1 /*
2 **********************************************************************
3 * Copyright (C) 1999-2011, International Business Machines
4 * Corporation and others. All Rights Reserved.
5 **********************************************************************
6 * Date Name Description
7 * 11/17/99 aliu Creation.
8 **********************************************************************
9 */
10
11 #include "unicode/utypes.h"
12
13 #if !UCONFIG_NO_TRANSLITERATION
14
15 #include "unicode/unifilt.h"
16 #include "unicode/uniset.h"
17 #include "cpdtrans.h"
18 #include "uvector.h"
19 #include "tridpars.h"
20 #include "cmemory.h"
21
22 // keep in sync with Transliterator
23 //static const UChar ID_SEP = 0x002D; /*-*/
24 static const UChar ID_DELIM = 0x003B; /*;*/
25 static const UChar NEWLINE = 10;
26
27 static const UChar COLON_COLON[] = {0x3A, 0x3A, 0}; //"::"
28
29 U_NAMESPACE_BEGIN
30
31 const UChar CompoundTransliterator::PASS_STRING[] = { 0x0025, 0x0050, 0x0061, 0x0073, 0x0073, 0 }; // "%Pass"
32
UOBJECT_DEFINE_RTTI_IMPLEMENTATION(CompoundTransliterator)33 UOBJECT_DEFINE_RTTI_IMPLEMENTATION(CompoundTransliterator)
34
35 /**
36 * Constructs a new compound transliterator given an array of
37 * transliterators. The array of transliterators may be of any
38 * length, including zero or one, however, useful compound
39 * transliterators have at least two components.
40 * @param transliterators array of <code>Transliterator</code>
41 * objects
42 * @param transliteratorCount The number of
43 * <code>Transliterator</code> objects in transliterators.
44 * @param filter the filter. Any character for which
45 * <tt>filter.contains()</tt> returns <tt>false</tt> will not be
46 * altered by this transliterator. If <tt>filter</tt> is
47 * <tt>null</tt> then no filtering is applied.
48 */
49 CompoundTransliterator::CompoundTransliterator(
50 Transliterator* const transliterators[],
51 int32_t transliteratorCount,
52 UnicodeFilter* adoptedFilter) :
53 Transliterator(joinIDs(transliterators, transliteratorCount), adoptedFilter),
54 trans(0), count(0), numAnonymousRBTs(0) {
55 setTransliterators(transliterators, transliteratorCount);
56 }
57
58 /**
59 * Splits an ID of the form "ID;ID;..." into a compound using each
60 * of the IDs.
61 * @param id of above form
62 * @param forward if false, does the list in reverse order, and
63 * takes the inverse of each ID.
64 */
CompoundTransliterator(const UnicodeString & id,UTransDirection direction,UnicodeFilter * adoptedFilter,UParseError &,UErrorCode & status)65 CompoundTransliterator::CompoundTransliterator(const UnicodeString& id,
66 UTransDirection direction,
67 UnicodeFilter* adoptedFilter,
68 UParseError& /*parseError*/,
69 UErrorCode& status) :
70 Transliterator(id, adoptedFilter),
71 trans(0), numAnonymousRBTs(0) {
72 // TODO add code for parseError...currently unused, but
73 // later may be used by parsing code...
74 init(id, direction, TRUE, status);
75 }
76
CompoundTransliterator(const UnicodeString & id,UParseError &,UErrorCode & status)77 CompoundTransliterator::CompoundTransliterator(const UnicodeString& id,
78 UParseError& /*parseError*/,
79 UErrorCode& status) :
80 Transliterator(id, 0), // set filter to 0 here!
81 trans(0), numAnonymousRBTs(0) {
82 // TODO add code for parseError...currently unused, but
83 // later may be used by parsing code...
