unit is from 1-3 bytes. We can describe the 3 bytes as
77 follows:
78
79 [G] D1 [D2]
80
81 That is, a sometimes-optional 'group' byte, followed by 1 and sometimes 2
82 data bytes. The maximum size of a LMBCS chjaracter is 3 bytes:
83 */
84 #define ULMBCS_CHARSIZE_MAX 3
85 /*
86 The single-byte values from 0x20 to 0x7F are examples of single D1 bytes.
87 We often have to figure out if byte values are below or above this, so we
88 use the ANSI nomenclature 'C0' and 'C1' to refer to the range of control
89 characters just above & below the common lower-ANSI range */
90 #define ULMBCS_C0END 0x1F
91 #define ULMBCS_C1START 0x80
92 /*
93 Since LMBCS is always dealing in byte units. we create a local type here for
94 dealing with these units of LMBCS code units:
95
96 */
97 typedef uint8_t ulmbcs_byte_t;
98
99 /*
100 Most of the values less than 0x20 are reserved in LMBCS to announce
101 which national character standard is being used for the 'D' bytes.
102 In the comments we show the common name and the IBM character-set ID
103 for these character-set announcers:
104 */
105
106 #define ULMBCS_GRP_L1 0x01 /* Latin-1 :ibm-850 */
107 #define ULMBCS_GRP_GR 0x02 /* Greek :ibm-851 */
108 #define ULMBCS_GRP_HE 0x03 /* Hebrew :ibm-1255 */
109 #define ULMBCS_GRP_AR 0x04 /* Arabic :ibm-1256 */
110 #define ULMBCS_GRP_RU 0x05 /* Cyrillic :ibm-1251 */
111 #define ULMBCS_GRP_L2 0x06 /* Latin-2 :ibm-852 */
112 #define ULMBCS_GRP_TR 0x08 /* Turkish :ibm-1254 */
113 #define ULMBCS_GRP_TH 0x0B /* Thai :ibm-874 */
114 #define ULMBCS_GRP_JA 0x10 /* Japanese :ibm-943 */
115 #define ULMBCS_GRP_KO 0x11 /* Korean :ibm-1261 */
116 #define ULMBCS_GRP_TW 0x12 /* Chinese SC :ibm-950 */
117 #define ULMBCS_GRP_CN 0x13 /* Chinese TC :ibm-1386 */
118
119 /*
120 So, the beginning of understanding LMBCS is that IF the first byte of a LMBCS
121 character is one of those 12 values, you can interpret the remaining bytes of
122 that character as coming from one of those character sets. Since the lower
123 ANSI bytes already are represented in single bytes, using one of the character
124 set announcers is used to announce a character that starts with a byte of
125 0x80 or greater.
126
127 The character sets are arranged so that the single byte sets all appear
128 before the multi-byte character sets. When we need to tell whether a
129 group byte is for a single byte char set or not we use this define: */
130
131 #define ULMBCS_DOUBLEOPTGROUP_START 0x10
132
133 /*
134 However, to fully understand LMBCS, you must also understand a series of
135 exceptions & optimizations made in service of the design goals.
136
137 First, those of you who are character set mavens may have noticed that
138 the 'double-byte' character sets are actually multi-byte character sets
139 that can have 1 or two bytes, even in the upper-ascii range. To force
140 each group byte to introduce a fixed-width encoding (to make it faster to
141 count characters), we use a convention of doubling up on the group byte
142 to introduce any single-byte character > 0x80 in an otherwise double-byte
143 character set. So, for example, the LMBCS sequence x10 x10 xAE is the
144 same as '0xAE' in the Japanese code page 943.
145
146 Next, you will notice that the list of group bytes has some gaps.
147 These are used in various ways.
148
149 We reserve a few special single byte values for common control
150 characters. These are in the same place as their ANSI eqivalents for speed.
151 */
152
153 #define ULMBCS_HT 0x09 /* Fixed control char - Horizontal Tab */
154 #define ULMBCS_LF 0x0A /* Fixed control char - Line Feed */
155 #define ULMBCS_CR 0x0D /* Fixed control char - Carriage Return */
156
157 /* Then, 1-2-3 reserved a special single-byte character to put at the
158 beginning of internal 'system' range names: */
159
160 #define ULMBCS_123SYSTEMRANGE 0x19
161
162 /* Then we needed a place to put all the other ansi control characters
163 that must be moved to different values because LMBCS reserves those
164 values for other purposes. To represent the control characters, we start
165 with a first byte of 0xF & add the control chaarcter value as the
166 second byte */
167 #define ULMBCS_GRP_CTRL 0x0F
168
169 /* For the C0 controls (less than 0x20), we add 0x20 to preserve the
170 useful doctrine that any byte less than 0x20 in a LMBCS char must be
171 the first byte of a character:*/
172 #define ULMBCS_CTRLOFFSET 0x20
173
174 /*
175 Where to put the characters that aren't part of any of the 12 national
176 character sets? The first thing that was done, in the earlier years of
177 LMBCS, was to use up the spaces of the form
178
179 [G] D1,
180
181 where 'G' was one of the single-byte character groups, and
182 D1 was less than 0x80. These sequences are gathered together
183 into a Lotus-invented doublebyte character set to represent a
184 lot of stray values. Internally, in this implementation, we track this
185 as group '0', as a place to tuck this exceptions list.*/
186
187 #define ULMBCS_GRP_EXCEPT 0x00
188 /*
189 Finally, as the durability and usefulness of UNICODE became clear,
190 LOTUS added a new group 0x14 to hold Unicode values not otherwise
191 represented in LMBCS: */
192 #define ULMBCS_GRP_UNICODE 0x14
193 /* The two bytes appearing after a 0x14 are intrepreted as UFT-16 BE
194 (Big-Endian) characters. The exception comes when the UTF16
195 representation would have a zero as the second byte. In that case,
196 'F6' is used in its place, and the bytes are swapped. (This prevents
197 LMBCS from encoding any Unicode values of the form U+F6xx, but that's OK:
198 0xF6xx is in the middle of the Private Use Area.)*/
199 #define ULMBCS_UNICOMPATZERO 0xF6
200
201 /* It is also useful in our code to have a constant for the size of
202 a LMBCS char that holds a literal Unicode value */
203 #define ULMBCS_UNICODE_SIZE 3
204
205 /*
206 To squish the LMBCS representations down even further, and to make
207 translations even faster,sometimes the optimization group byte can be dropped
208 from a LMBCS character. This is decided on a process-by-process basis. The
209 group byte that is dropped is called the 'optimization group'.
210
211 For Notes, the optimzation group is always 0x1.*/
212 #define ULMBCS_DEFAULTOPTGROUP 0x1
213 /* For 1-2-3 files, the optimzation group is stored in the header of the 1-2-3
214 file.
