1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #include "base/files/file_path_watcher_kqueue.h"
6
7 #include <fcntl.h>
8 #include <stddef.h>
9 #include <sys/param.h>
10
11 #include "base/bind.h"
12 #include "base/files/file_util.h"
13 #include "base/logging.h"
14 #include "base/strings/stringprintf.h"
15 #include "base/thread_task_runner_handle.h"
16
17 // On some platforms these are not defined.
18 #if !defined(EV_RECEIPT)
19 #define EV_RECEIPT 0
20 #endif
21 #if !defined(O_EVTONLY)
22 #define O_EVTONLY O_RDONLY
23 #endif
24
25 namespace base {
26
FilePathWatcherKQueue()27 FilePathWatcherKQueue::FilePathWatcherKQueue() : kqueue_(-1) {}
28
~FilePathWatcherKQueue()29 FilePathWatcherKQueue::~FilePathWatcherKQueue() {}
30
ReleaseEvent(struct kevent & event)31 void FilePathWatcherKQueue::ReleaseEvent(struct kevent& event) {
32 CloseFileDescriptor(&event.ident);
33 EventData* entry = EventDataForKevent(event);
34 delete entry;
35 event.udata = NULL;
36 }
37
EventsForPath(FilePath path,EventVector * events)38 int FilePathWatcherKQueue::EventsForPath(FilePath path, EventVector* events) {
39 DCHECK(MessageLoopForIO::current());
40 // Make sure that we are working with a clean slate.
41 DCHECK(events->empty());
42
43 std::vector<FilePath::StringType> components;
44 path.GetComponents(&components);
45
46 if (components.size() < 1) {
47 return -1;
48 }
49
50 int last_existing_entry = 0;
51 FilePath built_path;
52 bool path_still_exists = true;
53 for (std::vector<FilePath::StringType>::iterator i = components.begin();
54 i != components.end(); ++i) {
55 if (i == components.begin()) {
56 built_path = FilePath(*i);
57 } else {
58 built_path = built_path.Append(*i);
59 }
60 uintptr_t fd = kNoFileDescriptor;
61 if (path_still_exists) {
62 fd = FileDescriptorForPath(built_path);
63 if (fd == kNoFileDescriptor) {
64 path_still_exists = false;
65 } else {
66 ++last_existing_entry;
67 }
68 }
69 FilePath::StringType subdir = (i != (components.end() - 1)) ? *(i + 1) : "";
70 EventData* data = new EventData(built_path, subdir);
71 struct kevent event;
72 EV_SET(&event, fd, EVFILT_VNODE, (EV_ADD | EV_CLEAR | EV_RECEIPT),
73 (NOTE_DELETE | NOTE_WRITE | NOTE_ATTRIB |
74 NOTE_RENAME | NOTE_REVOKE | NOTE_EXTEND), 0, data);
75 events->push_back(event);
76 }
77 return last_existing_entry;
78 }
79
FileDescriptorForPath(const FilePath & path)80 uintptr_t FilePathWatcherKQueue::FileDescriptorForPath(const FilePath& path) {
81 int fd = HANDLE_EINTR(open(path.value().c_str(), O_EVTONLY));
82 if (fd == -1)
83 return kNoFileDescriptor;
84 return fd;
85 }
86
CloseFileDescriptor(uintptr_t * fd)87 void FilePathWatcherKQueue::CloseFileDescriptor(uintptr_t* fd) {
88 if (*fd == kNoFileDescriptor) {
89 return;
90 }
91
92 if (IGNORE_EINTR(close(*fd)) != 0) {
93 DPLOG(ERROR) << "close";
94 }
95 *fd = kNoFileDescriptor;
96 }
97
AreKeventValuesValid(struct kevent * kevents,int count)98 bool FilePathWatcherKQueue::AreKeventValuesValid(struct kevent* kevents,
99 int count) {
100 if (count < 0) {
101 DPLOG(ERROR) << "kevent";
102 return false;
103 }
104 bool valid = true;
105 for (int i = 0; i < count; ++i) {
106 if (kevents[i].flags & EV_ERROR && kevents[i].data) {
107 // Find the kevent in |events_| that matches the kevent with the error.