84 init(id, UTRANS_FORWARD, TRUE, status);
85 }
86
87
88 /**
89 * Private constructor for use of TransliteratorAlias
90 */
CompoundTransliterator(const UnicodeString & newID,UVector & list,UnicodeFilter * adoptedFilter,int32_t anonymousRBTs,UParseError &,UErrorCode & status)91 CompoundTransliterator::CompoundTransliterator(const UnicodeString& newID,
92 UVector& list,
93 UnicodeFilter* adoptedFilter,
94 int32_t anonymousRBTs,
95 UParseError& /*parseError*/,
96 UErrorCode& status) :
97 Transliterator(newID, adoptedFilter),
98 trans(0), numAnonymousRBTs(anonymousRBTs)
99 {
100 init(list, UTRANS_FORWARD, FALSE, status);
101 }
102
103 /**
104 * Private constructor for Transliterator from a vector of
105 * transliterators. The caller is responsible for fixing up the
106 * ID.
107 */
CompoundTransliterator(UVector & list,UParseError &,UErrorCode & status)108 CompoundTransliterator::CompoundTransliterator(UVector& list,
109 UParseError& /*parseError*/,
110 UErrorCode& status) :
111 Transliterator(UnicodeString(), NULL),
112 trans(0), numAnonymousRBTs(0)
113 {
114 // TODO add code for parseError...currently unused, but
115 // later may be used by parsing code...
116 init(list, UTRANS_FORWARD, FALSE, status);
117 // assume caller will fixup ID
118 }
119
CompoundTransliterator(UVector & list,int32_t anonymousRBTs,UParseError &,UErrorCode & status)120 CompoundTransliterator::CompoundTransliterator(UVector& list,
121 int32_t anonymousRBTs,
122 UParseError& /*parseError*/,
123 UErrorCode& status) :
124 Transliterator(UnicodeString(), NULL),
125 trans(0), numAnonymousRBTs(anonymousRBTs)
126 {
127 init(list, UTRANS_FORWARD, FALSE, status);
128 }
129
130 /**
131 * Finish constructing a transliterator: only to be called by
132 * constructors. Before calling init(), set trans and filter to NULL.
133 * @param id the id containing ';'-separated entries
134 * @param direction either FORWARD or REVERSE
135 * @param idSplitPoint the index into id at which the
136 * adoptedSplitTransliterator should be inserted, if there is one, or
137 * -1 if there is none.
138 * @param adoptedSplitTransliterator a transliterator to be inserted
139 * before the entry at offset idSplitPoint in the id string. May be
140 * NULL to insert no entry.
141 * @param fixReverseID if TRUE, then reconstruct the ID of reverse
142 * entries by calling getID() of component entries. Some constructors
143 * do not require this because they apply a facade ID anyway.
144 * @param status the error code indicating success or failure
145 */
init(const UnicodeString & id,UTransDirection direction,UBool fixReverseID,UErrorCode & status)146 void CompoundTransliterator::init(const UnicodeString& id,
147 UTransDirection direction,
148 UBool fixReverseID,
149 UErrorCode& status) {
150 // assert(trans == 0);
151
152 if (U_FAILURE(status)) {
153 return;
154 }
155
156 UVector list(status);
157 UnicodeSet* compoundFilter = NULL;
158 UnicodeString regenID;
159 if (!TransliteratorIDParser::parseCompoundID(id, direction,
160 regenID, list, compoundFilter)) {
161 status = U_INVALID_ID;
162 delete compoundFilter;
163 return;
164 }
165
166 TransliteratorIDParser::instantiateList(list, status);
167
168 init(list, direction, fixReverseID, status);
169
170 if (compoundFilter != NULL) {
171 adoptFilter(compoundFilter);
172 }
173 }
174
175 /**
176 * Finish constructing a transliterator: only to be called by
177 * constructors. Before calling init(), set trans and filter to NULL.
178 * @param list a vector of transliterator objects to be adopted. It
179 * should NOT be empty. The list should be in declared order. That
180 * is, it should be in the FORWARD order; if direction is REVERSE then
181 * the list order will be reversed.