215
216 In any case, when using ICU, you either pass in the
217 optimization group as part of the name of the converter (LMBCS-1, LMBCS-2,
218 etc.). Using plain 'LMBCS' as the name of the converter will give you
219 LMBCS-1.
220
221
222 *** Implementation strategy ***
223
224
225 Because of the extensive use of other character sets, the LMBCS converter
226 keeps a mapping between optimization groups and IBM character sets, so that
227 ICU converters can be created and used as needed. */
228
229 /* As you can see, even though any byte below 0x20 could be an optimization
230 byte, only those at 0x13 or below can map to an actual converter. To limit
231 some loops and searches, we define a value for that last group converter:*/
232
233 #define ULMBCS_GRP_LAST 0x13 /* last LMBCS group that has a converter */
234
235 static const char * const OptGroupByteToCPName[ULMBCS_GRP_LAST + 1] = {
236 /* 0x0000 */ "lmb-excp", /* internal home for the LOTUS exceptions list */
237 /* 0x0001 */ "ibm-850",
238 /* 0x0002 */ "ibm-851",
239 /* 0x0003 */ "windows-1255",
240 /* 0x0004 */ "windows-1256",
241 /* 0x0005 */ "windows-1251",
242 /* 0x0006 */ "ibm-852",
243 /* 0x0007 */ NULL, /* Unused */
244 /* 0x0008 */ "windows-1254",
245 /* 0x0009 */ NULL, /* Control char HT */
246 /* 0x000A */ NULL, /* Control char LF */
247 /* 0x000B */ "windows-874",
248 /* 0x000C */ NULL, /* Unused */
249 /* 0x000D */ NULL, /* Control char CR */
250 /* 0x000E */ NULL, /* Unused */
251 /* 0x000F */ NULL, /* Control chars: 0x0F20 + C0/C1 character: algorithmic */
252 /* 0x0010 */ "windows-932",
253 /* 0x0011 */ "windows-949",
254 /* 0x0012 */ "windows-950",
255 /* 0x0013 */ "windows-936"
256
257 /* The rest are null, including the 0x0014 Unicode compatibility region
258 and 0x0019, the 1-2-3 system range control char */
259 };
260
261
262 /* That's approximately all the data that's needed for translating
263 LMBCS to Unicode.
264
265
266 However, to translate Unicode to LMBCS, we need some more support.
267
268 That's because there are often more than one possible mappings from a Unicode
269 code point back into LMBCS. The first thing we do is look up into a table
270 to figure out if there are more than one possible mappings. This table,
271 arranged by Unicode values (including ranges) either lists which group
272 to use, or says that it could go into one or more of the SBCS sets, or
273 into one or more of the DBCS sets. (If the character exists in both DBCS &
274 SBCS, the table will place it in the SBCS sets, to make the LMBCS code point
275 length as small as possible. Here's the two special markers we use to indicate
276 ambiguous mappings: */
277
278 #define ULMBCS_AMBIGUOUS_SBCS 0x80 /* could fit in more than one
279 LMBCS sbcs native encoding
280 (example: most accented latin) */
281 #define ULMBCS_AMBIGUOUS_MBCS 0x81 /* could fit in more than one
282 LMBCS mbcs native encoding
283 (example: Unihan) */
284 #define ULMBCS_AMBIGUOUS_ALL 0x82
285 /* And here's a simple way to see if a group falls in an appropriate range */
286 #define ULMBCS_AMBIGUOUS_MATCH(agroup, xgroup) \
287 ((((agroup) == ULMBCS_AMBIGUOUS_SBCS) && \
288 (xgroup) < ULMBCS_DOUBLEOPTGROUP_START) || \
289 (((agroup) == ULMBCS_AMBIGUOUS_MBCS) && \
290 (xgroup) >= ULMBCS_DOUBLEOPTGROUP_START)) || \
291 ((agroup) == ULMBCS_AMBIGUOUS_ALL)
292
293
294 /* The table & some code to use it: */
295
296
297 static const struct _UniLMBCSGrpMap
298 {
299 const UChar uniStartRange;
300 const UChar uniEndRange;
301 const ulmbcs_byte_t GrpType;
302 } UniLMBCSGrpMap[]
303 =
304 {
305
306 {0x0001, 0x001F, ULMBCS_GRP_CTRL},
307 {0x0080, 0x009F, ULMBCS_GRP_CTRL},
308 {0x00A0, 0x00A6, ULMBCS_AMBIGUOUS_SBCS},
309 {0x00A7, 0x00A8, ULMBCS_AMBIGUOUS_ALL},
310 {0x00A9, 0x00AF, ULMBCS_AMBIGUOUS_SBCS},
311 {0x00B0, 0x00B1, ULMBCS_AMBIGUOUS_ALL},
312 {0x00B2, 0x00B3, ULMBCS_AMBIGUOUS_SBCS},
313 {0x00B4, 0x00B4, ULMBCS_AMBIGUOUS_ALL},
314 {0x00B5, 0x00B5, ULMBCS_AMBIGUOUS_SBCS},
315 {0x00B6, 0x00B6, ULMBCS_AMBIGUOUS_ALL},
316 {0x00B7, 0x00D6, ULMBCS_AMBIGUOUS_SBCS},
317 {0x00D7, 0x00D7, ULMBCS_AMBIGUOUS_ALL},
318 {0x00D8, 0x00F6, ULMBCS_AMBIGUOUS_SBCS},
319 {0x00F7, 0x00F7, ULMBCS_AMBIGUOUS_ALL},
320 {0x00F8, 0x01CD, ULMBCS_AMBIGUOUS_SBCS},
321 {0x01CE, 0x01CE, ULMBCS_GRP_TW },
322 {0x01CF, 0x02B9, ULMBCS_AMBIGUOUS_SBCS},
323 {0x02BA, 0x02BA, ULMBCS_GRP_CN},
324 {0x02BC, 0x02C8, ULMBCS_AMBIGUOUS_SBCS},
325 {0x02C9, 0x02D0, ULMBCS_AMBIGUOUS_MBCS},
326 {0x02D8, 0x02DD, ULMBCS_AMBIGUOUS_SBCS},
327 {0x0384, 0x0390, ULMBCS_AMBIGUOUS_SBCS},
328 {0x0391, 0x03A9, ULMBCS_AMBIGUOUS_ALL},
329 {0x03AA, 0x03B0, ULMBCS_AMBIGUOUS_SBCS},
330 {0x03B1, 0x03C9, ULMBCS_AMBIGUOUS_ALL},
331 {0x03CA, 0x03CE, ULMBCS_AMBIGUOUS_SBCS},
332 {0x0400, 0x0400, ULMBCS_GRP_RU},
333 {0x0401, 0x0401, ULMBCS_AMBIGUOUS_ALL},
334 {0x0402, 0x040F, ULMBCS_GRP_RU},
335 {0x0410, 0x0431, ULMBCS_AMBIGUOUS_ALL},
336 {0x0432, 0x044E, ULMBCS_GRP_RU},
337 {0x044F, 0x044F, ULMBCS_AMBIGUOUS_ALL},
338 {0x0450, 0x0491, ULMBCS_GRP_RU},
339 {0x05B0, 0x05F2, ULMBCS_GRP_HE},
340 {0x060C, 0x06AF, ULMBCS_GRP_AR},
341 {0x0E01, 0x0E5B, ULMBCS_GRP_TH},
342 {0x200C, 0x200F, ULMBCS_AMBIGUOUS_SBCS},
343 {0x2010, 0x2010, ULMBCS_AMBIGUOUS_MBCS},
344 {0x2013, 0x2014, ULMBCS_AMBIGUOUS_SBCS},
345 {0x2015, 0x2015, ULMBCS_AMBIGUOUS_MBCS},
346 {0x2016, 0x2016, ULMBCS_AMBIGUOUS_MBCS},
347 {0x2017, 0x2017, ULMBCS_AMBIGUOUS_SBCS},
