1 /*
2 Bullet Continuous Collision Detection and Physics Library
3 Copyright (c) 2003-2008 Erwin Coumans http://bulletphysics.com
4
5 This software is provided 'as-is', without any express or implied warranty.
6 In no event will the authors be held liable for any damages arising from the use of this software.
7 Permission is granted to anyone to use this software for any purpose,
8 including commercial applications, and to alter it and redistribute it freely,
9 subject to the following restrictions:
10
11 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
12 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
13 3. This notice may not be removed or altered from any source distribution.
14 */
15
16 #include "btGhostObject.h"
17 #include "btCollisionWorld.h"
18 #include "BulletCollision/CollisionShapes/btConvexShape.h"
19 #include "LinearMath/btAabbUtil2.h"
20
btGhostObject()21 btGhostObject::btGhostObject()
22 {
23 m_internalType = CO_GHOST_OBJECT;
24 }
25
~btGhostObject()26 btGhostObject::~btGhostObject()
27 {
28 ///btGhostObject should have been removed from the world, so no overlapping objects
29 btAssert(!m_overlappingObjects.size());
30 }
31
32
addOverlappingObjectInternal(btBroadphaseProxy * otherProxy,btBroadphaseProxy * thisProxy)33 void btGhostObject::addOverlappingObjectInternal(btBroadphaseProxy* otherProxy,btBroadphaseProxy* thisProxy)
34 {
35 btCollisionObject* otherObject = (btCollisionObject*)otherProxy->m_clientObject;
36 btAssert(otherObject);
37 ///if this linearSearch becomes too slow (too many overlapping objects) we should add a more appropriate data structure
38 int index = m_overlappingObjects.findLinearSearch(otherObject);
39 if (index==m_overlappingObjects.size())
40 {
41 //not found
42 m_overlappingObjects.push_back(otherObject);
43 }
44 }
45
removeOverlappingObjectInternal(btBroadphaseProxy * otherProxy,btDispatcher * dispatcher,btBroadphaseProxy * thisProxy)46 void btGhostObject::removeOverlappingObjectInternal(btBroadphaseProxy* otherProxy,btDispatcher* dispatcher,btBroadphaseProxy* thisProxy)
47 {
48 btCollisionObject* otherObject = (btCollisionObject*)otherProxy->m_clientObject;
49 btAssert(otherObject);
50 int index = m_overlappingObjects.findLinearSearch(otherObject);
51 if (index<m_overlappingObjects.size())
52 {
53 m_overlappingObjects[index] = m_overlappingObjects[m_overlappingObjects.size()-1];
54 m_overlappingObjects.pop_back();
55 }
56 }
57
58
btPairCachingGhostObject()59 btPairCachingGhostObject::btPairCachingGhostObject()
60 {
61 m_hashPairCache = new (btAlignedAlloc(sizeof(btHashedOverlappingPairCache),16)) btHashedOverlappingPairCache();
62 }
63
~btPairCachingGhostObject()64 btPairCachingGhostObject::~btPairCachingGhostObject()
65 {
66 m_hashPairCache->~btHashedOverlappingPairCache();
67 btAlignedFree( m_hashPairCache );
68 }
69
addOverlappingObjectInternal(btBroadphaseProxy * otherProxy,btBroadphaseProxy * thisProxy)70 void btPairCachingGhostObject::addOverlappingObjectInternal(btBroadphaseProxy* otherProxy,btBroadphaseProxy* thisProxy)
71 {
72 btBroadphaseProxy*actualThisProxy = thisProxy ? thisProxy : getBroadphaseHandle();
73 btAssert(actualThisProxy);
74
75 btCollisionObject* otherObject = (btCollisionObject*)otherProxy->m_clientObject;
76 btAssert(otherObject);
77 int index = m_overlappingObjects.findLinearSearch(otherObject);
78 if (index==m_overlappingObjects.size())
79 {
80 m_overlappingObjects.push_back(otherObject);
81 m_hashPairCache->addOverlappingPair(actualThisProxy,otherProxy);
82 }
83 }
84
removeOverlappingObjectInternal(btBroadphaseProxy * otherProxy,btDispatcher * dispatcher,btBroadphaseProxy * thisProxy1)85 void btPairCachingGhostObject::removeOverlappingObjectInternal(btBroadphaseProxy* otherProxy,btDispatcher* dispatcher,btBroadphaseProxy* thisProxy1)
86 {