182 * @param direction either FORWARD or REVERSE
183 * @param fixReverseID if TRUE, then reconstruct the ID of reverse
184 * entries by calling getID() of component entries. Some constructors
185 * do not require this because they apply a facade ID anyway.
186 * @param status the error code indicating success or failure
187 */
init(UVector & list,UTransDirection direction,UBool fixReverseID,UErrorCode & status)188 void CompoundTransliterator::init(UVector& list,
189 UTransDirection direction,
190 UBool fixReverseID,
191 UErrorCode& status) {
192 // assert(trans == 0);
193
194 // Allocate array
195 if (U_SUCCESS(status)) {
196 count = list.size();
197 trans = (Transliterator **)uprv_malloc(count * sizeof(Transliterator *));
198 /* test for NULL */
199 if (trans == 0) {
200 status = U_MEMORY_ALLOCATION_ERROR;
201 return;
202 }
203 }
204
205 if (U_FAILURE(status) || trans == 0) {
206 // assert(trans == 0);
207 return;
208 }
209
210 // Move the transliterators from the vector into an array.
211 // Reverse the order if necessary.
212 int32_t i;
213 for (i=0; i<count; ++i) {
214 int32_t j = (direction == UTRANS_FORWARD) ? i : count - 1 - i;
215 trans[i] = (Transliterator*) list.elementAt(j);
216 }
217
218 // If the direction is UTRANS_REVERSE then we may need to fix the
219 // ID.
220 if (direction == UTRANS_REVERSE && fixReverseID) {
221 UnicodeString newID;
222 for (i=0; i<count; ++i) {
223 if (i > 0) {
224 newID.append(ID_DELIM);
225 }
226 newID.append(trans[i]->getID());
227 }
228 setID(newID);
229 }
230
231 computeMaximumContextLength();
232 }
233
234 /**
235 * Return the IDs of the given list of transliterators, concatenated
236 * with ID_DELIM delimiting them. Equivalent to the perlish expression
237 * join(ID_DELIM, map($_.getID(), transliterators).
238 */
joinIDs(Transliterator * const transliterators[],int32_t transCount)239 UnicodeString CompoundTransliterator::joinIDs(Transliterator* const transliterators[],
240 int32_t transCount) {
241 UnicodeString id;
242 for (int32_t i=0; i<transCount; ++i) {
243 if (i > 0) {
244 id.append(ID_DELIM);
245 }
246 id.append(transliterators[i]->getID());
247 }
248 return id; // Return temporary
249 }
250
251 /**
252 * Copy constructor.
253 */
CompoundTransliterator(const CompoundTransliterator & t)254 CompoundTransliterator::CompoundTransliterator(const CompoundTransliterator& t) :
255 Transliterator(t), trans(0), count(0), numAnonymousRBTs(-1) {
256 *this = t;
257 }
258
259 /**
260 * Destructor
261 */
~CompoundTransliterator()262 CompoundTransliterator::~CompoundTransliterator() {
263 freeTransliterators();
264 }
265
freeTransliterators(void)266 void CompoundTransliterator::freeTransliterators(void) {
267 if (trans != 0) {
268 for (int32_t i=0; i<count; ++i) {
269 delete trans[i];
270 }
271 uprv_free(trans);
272 }
273 trans = 0;
274 count = 0;
275 }
276
277 /**
278 * Assignment operator.