348 {0x2018, 0x2019, ULMBCS_AMBIGUOUS_ALL},
349 {0x201A, 0x201B, ULMBCS_AMBIGUOUS_SBCS},
350 {0x201C, 0x201D, ULMBCS_AMBIGUOUS_ALL},
351 {0x201E, 0x201F, ULMBCS_AMBIGUOUS_SBCS},
352 {0x2020, 0x2021, ULMBCS_AMBIGUOUS_ALL},
353 {0x2022, 0x2024, ULMBCS_AMBIGUOUS_SBCS},
354 {0x2025, 0x2025, ULMBCS_AMBIGUOUS_MBCS},
355 {0x2026, 0x2026, ULMBCS_AMBIGUOUS_ALL},
356 {0x2027, 0x2027, ULMBCS_GRP_TW},
357 {0x2030, 0x2030, ULMBCS_AMBIGUOUS_ALL},
358 {0x2031, 0x2031, ULMBCS_AMBIGUOUS_SBCS},
359 {0x2032, 0x2033, ULMBCS_AMBIGUOUS_MBCS},
360 {0x2035, 0x2035, ULMBCS_AMBIGUOUS_MBCS},
361 {0x2039, 0x203A, ULMBCS_AMBIGUOUS_SBCS},
362 {0x203B, 0x203B, ULMBCS_AMBIGUOUS_MBCS},
363 {0x203C, 0x203C, ULMBCS_GRP_EXCEPT},
364 {0x2074, 0x2074, ULMBCS_GRP_KO},
365 {0x207F, 0x207F, ULMBCS_GRP_EXCEPT},
366 {0x2081, 0x2084, ULMBCS_GRP_KO},
367 {0x20A4, 0x20AC, ULMBCS_AMBIGUOUS_SBCS},
368 {0x2103, 0x2109, ULMBCS_AMBIGUOUS_MBCS},
369 {0x2111, 0x2120, ULMBCS_AMBIGUOUS_SBCS},
370 /*zhujin: upgrade, for regressiont test, spr HKIA4YHTSU*/
371 {0x2121, 0x2121, ULMBCS_AMBIGUOUS_MBCS},
372 {0x2122, 0x2126, ULMBCS_AMBIGUOUS_SBCS},
373 {0x212B, 0x212B, ULMBCS_AMBIGUOUS_MBCS},
374 {0x2135, 0x2135, ULMBCS_AMBIGUOUS_SBCS},
375 {0x2153, 0x2154, ULMBCS_GRP_KO},
376 {0x215B, 0x215E, ULMBCS_GRP_EXCEPT},
377 {0x2160, 0x2179, ULMBCS_AMBIGUOUS_MBCS},
378 {0x2190, 0x2193, ULMBCS_AMBIGUOUS_ALL},
379 {0x2194, 0x2195, ULMBCS_GRP_EXCEPT},
380 {0x2196, 0x2199, ULMBCS_AMBIGUOUS_MBCS},
381 {0x21A8, 0x21A8, ULMBCS_GRP_EXCEPT},
382 {0x21B8, 0x21B9, ULMBCS_GRP_CN},
383 {0x21D0, 0x21D1, ULMBCS_GRP_EXCEPT},
384 {0x21D2, 0x21D2, ULMBCS_AMBIGUOUS_MBCS},
385 {0x21D3, 0x21D3, ULMBCS_GRP_EXCEPT},
386 {0x21D4, 0x21D4, ULMBCS_AMBIGUOUS_MBCS},
387 {0x21D5, 0x21D5, ULMBCS_GRP_EXCEPT},
388 {0x21E7, 0x21E7, ULMBCS_GRP_CN},
389 {0x2200, 0x2200, ULMBCS_AMBIGUOUS_MBCS},
390 {0x2201, 0x2201, ULMBCS_GRP_EXCEPT},
391 {0x2202, 0x2202, ULMBCS_AMBIGUOUS_MBCS},
392 {0x2203, 0x2203, ULMBCS_AMBIGUOUS_MBCS},
393 {0x2204, 0x2206, ULMBCS_GRP_EXCEPT},
394 {0x2207, 0x2208, ULMBCS_AMBIGUOUS_MBCS},
395 {0x2209, 0x220A, ULMBCS_GRP_EXCEPT},
396 {0x220B, 0x220B, ULMBCS_AMBIGUOUS_MBCS},
397 {0x220F, 0x2215, ULMBCS_AMBIGUOUS_MBCS},
398 {0x2219, 0x2219, ULMBCS_GRP_EXCEPT},
399 {0x221A, 0x221A, ULMBCS_AMBIGUOUS_MBCS},
400 {0x221B, 0x221C, ULMBCS_GRP_EXCEPT},
401 {0x221D, 0x221E, ULMBCS_AMBIGUOUS_MBCS},
402 {0x221F, 0x221F, ULMBCS_GRP_EXCEPT},
403 {0x2220, 0x2220, ULMBCS_AMBIGUOUS_MBCS},
404 {0x2223, 0x222A, ULMBCS_AMBIGUOUS_MBCS},
405 {0x222B, 0x223D, ULMBCS_AMBIGUOUS_MBCS},
406 {0x2245, 0x2248, ULMBCS_GRP_EXCEPT},
407 {0x224C, 0x224C, ULMBCS_GRP_TW},
408 {0x2252, 0x2252, ULMBCS_AMBIGUOUS_MBCS},
409 {0x2260, 0x2261, ULMBCS_AMBIGUOUS_MBCS},
410 {0x2262, 0x2265, ULMBCS_GRP_EXCEPT},
411 {0x2266, 0x226F, ULMBCS_AMBIGUOUS_MBCS},
412 {0x2282, 0x2283, ULMBCS_AMBIGUOUS_MBCS},
413 {0x2284, 0x2285, ULMBCS_GRP_EXCEPT},
414 {0x2286, 0x2287, ULMBCS_AMBIGUOUS_MBCS},
415 {0x2288, 0x2297, ULMBCS_GRP_EXCEPT},
416 {0x2299, 0x22BF, ULMBCS_AMBIGUOUS_MBCS},
417 {0x22C0, 0x22C0, ULMBCS_GRP_EXCEPT},
418 {0x2310, 0x2310, ULMBCS_GRP_EXCEPT},
419 {0x2312, 0x2312, ULMBCS_AMBIGUOUS_MBCS},
420 {0x2318, 0x2321, ULMBCS_GRP_EXCEPT},
421 {0x2318, 0x2321, ULMBCS_GRP_CN},
422 {0x2460, 0x24E9, ULMBCS_AMBIGUOUS_MBCS},
423 {0x2500, 0x2500, ULMBCS_AMBIGUOUS_SBCS},
424 {0x2501, 0x2501, ULMBCS_AMBIGUOUS_MBCS},
425 {0x2502, 0x2502, ULMBCS_AMBIGUOUS_ALL},
426 {0x2503, 0x2503, ULMBCS_AMBIGUOUS_MBCS},
427 {0x2504, 0x2505, ULMBCS_GRP_TW},
428 {0x2506, 0x2665, ULMBCS_AMBIGUOUS_ALL},
429 {0x2666, 0x2666, ULMBCS_GRP_EXCEPT},
430 {0x2667, 0x2669, ULMBCS_AMBIGUOUS_SBCS},
431 {0x266A, 0x266A, ULMBCS_AMBIGUOUS_ALL},
432 {0x266B, 0x266C, ULMBCS_AMBIGUOUS_SBCS},
433 {0x266D, 0x266D, ULMBCS_AMBIGUOUS_MBCS},
434 {0x266E, 0x266E, ULMBCS_AMBIGUOUS_SBCS},
435 {0x266F, 0x266F, ULMBCS_GRP_JA},
436 {0x2670, 0x2E7F, ULMBCS_AMBIGUOUS_SBCS},
437 {0x2E80, 0xF861, ULMBCS_AMBIGUOUS_MBCS},
438 {0xF862, 0xF8FF, ULMBCS_GRP_EXCEPT},
439 {0xF900, 0xFA2D, ULMBCS_AMBIGUOUS_MBCS},
440 {0xFB00, 0xFEFF, ULMBCS_AMBIGUOUS_SBCS},
441 {0xFF01, 0xFFEE, ULMBCS_AMBIGUOUS_MBCS},
442 {0xFFFF, 0xFFFF, ULMBCS_GRP_UNICODE}
443 };
444
445 static ulmbcs_byte_t
FindLMBCSUniRange(UChar uniChar)446 FindLMBCSUniRange(UChar uniChar)
447 {
448 const struct _UniLMBCSGrpMap * pTable = UniLMBCSGrpMap;
449
450 while (uniChar > pTable->uniEndRange)
451 {
452 pTable++;
453 }
454
455 if (uniChar >= pTable->uniStartRange)
456 {
457 return pTable->GrpType;
458 }
459 return ULMBCS_GRP_UNICODE;
460 }
461
462 /*
463 We also ask the creator of a converter to send in a preferred locale
464 that we can use in resolving ambiguous mappings. They send the locale
465 in as a string, and we map it, if possible, to one of the
466 LMBCS groups. We use this table, and the associated code, to
467 do the lookup: */
468
469 /**************************************************
470 This table maps locale ID's to LMBCS opt groups.
471 The default return is group 0x01. Note that for
472 performance reasons, the table is sorted in
473 increasing alphabetic order, with the notable
474 exception of zhTW. This is to force the check
475 for Traditonal Chinese before dropping back to
476 Simplified.
477
478 Note too that the Latin-1 groups have been
479 commented out because it's the default, and
480 this shortens the table, allowing a serial
481 search to go quickly.