108 EventVector::iterator event = events_.begin();
109 for (; event != events_.end(); ++event) {
110 if (event->ident == kevents[i].ident) {
111 break;
112 }
113 }
114 std::string path_name;
115 if (event != events_.end()) {
116 EventData* event_data = EventDataForKevent(*event);
117 if (event_data != NULL) {
118 path_name = event_data->path_.value();
119 }
120 }
121 if (path_name.empty()) {
122 path_name = base::StringPrintf(
123 "fd %ld", reinterpret_cast<long>(&kevents[i].ident));
124 }
125 DLOG(ERROR) << "Error: " << kevents[i].data << " for " << path_name;
126 valid = false;
127 }
128 }
129 return valid;
130 }
131
HandleAttributesChange(const EventVector::iterator & event,bool * target_file_affected,bool * update_watches)132 void FilePathWatcherKQueue::HandleAttributesChange(
133 const EventVector::iterator& event,
134 bool* target_file_affected,
135 bool* update_watches) {
136 EventVector::iterator next_event = event + 1;
137 EventData* next_event_data = EventDataForKevent(*next_event);
138 // Check to see if the next item in path is still accessible.
139 uintptr_t have_access = FileDescriptorForPath(next_event_data->path_);
140 if (have_access == kNoFileDescriptor) {
141 *target_file_affected = true;
142 *update_watches = true;
143 EventVector::iterator local_event(event);
144 for (; local_event != events_.end(); ++local_event) {
145 // Close all nodes from the event down. This has the side effect of
146 // potentially rendering other events in |updates| invalid.
147 // There is no need to remove the events from |kqueue_| because this
148 // happens as a side effect of closing the file descriptor.
149 CloseFileDescriptor(&local_event->ident);
150 }
151 } else {
152 CloseFileDescriptor(&have_access);
153 }
154 }
155
HandleDeleteOrMoveChange(const EventVector::iterator & event,bool * target_file_affected,bool * update_watches)156 void FilePathWatcherKQueue::HandleDeleteOrMoveChange(
157 const EventVector::iterator& event,
158 bool* target_file_affected,
159 bool* update_watches) {
160 *target_file_affected = true;
161 *update_watches = true;
162 EventVector::iterator local_event(event);
163 for (; local_event != events_.end(); ++local_event) {
164 // Close all nodes from the event down. This has the side effect of
165 // potentially rendering other events in |updates| invalid.
166 // There is no need to remove the events from |kqueue_| because this
167 // happens as a side effect of closing the file descriptor.
168 CloseFileDescriptor(&local_event->ident);
169 }
170 }
171
HandleCreateItemChange(const EventVector::iterator & event,bool * target_file_affected,bool * update_watches)172 void FilePathWatcherKQueue::HandleCreateItemChange(
173 const EventVector::iterator& event,
174 bool* target_file_affected,
175 bool* update_watches) {
176 // Get the next item in the path.
177 EventVector::iterator next_event = event + 1;
178 // Check to see if it already has a valid file descriptor.
179 if (!IsKeventFileDescriptorOpen(*next_event)) {
180 EventData* next_event_data = EventDataForKevent(*next_event);
181 // If not, attempt to open a file descriptor for it.
182 next_event->ident = FileDescriptorForPath(next_event_data->path_);
183 if (IsKeventFileDescriptorOpen(*next_event)) {
184 *update_watches = true;
185 if (next_event_data->subdir_.empty()) {
186 *target_file_affected = true;
187 }
188 }
189 }
190 }
191
UpdateWatches(bool * target_file_affected)192 bool FilePathWatcherKQueue::UpdateWatches(bool* target_file_affected) {
193 // Iterate over events adding kevents for items that exist to the kqueue.