279 */
operator =(const CompoundTransliterator & t)280 CompoundTransliterator& CompoundTransliterator::operator=(
281 const CompoundTransliterator& t)
282 {
283 Transliterator::operator=(t);
284 int32_t i = 0;
285 UBool failed = FALSE;
286 if (trans != NULL) {
287 for (i=0; i<count; ++i) {
288 delete trans[i];
289 trans[i] = 0;
290 }
291 }
292 if (t.count > count) {
293 if (trans != NULL) {
294 uprv_free(trans);
295 }
296 trans = (Transliterator **)uprv_malloc(t.count * sizeof(Transliterator *));
297 }
298 count = t.count;
299 if (trans != NULL) {
300 for (i=0; i<count; ++i) {
301 trans[i] = t.trans[i]->clone();
302 if (trans[i] == NULL) {
303 failed = TRUE;
304 break;
305 }
306 }
307 }
308
309 // if memory allocation failed delete backwards trans array
310 if (failed && i > 0) {
311 int32_t n;
312 for (n = i-1; n >= 0; n--) {
313 uprv_free(trans[n]);
314 trans[n] = NULL;
315 }
316 }
317 numAnonymousRBTs = t.numAnonymousRBTs;
318 return *this;
319 }
320
321 /**
322 * Transliterator API.
323 */
clone(void) const324 Transliterator* CompoundTransliterator::clone(void) const {
325 return new CompoundTransliterator(*this);
326 }
327
328 /**
329 * Returns the number of transliterators in this chain.
330 * @return number of transliterators in this chain.
331 */
getCount(void) const332 int32_t CompoundTransliterator::getCount(void) const {
333 return count;
334 }
335
336 /**
337 * Returns the transliterator at the given index in this chain.
338 * @param index index into chain, from 0 to <code>getCount() - 1</code>
339 * @return transliterator at the given index
340 */
getTransliterator(int32_t index) const341 const Transliterator& CompoundTransliterator::getTransliterator(int32_t index) const {
342 return *trans[index];
343 }
344
setTransliterators(Transliterator * const transliterators[],int32_t transCount)345 void CompoundTransliterator::setTransliterators(Transliterator* const transliterators[],
346 int32_t transCount) {
347 Transliterator** a = (Transliterator **)uprv_malloc(transCount * sizeof(Transliterator *));
348 if (a == NULL) {
349 return;
350 }
351 int32_t i = 0;
352 UBool failed = FALSE;
353 for (i=0; i<transCount; ++i) {
354 a[i] = transliterators[i]->clone();
355 if (a[i] == NULL) {
356 failed = TRUE;
357 break;
358 }
359 }
360 if (failed && i > 0) {
361 int32_t n;
362 for (n = i-1; n >= 0; n--) {
363 uprv_free(a[n]);
364 a[n] = NULL;
365 }
366 return;
367 }
368 adoptTransliterators(a, transCount);
369 }
370
adoptTransliterators(Transliterator * adoptedTransliterators[],int32_t transCount)371 void CompoundTransliterator::adoptTransliterators(Transliterator* adoptedTransliterators[],
372 int32_t transCount) {
373 // First free trans[] and set count to zero. Once this is done,
374 // orphan the filter. Set up the new trans[].
375 freeTransliterators();
376 trans = adoptedTransliterators;
377 count = transCount;
378 computeMaximumContextLength();
379 setID(joinIDs(trans, count));
380 }
381
382 /**
383 * Append c to buf, unless buf is empty or buf already ends in c.
384 */
_smartAppend(UnicodeString & buf,UChar c)385 static void _smartAppend(UnicodeString& buf, UChar c) {
386 if (buf.length() != 0 &&
387 buf.charAt(buf.length() - 1) != c) {
388 buf.append(c);
389 }
390 }
391
toRules(UnicodeString & rulesSource,UBool escapeUnprintable) const392 UnicodeString& CompoundTransliterator::toRules(UnicodeString& rulesSource,
393 UBool escapeUnprintable) const {
394 // We do NOT call toRules() on our component transliterators, in
395 // general. If we have several rule-based transliterators, this
396 // yields a concatenation of the rules -- not what we want. We do
397 // handle compound RBT transliterators specially -- those for which
398 // compoundRBTIndex >= 0. For the transliterator at compoundRBTIndex,
399 // we do call toRules() recursively.
400 rulesSource.truncate(0);
401 if (numAnonymousRBTs >= 1 && getFilter() != NULL) {
402 // If we are a compound RBT and if we have a global
403 // filter, then emit it at the top.