482 *************************************************/
483
484 static const struct _LocaleLMBCSGrpMap
485 {
486 const char *LocaleID;
487 const ulmbcs_byte_t OptGroup;
488 } LocaleLMBCSGrpMap[] =
489 {
490 {"ar", ULMBCS_GRP_AR},
491 {"be", ULMBCS_GRP_RU},
492 {"bg", ULMBCS_GRP_L2},
493 /* {"ca", ULMBCS_GRP_L1}, */
494 {"cs", ULMBCS_GRP_L2},
495 /* {"da", ULMBCS_GRP_L1}, */
496 /* {"de", ULMBCS_GRP_L1}, */
497 {"el", ULMBCS_GRP_GR},
498 /* {"en", ULMBCS_GRP_L1}, */
499 /* {"es", ULMBCS_GRP_L1}, */
500 /* {"et", ULMBCS_GRP_L1}, */
501 /* {"fi", ULMBCS_GRP_L1}, */
502 /* {"fr", ULMBCS_GRP_L1}, */
503 {"he", ULMBCS_GRP_HE},
504 {"hu", ULMBCS_GRP_L2},
505 /* {"is", ULMBCS_GRP_L1}, */
506 /* {"it", ULMBCS_GRP_L1}, */
507 {"iw", ULMBCS_GRP_HE},
508 {"ja", ULMBCS_GRP_JA},
509 {"ko", ULMBCS_GRP_KO},
510 /* {"lt", ULMBCS_GRP_L1}, */
511 /* {"lv", ULMBCS_GRP_L1}, */
512 {"mk", ULMBCS_GRP_RU},
513 /* {"nl", ULMBCS_GRP_L1}, */
514 /* {"no", ULMBCS_GRP_L1}, */
515 {"pl", ULMBCS_GRP_L2},
516 /* {"pt", ULMBCS_GRP_L1}, */
517 {"ro", ULMBCS_GRP_L2},
518 {"ru", ULMBCS_GRP_RU},
519 {"sh", ULMBCS_GRP_L2},
520 {"sk", ULMBCS_GRP_L2},
521 {"sl", ULMBCS_GRP_L2},
522 {"sq", ULMBCS_GRP_L2},
523 {"sr", ULMBCS_GRP_RU},
524 /* {"sv", ULMBCS_GRP_L1}, */
525 {"th", ULMBCS_GRP_TH},
526 {"tr", ULMBCS_GRP_TR},
527 {"uk", ULMBCS_GRP_RU},
528 /* {"vi", ULMBCS_GRP_L1}, */
529 {"zhTW", ULMBCS_GRP_TW},
530 {"zh", ULMBCS_GRP_CN},
531 {NULL, ULMBCS_GRP_L1}
532 };
533
534
535 static ulmbcs_byte_t
FindLMBCSLocale(const char * LocaleID)536 FindLMBCSLocale(const char *LocaleID)
537 {
538 const struct _LocaleLMBCSGrpMap *pTable = LocaleLMBCSGrpMap;
539
540 if ((!LocaleID) || (!*LocaleID))
541 {
542 return 0;
543 }
544
545 while (pTable->LocaleID)
546 {
547 if (*pTable->LocaleID == *LocaleID) /* Check only first char for speed */
548 {
549 /* First char matches - check whole name, for entry-length */
550 if (uprv_strncmp(pTable->LocaleID, LocaleID, strlen(pTable->LocaleID)) == 0)
551 return pTable->OptGroup;
552 }
553 else
554 if (*pTable->LocaleID > *LocaleID) /* Sorted alphabetically - exit */
555 break;
556 pTable++;
557 }
558 return ULMBCS_GRP_L1;
559 }
560
561
562 /*
563 Before we get to the main body of code, here's how we hook up to the rest
564 of ICU. ICU converters are required to define a structure that includes
565 some function pointers, and some common data, in the style of a C++
566 vtable. There is also room in there for converter-specific data. LMBCS
567 uses that converter-specific data to keep track of the 12 subconverters
568 we use, the optimization group, and the group (if any) that matches the
569 locale. We have one structure instantiated for each of the 12 possible
570 optimization groups. To avoid typos & to avoid boring the reader, we
571 put the declarations of these structures and functions into macros. To see
572 the definitions of these structures, see unicode\ucnv_bld.h
573 */
574
575 typedef struct
576 {
577 UConverterSharedData *OptGrpConverter[ULMBCS_GRP_LAST+1]; /* Converter per Opt. grp. */
578 uint8_t OptGroup; /* default Opt. grp. for this LMBCS session */
579 uint8_t localeConverterIndex; /* reasonable locale match for index */
580 }
581 UConverterDataLMBCS;
582
583 static void _LMBCSClose(UConverter * _this);
584
585 #define DECLARE_LMBCS_DATA(n) \
586 static const UConverterImpl _LMBCSImpl##n={\
587 UCNV_LMBCS_##n,\
588 NULL,NULL,\
589 _LMBCSOpen##n,\
590 _LMBCSClose,\
591 NULL,\
592 _LMBCSToUnicodeWithOffsets,\
593 _LMBCSToUnicodeWithOffsets,\
594 _LMBCSFromUnicode,\
595 _LMBCSFromUnicode,\
596 NULL,\
597 NULL,\
598 NULL,\
599 NULL,\
600 _LMBCSSafeClone,\
601 ucnv_getCompleteUnicodeSet\
602 };\
603 static const UConverterStaticData _LMBCSStaticData##n={\
604 sizeof(UConverterStaticData),\
605 "LMBCS-" #n,\
606 0, UCNV_IBM, UCNV_LMBCS_##n, 1, 3,\
607 { 0x3f, 0, 0, 0 },1,FALSE,FALSE,0,0,{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0} \
608 };\
609 const UConverterSharedData _LMBCSData##n= \
610 UCNV_IMMUTABLE_SHARED_DATA_INITIALIZER(&_LMBCSStaticData##n, &_LMBCSImpl##n);
611
612 /* The only function we needed to duplicate 12 times was the 'open'
613 function, which will do basically the same thing except set a different
614 optimization group. So, we put the common stuff into a worker function,
615 and set up another macro to stamp out the 12 open functions:*/
616 #define DEFINE_LMBCS_OPEN(n) \
617 static void \
618 _LMBCSOpen##n(UConverter* _this, UConverterLoadArgs* pArgs, UErrorCode* err) \
619 { _LMBCSOpenWorker(_this, pArgs, err, n); }
620
621
622
623 /* Here's the open worker & the common close function */
624 static void
_LMBCSOpenWorker(UConverter * _this,UConverterLoadArgs * pArgs,UErrorCode * err,ulmbcs_byte_t OptGroup)625 _LMBCSOpenWorker(UConverter* _this,
626 UConverterLoadArgs *pArgs,
627 UErrorCode* err,
628 ulmbcs_byte_t OptGroup)
629 {
630 UConverterDataLMBCS * extraInfo = _this->extraInfo =
631 (UConverterDataLMBCS*)uprv_malloc (sizeof (UConverterDataLMBCS));
632 if(extraInfo != NULL)
633 {
634 UConverterNamePieces stackPieces;
635 UConverterLoadArgs stackArgs={ (int32_t)sizeof(UConverterLoadArgs) };
636 ulmbcs_byte_t i;
637
638 uprv_memset(extraInfo, 0, sizeof(UConverterDataLMBCS));
639
640 stackArgs.onlyTestIsLoadable = pArgs->onlyTestIsLoadable;
641
642 for (i=0; i <= ULMBCS_GRP_LAST && U_SUCCESS(*err); i++)
643 {
644 if(OptGroupByteToCPName[i] != NULL) {
645 extraInfo->OptGrpConverter[i] = ucnv_loadSharedData(OptGroupByteToCPName[i], &stackPieces, &stackArgs, err);
646 }
647 }
648
649 if(U_FAILURE(*err) || pArgs->onlyTestIsLoadable) {
650 _LMBCSClose(_this);
651 return;
652 }
653 extraInfo->OptGroup = OptGroup;
654 extraInfo->localeConverterIndex = FindLMBCSLocale(pArgs->locale);
655 }
656 else
657 {
658 *err = U_MEMORY_ALLOCATION_ERROR;
659 }
660 }
661
662 static void
_LMBCSClose(UConverter * _this)663 _LMBCSClose(UConverter * _this)
664 {
665 if (_this->extraInfo != NULL)
666 {
667 ulmbcs_byte_t Ix;