194 // Then check to see if new components in the path have been created.
195 // Repeat until no new components in the path are detected.
196 // This is to get around races in directory creation in a watched path.
197 bool update_watches = true;
198 while (update_watches) {
199 size_t valid;
200 for (valid = 0; valid < events_.size(); ++valid) {
201 if (!IsKeventFileDescriptorOpen(events_[valid])) {
202 break;
203 }
204 }
205 if (valid == 0) {
206 // The root of the file path is inaccessible?
207 return false;
208 }
209
210 EventVector updates(valid);
211 int count = HANDLE_EINTR(kevent(kqueue_, &events_[0], valid, &updates[0],
212 valid, NULL));
213 if (!AreKeventValuesValid(&updates[0], count)) {
214 return false;
215 }
216 update_watches = false;
217 for (; valid < events_.size(); ++valid) {
218 EventData* event_data = EventDataForKevent(events_[valid]);
219 events_[valid].ident = FileDescriptorForPath(event_data->path_);
220 if (IsKeventFileDescriptorOpen(events_[valid])) {
221 update_watches = true;
222 if (event_data->subdir_.empty()) {
223 *target_file_affected = true;
224 }
225 } else {
226 break;
227 }
228 }
229 }
230 return true;
231 }
232
OnFileCanReadWithoutBlocking(int fd)233 void FilePathWatcherKQueue::OnFileCanReadWithoutBlocking(int fd) {
234 DCHECK(MessageLoopForIO::current());
235 DCHECK_EQ(fd, kqueue_);
236 DCHECK(events_.size());
237
238 // Request the file system update notifications that have occurred and return
239 // them in |updates|. |count| will contain the number of updates that have
240 // occurred.
241 EventVector updates(events_.size());
242 struct timespec timeout = {0, 0};
243 int count = HANDLE_EINTR(kevent(kqueue_, NULL, 0, &updates[0], updates.size(),
244 &timeout));
245
246 // Error values are stored within updates, so check to make sure that no
247 // errors occurred.
248 if (!AreKeventValuesValid(&updates[0], count)) {
249 callback_.Run(target_, true /* error */);
250 Cancel();
251 return;
252 }
253
254 bool update_watches = false;
255 bool send_notification = false;
256
257 // Iterate through each of the updates and react to them.
258 for (int i = 0; i < count; ++i) {
259 // Find our kevent record that matches the update notification.
260 EventVector::iterator event = events_.begin();
261 for (; event != events_.end(); ++event) {
262 if (!IsKeventFileDescriptorOpen(*event) ||
263 event->ident == updates[i].ident) {
264 break;
265 }
266 }
267 if (event == events_.end() || !IsKeventFileDescriptorOpen(*event)) {
268 // The event may no longer exist in |events_| because another event
269 // modified |events_| in such a way to make it invalid. For example if
270 // the path is /foo/bar/bam and foo is deleted, NOTE_DELETE events for
271 // foo, bar and bam will be sent. If foo is processed first, then
272 // the file descriptors for bar and bam will already be closed and set
273 // to -1 before they get a chance to be processed.
274 continue;
275 }
276
277 EventData* event_data = EventDataForKevent(*event);
278
279 // If the subdir is empty, this is the last item on the path and is the
280 // target file.