87 btCollisionObject* otherObject = (btCollisionObject*)otherProxy->m_clientObject;
88 btBroadphaseProxy* actualThisProxy = thisProxy1 ? thisProxy1 : getBroadphaseHandle();
89 btAssert(actualThisProxy);
90
91 btAssert(otherObject);
92 int index = m_overlappingObjects.findLinearSearch(otherObject);
93 if (index<m_overlappingObjects.size())
94 {
95 m_overlappingObjects[index] = m_overlappingObjects[m_overlappingObjects.size()-1];
96 m_overlappingObjects.pop_back();
97 m_hashPairCache->removeOverlappingPair(actualThisProxy,otherProxy,dispatcher);
98 }
99 }
100
101
convexSweepTest(const btConvexShape * castShape,const btTransform & convexFromWorld,const btTransform & convexToWorld,btCollisionWorld::ConvexResultCallback & resultCallback,btScalar allowedCcdPenetration) const102 void btGhostObject::convexSweepTest(const btConvexShape* castShape, const btTransform& convexFromWorld, const btTransform& convexToWorld, btCollisionWorld::ConvexResultCallback& resultCallback, btScalar allowedCcdPenetration) const
103 {
104 btTransform convexFromTrans,convexToTrans;
105 convexFromTrans = convexFromWorld;
106 convexToTrans = convexToWorld;
107 btVector3 castShapeAabbMin, castShapeAabbMax;
108 /* Compute AABB that encompasses angular movement */
109 {
110 btVector3 linVel, angVel;
111 btTransformUtil::calculateVelocity (convexFromTrans, convexToTrans, 1.0, linVel, angVel);
112 btTransform R;
113 R.setIdentity ();
114 R.setRotation (convexFromTrans.getRotation());
115 castShape->calculateTemporalAabb (R, linVel, angVel, 1.0, castShapeAabbMin, castShapeAabbMax);
116 }
117
118 /// go over all objects, and if the ray intersects their aabb + cast shape aabb,
119 // do a ray-shape query using convexCaster (CCD)
120 int i;
121 for (i=0;i<m_overlappingObjects.size();i++)
122 {
123 btCollisionObject* collisionObject= m_overlappingObjects[i];
124 //only perform raycast if filterMask matches
125 if(resultCallback.needsCollision(collisionObject->getBroadphaseHandle())) {
126 //RigidcollisionObject* collisionObject = ctrl->GetRigidcollisionObject();
127 btVector3 collisionObjectAabbMin,collisionObjectAabbMax;
128 collisionObject->getCollisionShape()->getAabb(collisionObject->getWorldTransform(),collisionObjectAabbMin,collisionObjectAabbMax);
129 AabbExpand (collisionObjectAabbMin, collisionObjectAabbMax, castShapeAabbMin, castShapeAabbMax);
130 btScalar hitLambda = btScalar(1.); //could use resultCallback.m_closestHitFraction, but needs testing
131 btVector3 hitNormal;
132 if (btRayAabb(convexFromWorld.getOrigin(),convexToWorld.getOrigin(),collisionObjectAabbMin,collisionObjectAabbMax,hitLambda,hitNormal))
133 {
134 btCollisionWorld::objectQuerySingle(castShape, convexFromTrans,convexToTrans,
135 collisionObject,
136 collisionObject->getCollisionShape(),
137 collisionObject->getWorldTransform(),
138 resultCallback,
139 allowedCcdPenetration);
140 }
141 }
142 }
143
144 }
145
rayTest(const btVector3 & rayFromWorld,const btVector3 & rayToWorld,btCollisionWorld::RayResultCallback & resultCallback) const146 void btGhostObject::rayTest(const btVector3& rayFromWorld, const btVector3& rayToWorld, btCollisionWorld::RayResultCallback& resultCallback) const
147 {
148 btTransform rayFromTrans;
149 rayFromTrans.setIdentity();
150 rayFromTrans.setOrigin(rayFromWorld);
151 btTransform rayToTrans;
152 rayToTrans.setIdentity();
153 rayToTrans.setOrigin(rayToWorld);
154
155
156 int i;
157 for (i=0;i<m_overlappingObjects.size();i++)
158 {
159 btCollisionObject* collisionObject= m_overlappingObjects[i];
160 //only perform raycast if filterMask matches
161 if(resultCallback.needsCollision(collisionObject->getBroadphaseHandle()))
162 {
163 btCollisionWorld::rayTestSingle(rayFromTrans,rayToTrans,
164 collisionObject,
165 collisionObject->getCollisionShape(),
166 collisionObject->getWorldTransform(),
167 resultCallback);
168 }
169 }
170 }
171
172