668 UConverterDataLMBCS * extraInfo = (UConverterDataLMBCS *) _this->extraInfo;
669
670 for (Ix=0; Ix <= ULMBCS_GRP_LAST; Ix++)
671 {
672 if (extraInfo->OptGrpConverter[Ix] != NULL)
673 ucnv_unloadSharedDataIfReady(extraInfo->OptGrpConverter[Ix]);
674 }
675 if (!_this->isExtraLocal) {
676 uprv_free (_this->extraInfo);
677 _this->extraInfo = NULL;
678 }
679 }
680 }
681
682 typedef struct LMBCSClone {
683 UConverter cnv;
684 UConverterDataLMBCS lmbcs;
685 } LMBCSClone;
686
687 static UConverter *
_LMBCSSafeClone(const UConverter * cnv,void * stackBuffer,int32_t * pBufferSize,UErrorCode * status)688 _LMBCSSafeClone(const UConverter *cnv,
689 void *stackBuffer,
690 int32_t *pBufferSize,
691 UErrorCode *status) {
692 LMBCSClone *newLMBCS;
693 UConverterDataLMBCS *extraInfo;
694 int32_t i;
695
696 if(*pBufferSize<=0) {
697 *pBufferSize=(int32_t)sizeof(LMBCSClone);
698 return NULL;
699 }
700
701 extraInfo=(UConverterDataLMBCS *)cnv->extraInfo;
702 newLMBCS=(LMBCSClone *)stackBuffer;
703
704 /* ucnv.c/ucnv_safeClone() copied the main UConverter already */
705
706 uprv_memcpy(&newLMBCS->lmbcs, extraInfo, sizeof(UConverterDataLMBCS));
707
708 /* share the subconverters */
709 for(i = 0; i <= ULMBCS_GRP_LAST; ++i) {
710 if(extraInfo->OptGrpConverter[i] != NULL) {
711 ucnv_incrementRefCount(extraInfo->OptGrpConverter[i]);
712 }
713 }
714
715 newLMBCS->cnv.extraInfo = &newLMBCS->lmbcs;
716 newLMBCS->cnv.isExtraLocal = TRUE;
717 return &newLMBCS->cnv;
718 }
719
720 /*
721 * There used to be a _LMBCSGetUnicodeSet() function here (up to svn revision 20117)
722 * which added all code points except for U+F6xx
723 * because those cannot be represented in the Unicode group.
724 * However, it turns out that windows-950 has roundtrips for all of U+F6xx
725 * which means that LMBCS can convert all Unicode code points after all.
726 * We now simply use ucnv_getCompleteUnicodeSet().
727 *
728 * This may need to be looked at again as Lotus uses _LMBCSGetUnicodeSet(). (091216)
729 */
730
731 /*
732 Here's the basic helper function that we use when converting from
733 Unicode to LMBCS, and we suspect that a Unicode character will fit into
734 one of the 12 groups. The return value is the number of bytes written
735 starting at pStartLMBCS (if any).
736 */
737
738 static size_t
LMBCSConversionWorker(UConverterDataLMBCS * extraInfo,ulmbcs_byte_t group,ulmbcs_byte_t * pStartLMBCS,UChar * pUniChar,ulmbcs_byte_t * lastConverterIndex,UBool * groups_tried)739 LMBCSConversionWorker (
740 UConverterDataLMBCS * extraInfo, /* subconverters, opt & locale groups */
741 ulmbcs_byte_t group, /* The group to try */
742 ulmbcs_byte_t * pStartLMBCS, /* where to put the results */
743 UChar * pUniChar, /* The input unicode character */
744 ulmbcs_byte_t * lastConverterIndex, /* output: track last successful group used */
745 UBool * groups_tried /* output: track any unsuccessful groups */
746 )
747 {
748 ulmbcs_byte_t * pLMBCS = pStartLMBCS;
749 UConverterSharedData * xcnv = extraInfo->OptGrpConverter[group];
750
751 int bytesConverted;
752 uint32_t value;
753 ulmbcs_byte_t firstByte;
754
755 U_ASSERT(xcnv);
756 U_ASSERT(group<ULMBCS_GRP_UNICODE);
757
758 bytesConverted = ucnv_MBCSFromUChar32(xcnv, *pUniChar, &value, FALSE);
759
760 /* get the first result byte */
761 if(bytesConverted > 0) {
762 firstByte = (ulmbcs_byte_t)(value >> ((bytesConverted - 1) * 8));
763 } else {
764 /* most common failure mode is an unassigned character */
765 groups_tried[group] = TRUE;
766 return 0;
767 }
768
769 *lastConverterIndex = group;
770
771 /* All initial byte values in lower ascii range should have been caught by now,
772 except with the exception group.
773 */
774 U_ASSERT((firstByte <= ULMBCS_C0END) || (firstByte >= ULMBCS_C1START) || (group == ULMBCS_GRP_EXCEPT));
775
776 /* use converted data: first write 0, 1 or two group bytes */
777 if (group != ULMBCS_GRP_EXCEPT && extraInfo->OptGroup != group)
778 {
779 *pLMBCS++ = group;
780 if (bytesConverted == 1 && group >= ULMBCS_DOUBLEOPTGROUP_START)
781 {
782 *pLMBCS++ = group;
783 }
784 }
785
786 /* don't emit control chars */
787 if ( bytesConverted == 1 && firstByte < 0x20 )
788 return 0;
789
790
791 /* then move over the converted data */
792 switch(bytesConverted)
793 {
794 case 4:
795 *pLMBCS++ = (ulmbcs_byte_t)(value >> 24);
796 case 3: /*fall through*/
797 *pLMBCS++ = (ulmbcs_byte_t)(value >> 16);
798 case 2: /*fall through*/
799 *pLMBCS++ = (ulmbcs_byte_t)(value >> 8);
800 case 1: /*fall through*/
801 *pLMBCS++ = (ulmbcs_byte_t)value;
802 default:
803 /* will never occur */
804 break;
805 }
806
807 return (pLMBCS - pStartLMBCS);
808 }
809
810
811 /* This is a much simpler version of above, when we
812 know we are writing LMBCS using the Unicode group
813 */
814 static size_t
LMBCSConvertUni(ulmbcs_byte_t * pLMBCS,UChar uniChar)815 LMBCSConvertUni(ulmbcs_byte_t * pLMBCS, UChar uniChar)
816 {
817 /* encode into LMBCS Unicode range */
818 uint8_t LowCh = (uint8_t)(uniChar & 0x00FF);
819 uint8_t HighCh = (uint8_t)(uniChar >> 8);
820
821 *pLMBCS++ = ULMBCS_GRP_UNICODE;
822
823 if (LowCh == 0)
824 {
825 *pLMBCS++ = ULMBCS_UNICOMPATZERO;
826 *pLMBCS++ = HighCh;
827 }
828 else
829 {
830 *pLMBCS++ = HighCh;
831 *pLMBCS++ = LowCh;
832 }
833 return ULMBCS_UNICODE_SIZE;
834 }
835
836
837
838 /* The main Unicode to LMBCS conversion function */
839 static void
_LMBCSFromUnicode(UConverterFromUnicodeArgs * args,UErrorCode * err)840 _LMBCSFromUnicode(UConverterFromUnicodeArgs* args,
841 UErrorCode* err)
842 {
843 ulmbcs_byte_t lastConverterIndex = 0;
844 UChar uniChar;
845 ulmbcs_byte_t LMBCS[ULMBCS_CHARSIZE_MAX];
846 ulmbcs_byte_t * pLMBCS;
847 int32_t bytes_written;
848 UBool groups_tried[ULMBCS_GRP_LAST+1];
849 UConverterDataLMBCS * extraInfo = (UConverterDataLMBCS *) args->converter->extraInfo;
850 int sourceIndex = 0;
851
852 /* Basic strategy: attempt to fill in local LMBCS 1-char buffer.(LMBCS)
853 If that succeeds, see if it will all fit into the target & copy it over
854 if it does.