404 UnicodeString pat;
405 rulesSource.append(COLON_COLON, 2).append(getFilter()->toPattern(pat, escapeUnprintable)).append(ID_DELIM);
406 }
407 for (int32_t i=0; i<count; ++i) {
408 UnicodeString rule;
409
410 // Anonymous RuleBasedTransliterators (inline rules and
411 // ::BEGIN/::END blocks) are given IDs that begin with
412 // "%Pass": use toRules() to write all the rules to the output
413 // (and insert "::Null;" if we have two in a row)
414 if (trans[i]->getID().startsWith(PASS_STRING, 5)) {
415 trans[i]->toRules(rule, escapeUnprintable);
416 if (numAnonymousRBTs > 1 && i > 0 && trans[i - 1]->getID().startsWith(PASS_STRING, 5))
417 rule = UNICODE_STRING_SIMPLE("::Null;") + rule;
418
419 // we also use toRules() on CompoundTransliterators (which we
420 // check for by looking for a semicolon in the ID)-- this gets
421 // the list of their child transliterators output in the right
422 // format
423 } else if (trans[i]->getID().indexOf(ID_DELIM) >= 0) {
424 trans[i]->toRules(rule, escapeUnprintable);
425
426 // for everything else, use Transliterator::toRules()
427 } else {
428 trans[i]->Transliterator::toRules(rule, escapeUnprintable);
429 }
430 _smartAppend(rulesSource, NEWLINE);
431 rulesSource.append(rule);
432 _smartAppend(rulesSource, ID_DELIM);
433 }
434 return rulesSource;
435 }
436
437 /**
438 * Implement Transliterator framework
439 */
handleGetSourceSet(UnicodeSet & result) const440 void CompoundTransliterator::handleGetSourceSet(UnicodeSet& result) const {
441 UnicodeSet set;
442 result.clear();
443 for (int32_t i=0; i<count; ++i) {
444 result.addAll(trans[i]->getSourceSet(set));
445 // Take the example of Hiragana-Latin. This is really
446 // Hiragana-Katakana; Katakana-Latin. The source set of
447 // these two is roughly [:Hiragana:] and [:Katakana:].
448 // But the source set for the entire transliterator is
449 // actually [:Hiragana:] ONLY -- that is, the first
450 // non-empty source set.
451
452 // This is a heuristic, and not 100% reliable.
453 if (!result.isEmpty()) {
454 break;
455 }
456 }
457 }
458
459 /**
460 * Override Transliterator framework
461 */
getTargetSet(UnicodeSet & result) const462 UnicodeSet& CompoundTransliterator::getTargetSet(UnicodeSet& result) const {
463 UnicodeSet set;
464 result.clear();
465 for (int32_t i=0; i<count; ++i) {
466 // This is a heuristic, and not 100% reliable.
467 result.addAll(trans[i]->getTargetSet(set));
468 }
469 return result;
470 }
471
472 /**
473 * Implements {@link Transliterator#handleTransliterate}.
474 */
handleTransliterate(Replaceable & text,UTransPosition & index,UBool incremental) const475 void CompoundTransliterator::handleTransliterate(Replaceable& text, UTransPosition& index,
476 UBool incremental) const {
477 /* Call each transliterator with the same contextStart and
478 * start, but with the limit as modified
479 * by preceding transliterators. The start index must be
480 * reset for each transliterator to give each a chance to
481 * transliterate the text. The initial contextStart index is known
482 * to still point to the same place after each transliterator
483 * is called because each transliterator will not change the
484 * text between contextStart and the initial start index.
485 *
486 * IMPORTANT: After the first transliterator, each subsequent
487 * transliterator only gets to transliterate text committed by
488 * preceding transliterators; that is, the start (output
489 * value) of transliterator i becomes the limit (input value)
490 * of transliterator i+1. Finally, the overall limit is fixed
491 * up before we return.