281 bool target_file_affected = event_data->subdir_.empty();
282 if ((updates[i].fflags & NOTE_ATTRIB) && !target_file_affected) {
283 HandleAttributesChange(event, &target_file_affected, &update_watches);
284 }
285 if (updates[i].fflags & (NOTE_DELETE | NOTE_REVOKE | NOTE_RENAME)) {
286 HandleDeleteOrMoveChange(event, &target_file_affected, &update_watches);
287 }
288 if ((updates[i].fflags & NOTE_WRITE) && !target_file_affected) {
289 HandleCreateItemChange(event, &target_file_affected, &update_watches);
290 }
291 send_notification |= target_file_affected;
292 }
293
294 if (update_watches) {
295 if (!UpdateWatches(&send_notification)) {
296 callback_.Run(target_, true /* error */);
297 Cancel();
298 }
299 }
300
301 if (send_notification) {
302 callback_.Run(target_, false);
303 }
304 }
305
OnFileCanWriteWithoutBlocking(int)306 void FilePathWatcherKQueue::OnFileCanWriteWithoutBlocking(int /* fd */) {
307 NOTREACHED();
308 }
309
WillDestroyCurrentMessageLoop()310 void FilePathWatcherKQueue::WillDestroyCurrentMessageLoop() {
311 CancelOnMessageLoopThread();
312 }
313
Watch(const FilePath & path,bool recursive,const FilePathWatcher::Callback & callback)314 bool FilePathWatcherKQueue::Watch(const FilePath& path,
315 bool recursive,
316 const FilePathWatcher::Callback& callback) {
317 DCHECK(MessageLoopForIO::current());
318 DCHECK(target_.value().empty()); // Can only watch one path.
319 DCHECK(!callback.is_null());
320 DCHECK_EQ(kqueue_, -1);
321
322 if (recursive) {
323 // Recursive watch is not supported using kqueue.
324 NOTIMPLEMENTED();
325 return false;
326 }
327
328 callback_ = callback;
329 target_ = path;
330
331 MessageLoop::current()->AddDestructionObserver(this);
332 io_task_runner_ = ThreadTaskRunnerHandle::Get();
333
334 kqueue_ = kqueue();
335 if (kqueue_ == -1) {
336 DPLOG(ERROR) << "kqueue";
337 return false;
338 }
339
340 int last_entry = EventsForPath(target_, &events_);
341 DCHECK_NE(last_entry, 0);
342
343 EventVector responses(last_entry);
344
345 int count = HANDLE_EINTR(kevent(kqueue_, &events_[0], last_entry,
346 &responses[0], last_entry, NULL));
347 if (!AreKeventValuesValid(&responses[0], count)) {
348 // Calling Cancel() here to close any file descriptors that were opened.
349 // This would happen in the destructor anyways, but FilePathWatchers tend to
350 // be long lived, and if an error has occurred, there is no reason to waste
351 // the file descriptors.
352 Cancel();
353 return false;
354 }
355
356 return MessageLoopForIO::current()->WatchFileDescriptor(
357 kqueue_, true, MessageLoopForIO::WATCH_READ, &kqueue_watcher_, this);
358 }
359
Cancel()360 void FilePathWatcherKQueue::Cancel() {
361 SingleThreadTaskRunner* task_runner = io_task_runner_.get();
362 if (!task_runner) {
363 set_cancelled();
364 return;
365 }
366 if (!task_runner->BelongsToCurrentThread()) {
367 task_runner->PostTask(FROM_HERE,
368 base::Bind(&FilePathWatcherKQueue::Cancel, this));
369 return;
370 }
371 CancelOnMessageLoopThread();
372 }
373
CancelOnMessageLoopThread()374 void FilePathWatcherKQueue::CancelOnMessageLoopThread() {
375 DCHECK(MessageLoopForIO::current());
376 if (!is_cancelled()) {
377 set_cancelled();
378 kqueue_watcher_.StopWatchingFileDescriptor();
379 if (IGNORE_EINTR(close(kqueue_)) != 0) {
380 DPLOG(ERROR) << "close kqueue";
381 }
382 kqueue_ = -1;
383 std::for_each(events_.begin(), events_.end(), ReleaseEvent);
384 events_.clear();
385 io_task_runner_ = NULL;
386 MessageLoop::current()->RemoveDestructionObserver(this);
387 callback_.Reset();
388 }
389 }
390
391 } // namespace base
392