855
856 We try conversions in the following order:
857
858 1. Single-byte ascii & special fixed control chars (&null)
859 2. Look up group in table & try that (could be
860 A) Unicode group
861 B) control group,
862 C) national encoding,
863 or ambiguous SBCS or MBCS group (on to step 4...)
864
865 3. If its ambiguous, try this order:
866 A) The optimization group
867 B) The locale group
868 C) The last group that succeeded with this string.
869 D) every other group that's relevent (single or double)
870 E) If its single-byte ambiguous, try the exceptions group
871
872 4. And as a grand fallback: Unicode
873 */
874
875 /*Fix for SPR#DJOE66JFN3 (Lotus)*/
876 ulmbcs_byte_t OldConverterIndex = 0;
877
878 while (args->source < args->sourceLimit && !U_FAILURE(*err))
879 {
880 /*Fix for SPR#DJOE66JFN3 (Lotus)*/
881 OldConverterIndex = extraInfo->localeConverterIndex;
882
883 if (args->target >= args->targetLimit)
884 {
885 *err = U_BUFFER_OVERFLOW_ERROR;
886 break;
887 }
888 uniChar = *(args->source);
889 bytes_written = 0;
890 pLMBCS = LMBCS;
891
892 /* check cases in rough order of how common they are, for speed */
893
894 /* single byte matches: strategy 1 */
895 /*Fix for SPR#DJOE66JFN3 (Lotus)*/
896 if((uniChar>=0x80) && (uniChar<=0xff)
897 /*Fix for SPR#JUYA6XAERU and TSAO7GL5NK (Lotus)*/ &&(uniChar!=0xB1) &&(uniChar!=0xD7) &&(uniChar!=0xF7)
898 &&(uniChar!=0xB0) &&(uniChar!=0xB4) &&(uniChar!=0xB6) &&(uniChar!=0xA7) &&(uniChar!=0xA8))
899 {
900 extraInfo->localeConverterIndex = ULMBCS_GRP_L1;
901 }
902 if (((uniChar > ULMBCS_C0END) && (uniChar < ULMBCS_C1START)) ||
903 uniChar == 0 || uniChar == ULMBCS_HT || uniChar == ULMBCS_CR ||
904 uniChar == ULMBCS_LF || uniChar == ULMBCS_123SYSTEMRANGE
905 )
906 {
907 *pLMBCS++ = (ulmbcs_byte_t ) uniChar;
908 bytes_written = 1;
909 }
910
911
912 if (!bytes_written)
913 {
914 /* Check by UNICODE range (Strategy 2) */
915 ulmbcs_byte_t group = FindLMBCSUniRange(uniChar);
916
917 if (group == ULMBCS_GRP_UNICODE) /* (Strategy 2A) */
918 {
919 pLMBCS += LMBCSConvertUni(pLMBCS,uniChar);
920
921 bytes_written = (int32_t)(pLMBCS - LMBCS);
922 }
923 else if (group == ULMBCS_GRP_CTRL) /* (Strategy 2B) */
924 {
925 /* Handle control characters here */
926 if (uniChar <= ULMBCS_C0END)
927 {
928 *pLMBCS++ = ULMBCS_GRP_CTRL;
929 *pLMBCS++ = (ulmbcs_byte_t)(ULMBCS_CTRLOFFSET + uniChar);
930 }
931 else if (uniChar >= ULMBCS_C1START && uniChar <= ULMBCS_C1START + ULMBCS_CTRLOFFSET)
932 {
933 *pLMBCS++ = ULMBCS_GRP_CTRL;
934 *pLMBCS++ = (ulmbcs_byte_t ) (uniChar & 0x00FF);
935 }
936 bytes_written = (int32_t)(pLMBCS - LMBCS);
937 }
938 else if (group < ULMBCS_GRP_UNICODE) /* (Strategy 2C) */
939 {
940 /* a specific converter has been identified - use it */
941 bytes_written = (int32_t)LMBCSConversionWorker (
942 extraInfo, group, pLMBCS, &uniChar,
943 &lastConverterIndex, groups_tried);
944 }
945 if (!bytes_written) /* the ambiguous group cases (Strategy 3) */
946 {
947 uprv_memset(groups_tried, 0, sizeof(groups_tried));
948
949 /* check for non-default optimization group (Strategy 3A )*/
950 if ((extraInfo->OptGroup != 1) && (ULMBCS_AMBIGUOUS_MATCH(group, extraInfo->OptGroup)))
951 {
952 /*zhujin: upgrade, merge #39299 here (Lotus) */
953 /*To make R5 compatible translation, look for exceptional group first for non-DBCS*/
954
955 if(extraInfo->localeConverterIndex < ULMBCS_DOUBLEOPTGROUP_START)
956 {
957 bytes_written = LMBCSConversionWorker (extraInfo,
958 ULMBCS_GRP_L1, pLMBCS, &uniChar,
959 &lastConverterIndex, groups_tried);
960
961 if(!bytes_written)
962 {
963 bytes_written = LMBCSConversionWorker (extraInfo,
964 ULMBCS_GRP_EXCEPT, pLMBCS, &uniChar,
965 &lastConverterIndex, groups_tried);
966 }
967 if(!bytes_written)
968 {
969 bytes_written = LMBCSConversionWorker (extraInfo,
970 extraInfo->localeConverterIndex, pLMBCS, &uniChar,
971 &lastConverterIndex, groups_tried);
972 }
973 }
974 else
975 {
976 bytes_written = LMBCSConversionWorker (extraInfo,
977 extraInfo->localeConverterIndex, pLMBCS, &uniChar,
978 &lastConverterIndex, groups_tried);
979 }
980 }
981 /* check for locale optimization group (Strategy 3B) */
982 if (!bytes_written && (extraInfo->localeConverterIndex) && (ULMBCS_AMBIGUOUS_MATCH(group, extraInfo->localeConverterIndex)))
983 {
984 bytes_written = (int32_t)LMBCSConversionWorker (extraInfo,
985 extraInfo->localeConverterIndex, pLMBCS, &uniChar, &lastConverterIndex, groups_tried);
986 }
987 /* check for last optimization group used for this string (Strategy 3C) */
988 if (!bytes_written && (lastConverterIndex) && (ULMBCS_AMBIGUOUS_MATCH(group, lastConverterIndex)))
989 {
990 bytes_written = (int32_t)LMBCSConversionWorker (extraInfo,
991 lastConverterIndex, pLMBCS, &uniChar, &lastConverterIndex, groups_tried);
992 }
993 if (!bytes_written)
994 {
995 /* just check every possible matching converter (Strategy 3D) */
996 ulmbcs_byte_t grp_start;
997 ulmbcs_byte_t grp_end;
998 ulmbcs_byte_t grp_ix;
999 grp_start = (ulmbcs_byte_t)((group == ULMBCS_AMBIGUOUS_MBCS)
1000 ? ULMBCS_DOUBLEOPTGROUP_START
1001 : ULMBCS_GRP_L1);
1002 grp_end = (ulmbcs_byte_t)((group == ULMBCS_AMBIGUOUS_MBCS)
1003 ? ULMBCS_GRP_LAST
1004 : ULMBCS_GRP_TH);
1005 if(group == ULMBCS_AMBIGUOUS_ALL)
1006 {
1007 grp_start = ULMBCS_GRP_L1;
1008 grp_end = ULMBCS_GRP_LAST;
1009 }
1010 for (grp_ix = grp_start;
1011 grp_ix <= grp_end && !bytes_written;
1012 grp_ix++)
1013 {
1014 if (extraInfo->OptGrpConverter [grp_ix] && !groups_tried [grp_ix])
1015 {
1016 bytes_written = (int32_t)LMBCSConversionWorker (extraInfo,
1017 grp_ix, pLMBCS, &uniChar,
1018 &lastConverterIndex, groups_tried);
1019 }
1020 }
1021 /* a final conversion fallback to the exceptions group if its likely