492 *
493 * Assumptions we make here:
494 * (1) contextStart <= start <= limit <= contextLimit <= text.length()
495 * (2) start <= start' <= limit' ;cursor doesn't move back
496 * (3) start <= limit' ;text before cursor unchanged
497 * - start' is the value of start after calling handleKT
498 * - limit' is the value of limit after calling handleKT
499 */
500
501 /**
502 * Example: 3 transliterators. This example illustrates the
503 * mechanics we need to implement. C, S, and L are the contextStart,
504 * start, and limit. gl is the globalLimit. contextLimit is
505 * equal to limit throughout.
506 *
507 * 1. h-u, changes hex to Unicode
508 *
509 * 4 7 a d 0 4 7 a
510 * abc/u0061/u => abca/u
511 * C S L C S L gl=f->a
512 *
513 * 2. upup, changes "x" to "XX"
514 *
515 * 4 7 a 4 7 a
516 * abca/u => abcAA/u
517 * C SL C S
518 * L gl=a->b
519 * 3. u-h, changes Unicode to hex
520 *
521 * 4 7 a 4 7 a d 0 3
522 * abcAA/u => abc/u0041/u0041/u
523 * C S L C S
524 * L gl=b->15
525 * 4. return
526 *
527 * 4 7 a d 0 3
528 * abc/u0041/u0041/u
529 * C S L
530 */
531
532 if (count < 1) {
533 index.start = index.limit;
534 return; // Short circuit for empty compound transliterators
535 }
536
537 // compoundLimit is the limit value for the entire compound
538 // operation. We overwrite index.limit with the previous
539 // index.start. After each transliteration, we update
540 // compoundLimit for insertions or deletions that have happened.
541 int32_t compoundLimit = index.limit;
542
543 // compoundStart is the start for the entire compound
544 // operation.
545 int32_t compoundStart = index.start;
546
547 int32_t delta = 0; // delta in length
548
549 // Give each transliterator a crack at the run of characters.
550 // See comments at the top of the method for more detail.
551 for (int32_t i=0; i<count; ++i) {
552 index.start = compoundStart; // Reset start
553 int32_t limit = index.limit;
554
555 if (index.start == index.limit) {
556 // Short circuit for empty range
557 break;
558 }
559
560 trans[i]->filteredTransliterate(text, index, incremental);
561
562 // In a properly written transliterator, start == limit after
563 // handleTransliterate() returns when incremental is false.
564 // Catch cases where the subclass doesn't do this, and throw
565 // an exception. (Just pinning start to limit is a bad idea,
566 // because what's probably happening is that the subclass
567 // isn't transliterating all the way to the end, and it should
568 // in non-incremental mode.)
569 if (!incremental && index.start != index.limit) {
570 // We can't throw an exception, so just fudge things
571 index.start = index.limit;
572 }
573
574 // Cumulative delta for insertions/deletions
575 delta += index.limit - limit;
576
577 if (incremental) {
578 // In the incremental case, only allow subsequent
579 // transliterators to modify what has already been
580 // completely processed by prior transliterators. In the
581 // non-incrmental case, allow each transliterator to
582 // process the entire text.
583 index.limit = index.start;
584 }
585 }
586
587 compoundLimit += delta;
588
589 // Start is good where it is -- where the last transliterator left
590 // it. Limit needs to be put back where it was, modulo
591 // adjustments for deletions/insertions.
592 index.limit = compoundLimit;
593 }
594
595 /**
596 * Sets the length of the longest context required by this transliterator.
597 * This is <em>preceding</em> context.
598 */
computeMaximumContextLength(void)599 void CompoundTransliterator::computeMaximumContextLength(void) {
600 int32_t max = 0;
601 for (int32_t i=0; i<count; ++i) {
602 int32_t len = trans[i]->getMaximumContextLength();
603 if (len > max) {
604 max = len;
605 }
606 }
607 setMaximumContextLength(max);
608 }
609
610 U_NAMESPACE_END
611
612 #endif /* #if !UCONFIG_NO_TRANSLITERATION */
613
614 /* eof */
615