1022 to be single byte (Strategy 3E) */
1023 if (!bytes_written && grp_start == ULMBCS_GRP_L1)
1024 {
1025 bytes_written = (int32_t)LMBCSConversionWorker (extraInfo,
1026 ULMBCS_GRP_EXCEPT, pLMBCS, &uniChar,
1027 &lastConverterIndex, groups_tried);
1028 }
1029 }
1030 /* all of our other strategies failed. Fallback to Unicode. (Strategy 4)*/
1031 if (!bytes_written)
1032 {
1033
1034 pLMBCS += LMBCSConvertUni(pLMBCS, uniChar);
1035 bytes_written = (int32_t)(pLMBCS - LMBCS);
1036 }
1037 }
1038 }
1039
1040 /* we have a translation. increment source and write as much as posible to target */
1041 args->source++;
1042 pLMBCS = LMBCS;
1043 while (args->target < args->targetLimit && bytes_written--)
1044 {
1045 *(args->target)++ = *pLMBCS++;
1046 if (args->offsets)
1047 {
1048 *(args->offsets)++ = sourceIndex;
1049 }
1050 }
1051 sourceIndex++;
1052 if (bytes_written > 0)
1053 {
1054 /* write any bytes that didn't fit in target to the error buffer,
1055 common code will move this to target if we get called back with
1056 enough target room
1057 */
1058 uint8_t * pErrorBuffer = args->converter->charErrorBuffer;
1059 *err = U_BUFFER_OVERFLOW_ERROR;
1060 args->converter->charErrorBufferLength = (int8_t)bytes_written;
1061 while (bytes_written--)
1062 {
1063 *pErrorBuffer++ = *pLMBCS++;
1064 }
1065 }
1066 /*Fix for SPR#DJOE66JFN3 (Lotus)*/
1067 extraInfo->localeConverterIndex = OldConverterIndex;
1068 }
1069 }
1070
1071
1072 /* Now, the Unicode from LMBCS section */
1073
1074
1075 /* A function to call when we are looking at the Unicode group byte in LMBCS */
1076 static UChar
GetUniFromLMBCSUni(char const ** ppLMBCSin)1077 GetUniFromLMBCSUni(char const ** ppLMBCSin) /* Called with LMBCS-style Unicode byte stream */
1078 {
1079 uint8_t HighCh = *(*ppLMBCSin)++; /* Big-endian Unicode in LMBCS compatibility group*/
1080 uint8_t LowCh = *(*ppLMBCSin)++;
1081
1082 if (HighCh == ULMBCS_UNICOMPATZERO )
1083 {
1084 HighCh = LowCh;
1085 LowCh = 0; /* zero-byte in LSB special character */
1086 }
1087 return (UChar)((HighCh << 8) | LowCh);
1088 }
1089
1090
1091
1092 /* CHECK_SOURCE_LIMIT: Helper macro to verify that there are at least'index'
1093 bytes left in source up to sourceLimit.Errors appropriately if not.
1094 If we reach the limit, then update the source pointer to there to consume
1095 all input as required by ICU converter semantics.
1096 */
1097
1098 #define CHECK_SOURCE_LIMIT(index) \
1099 if (args->source+index > args->sourceLimit){\
1100 *err = U_TRUNCATED_CHAR_FOUND;\
1101 args->source = args->sourceLimit;\
1102 return 0xffff;}
1103
1104 /* Return the Unicode representation for the current LMBCS character */
1105
1106 static UChar32
_LMBCSGetNextUCharWorker(UConverterToUnicodeArgs * args,UErrorCode * err)1107 _LMBCSGetNextUCharWorker(UConverterToUnicodeArgs* args,
1108 UErrorCode* err)
1109 {
1110 UChar32 uniChar = 0; /* an output UNICODE char */
1111 ulmbcs_byte_t CurByte; /* A byte from the input stream */
1112
1113 /* error check */
1114 if (args->source >= args->sourceLimit)
1115 {
1116 *err = U_ILLEGAL_ARGUMENT_ERROR;
1117 return 0xffff;
1118 }
1119 /* Grab first byte & save address for error recovery */
1120 CurByte = *((ulmbcs_byte_t *) (args->source++));
1121
1122 /*
1123 * at entry of each if clause:
1124 * 1. 'CurByte' points at the first byte of a LMBCS character
1125 * 2. '*source'points to the next byte of the source stream after 'CurByte'
1126 *
1127 * the job of each if clause is:
1128 * 1. set '*source' to point at the beginning of next char (nop if LMBCS char is only 1 byte)
1129 * 2. set 'uniChar' up with the right Unicode value, or set 'err' appropriately
1130 */
1131
1132 /* First lets check the simple fixed values. */
1133
1134 if(((CurByte > ULMBCS_C0END) && (CurByte < ULMBCS_C1START)) /* ascii range */
1135 || (CurByte == 0)
1136 || CurByte == ULMBCS_HT || CurByte == ULMBCS_CR
1137 || CurByte == ULMBCS_LF || CurByte == ULMBCS_123SYSTEMRANGE)
1138 {
1139 uniChar = CurByte;
1140 }
1141 else
1142 {
1143 UConverterDataLMBCS * extraInfo;
1144 ulmbcs_byte_t group;
1145 UConverterSharedData *cnv;
1146
1147 if (CurByte == ULMBCS_GRP_CTRL) /* Control character group - no opt group update */
1148 {
1149 ulmbcs_byte_t C0C1byte;
1150 CHECK_SOURCE_LIMIT(1);
1151 C0C1byte = *(args->source)++;
1152 uniChar = (C0C1byte < ULMBCS_C1START) ? C0C1byte - ULMBCS_CTRLOFFSET : C0C1byte;
1153 }
1154 else
1155 if (CurByte == ULMBCS_GRP_UNICODE) /* Unicode compatibility group: BigEndian UTF16 */
1156 {
1157 CHECK_SOURCE_LIMIT(2);
1158
1159 /* don't check for error indicators fffe/ffff below */
1160 return GetUniFromLMBCSUni(&(args->source));
1161 }
1162 else if (CurByte <= ULMBCS_CTRLOFFSET)
1163 {
1164 group = CurByte; /* group byte is in the source */
1165 extraInfo = (UConverterDataLMBCS *) args->converter->extraInfo;
1166 if (group > ULMBCS_GRP_LAST || (cnv = extraInfo->OptGrpConverter[group]) == NULL)
1167 {
1168 /* this is not a valid group byte - no converter*/
1169 *err = U_INVALID_CHAR_FOUND;
1170 }
1171 else if (group >= ULMBCS_DOUBLEOPTGROUP_START) /* double byte conversion */
1172 {
1173
1174 CHECK_SOURCE_LIMIT(2);
1175
1176 /* check for LMBCS doubled-group-byte case */
1177 if (*args->source == group) {
1178 /* single byte */
1179 ++args->source;
1180 uniChar = ucnv_MBCSSimpleGetNextUChar(cnv, args->source, 1, FALSE);
1181 ++args->source;
1182 } else {
1183 /* double byte */
1184 uniChar = ucnv_MBCSSimpleGetNextUChar(cnv, args->source, 2, FALSE);
1185 args->source += 2;
1186 }
1187 }
1188 else { /* single byte conversion */
1189 CHECK_SOURCE_LIMIT(1);
1190 CurByte = *(args->source)++;
1191
1192 if (CurByte >= ULMBCS_C1START)
1193 {
1194 uniChar = _MBCS_SINGLE_SIMPLE_GET_NEXT_BMP(cnv, CurByte);
1195 }
1196 else
1197 {
1198 /* The non-optimizable oddballs where there is an explicit byte
1199 * AND the second byte is not in the upper ascii range
1200 */
1201 char bytes[2];
1202
1203 extraInfo = (UConverterDataLMBCS *) args->converter->extraInfo;
1204 cnv = extraInfo->OptGrpConverter [ULMBCS_GRP_EXCEPT];
1205
1206 /* Lookup value must include opt group */
1207 bytes[0] = group;
1208 bytes[1] = CurByte;
1209 uniChar = ucnv_MBCSSimpleGetNextUChar(cnv, bytes, 2, FALSE);
1210 }
1211 }
1212 }
1213 else if (CurByte >= ULMBCS_C1START) /* group byte is implicit */
1214 {
1215 extraInfo = (UConverterDataLMBCS *) args->converter->extraInfo;
1216 group = extraInfo->OptGroup;
1217 cnv = extraInfo->OptGrpConverter[group];
1218 if (group >= ULMBCS_DOUBLEOPTGROUP_START) /* double byte conversion */
1219 {
1220 if (!ucnv_MBCSIsLeadByte(cnv, CurByte))
1221 {
1222 CHECK_SOURCE_LIMIT(0);
1223
1224 /* let the MBCS conversion consume CurByte again */
1225 uniChar = ucnv_MBCSSimpleGetNextUChar(cnv, args->source - 1, 1, FALSE);
1226 }
1227 else
1228 {
1229 CHECK_SOURCE_LIMIT(1);
1230 /* let the MBCS conversion consume CurByte again */
1231 uniChar = ucnv_MBCSSimpleGetNextUChar(cnv, args->source - 1, 2, FALSE);
1232 ++args->source;
1233 }
1234 }
1235 else /* single byte conversion */
1236 {
1237 uniChar = _MBCS_SINGLE_SIMPLE_GET_NEXT_BMP(cnv, CurByte);
1238 }
1239 }
1240 }
1241 return uniChar;
1242 }
1243
1244
1245 /* The exported function that converts lmbcs to one or more
1246 UChars - currently UTF-16
1247 */
1248 static void
_LMBCSToUnicodeWithOffsets(UConverterToUnicodeArgs * args,UErrorCode * err)1249 _LMBCSToUnicodeWithOffsets(UConverterToUnicodeArgs* args,
1250 UErrorCode* err)
1251 {
1252 char LMBCS [ULMBCS_CHARSIZE_MAX];
1253 UChar uniChar; /* one output UNICODE char */
1254 const char * saveSource; /* beginning of current code point */
1255 const char * pStartLMBCS = args->source; /* beginning of whole string */
1256 const char * errSource = NULL; /* pointer to actual input in case an error occurs */
1257 int8_t savebytes = 0;
1258
1259 /* Process from source to limit, or until error */
1260 while (U_SUCCESS(*err) && args->sourceLimit > args->source && args->targetLimit > args->target)
1261 {
1262 saveSource = args->source; /* beginning of current code point */
1263
1264 if (args->converter->toULength) /* reassemble char from previous call */
1265 {
1266 const char *saveSourceLimit;
1267 size_t size_old = args->converter->toULength;
1268
1269 /* limit from source is either remainder of temp buffer, or user limit on source */
1270 size_t size_new_maybe_1 = sizeof(LMBCS) - size_old;
1271 size_t size_new_maybe_2 = args->sourceLimit - args->source;
1272 size_t size_new = (size_new_maybe_1 < size_new_maybe_2) ? size_new_maybe_1 : size_new_maybe_2;
1273
1274
1275 uprv_memcpy(LMBCS, args->converter->toUBytes, size_old);
1276 uprv_memcpy(LMBCS + size_old, args->source, size_new);
1277 saveSourceLimit = args->sourceLimit;
1278 args->source = errSource = LMBCS;
1279 args->sourceLimit = LMBCS+size_old+size_new;
1280 savebytes = (int8_t)(size_old+size_new);
1281 uniChar = (UChar) _LMBCSGetNextUCharWorker(args, err);
1282 args->source = saveSource + ((args->source - LMBCS) - size_old);
1283 args->sourceLimit = saveSourceLimit;
1284
1285 if (*err == U_TRUNCATED_CHAR_FOUND)
1286 {
1287 /* evil special case: source buffers so small a char spans more than 2 buffers */
1288 args->converter->toULength = savebytes;
1289 uprv_memcpy(args->converter->toUBytes, LMBCS, savebytes);
1290 args->source = args->sourceLimit;
1291 *err = U_ZERO_ERROR;
1292 return;
1293 }
1294 else
1295 {
1296 /* clear the partial-char marker */
1297 args->converter->toULength = 0;
1298 }
1299 }
1300 else
1301 {
1302 errSource = saveSource;
1303 uniChar = (UChar) _LMBCSGetNextUCharWorker(args, err);
1304 savebytes = (int8_t)(args->source - saveSource);
1305 }
1306 if (U_SUCCESS(*err))
1307 {
1308 if (uniChar < 0xfffe)
1309 {
1310 *(args->target)++ = uniChar;
1311 if(args->offsets)
1312 {
1313 *(args->offsets)++ = (int32_t)(saveSource - pStartLMBCS);
1314 }
1315 }
1316 else if (uniChar == 0xfffe)
1317 {
1318 *err = U_INVALID_CHAR_FOUND;
1319 }
1320 else /* if (uniChar == 0xffff) */
1321 {
1322 *err = U_ILLEGAL_CHAR_FOUND;
1323 }
1324 }
1325 }
1326 /* if target ran out before source, return U_BUFFER_OVERFLOW_ERROR */
1327 if (U_SUCCESS(*err) && args->sourceLimit > args->source && args->targetLimit <= args->target)
1328 {
1329 *err = U_BUFFER_OVERFLOW_ERROR;
1330 }
1331 else if (U_FAILURE(*err))
1332 {
1333 /* If character incomplete or unmappable/illegal, store it in toUBytes[] */
1334 args->converter->toULength = savebytes;
1335 if (savebytes > 0) {
1336 uprv_memcpy(args->converter->toUBytes, errSource, savebytes);
1337 }
1338 if (*err == U_TRUNCATED_CHAR_FOUND) {
1339 *err = U_ZERO_ERROR;
1340 }
1341 }
1342 }
1343
1344 /* And now, the macroized declarations of data & functions: */
1345 DEFINE_LMBCS_OPEN(1)
1346 DEFINE_LMBCS_OPEN(2)
1347 DEFINE_LMBCS_OPEN(3)
1348 DEFINE_LMBCS_OPEN(4)
1349 DEFINE_LMBCS_OPEN(5)
1350 DEFINE_LMBCS_OPEN(6)
1351 DEFINE_LMBCS_OPEN(8)
1352 DEFINE_LMBCS_OPEN(11)
1353 DEFINE_LMBCS_OPEN(16)
1354 DEFINE_LMBCS_OPEN(17)
1355 DEFINE_LMBCS_OPEN(18)
1356 DEFINE_LMBCS_OPEN(19)
1357
1358
1359 DECLARE_LMBCS_DATA(1)
1360 DECLARE_LMBCS_DATA(2)
1361 DECLARE_LMBCS_DATA(3)
1362 DECLARE_LMBCS_DATA(4)
1363 DECLARE_LMBCS_DATA(5)
1364 DECLARE_LMBCS_DATA(6)
1365 DECLARE_LMBCS_DATA(8)
1366 DECLARE_LMBCS_DATA(11)
1367 DECLARE_LMBCS_DATA(16)
1368 DECLARE_LMBCS_DATA(17)
1369 DECLARE_LMBCS_DATA(18)
1370 DECLARE_LMBCS_DATA(19)
1371
1372 #endif /* #if !UCONFIG_NO_LEGACY_CONVERSION */
1373