1 /*
2 Bullet Continuous Collision Detection and Physics Library
3 Copyright (c) 2003-2009 Erwin Coumans http://bulletphysics.org
4
5 This software is provided 'as-is', without any express or implied warranty.
6 In no event will the authors be held liable for any damages arising from the use of this software.
7 Permission is granted to anyone to use this software for any purpose,
8 including commercial applications, and to alter it and redistribute it freely,
9 subject to the following restrictions:
10
11 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
12 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
13 3. This notice may not be removed or altered from any source distribution.
14 */
15
16 #ifndef BT_CAPSULE_SHAPE_H
17 #define BT_CAPSULE_SHAPE_H
18
19 #include "btConvexInternalShape.h"
20 #include "BulletCollision/BroadphaseCollision/btBroadphaseProxy.h" // for the types
21
22
23 ///The btCapsuleShape represents a capsule around the Y axis, there is also the btCapsuleShapeX aligned around the X axis and btCapsuleShapeZ around the Z axis.
24 ///The total height is height+2*radius, so the height is just the height between the center of each 'sphere' of the capsule caps.
25 ///The btCapsuleShape is a convex hull of two spheres. The btMultiSphereShape is a more general collision shape that takes the convex hull of multiple sphere, so it can also represent a capsule when just using two spheres.
ATTRIBUTE_ALIGNED16(class)26 ATTRIBUTE_ALIGNED16(class) btCapsuleShape : public btConvexInternalShape
27 {
28 protected:
29 int m_upAxis;
30
31 protected:
32 ///only used for btCapsuleShapeZ and btCapsuleShapeX subclasses.
33 btCapsuleShape() : btConvexInternalShape() {m_shapeType = CAPSULE_SHAPE_PROXYTYPE;};
34
35 public:
36
37 BT_DECLARE_ALIGNED_ALLOCATOR();
38
39 btCapsuleShape(btScalar radius,btScalar height);
40
41 ///CollisionShape Interface
42 virtual void calculateLocalInertia(btScalar mass,btVector3& inertia) const;
43
44 /// btConvexShape Interface
45 virtual btVector3 localGetSupportingVertexWithoutMargin(const btVector3& vec)const;
46
47 virtual void batchedUnitVectorGetSupportingVertexWithoutMargin(const btVector3* vectors,btVector3* supportVerticesOut,int numVectors) const;
48
49 virtual void setMargin(btScalar collisionMargin)
50 {
51 //correct the m_implicitShapeDimensions for the margin
52 btVector3 oldMargin(getMargin(),getMargin(),getMargin());
53 btVector3 implicitShapeDimensionsWithMargin = m_implicitShapeDimensions+oldMargin;
54
55 btConvexInternalShape::setMargin(collisionMargin);
56 btVector3 newMargin(getMargin(),getMargin(),getMargin());
57 m_implicitShapeDimensions = implicitShapeDimensionsWithMargin - newMargin;
58
59 }
60
61 virtual void getAabb (const btTransform& t, btVector3& aabbMin, btVector3& aabbMax) const
62 {
63 btVector3 halfExtents(getRadius(),getRadius(),getRadius());
64 halfExtents[m_upAxis] = getRadius() + getHalfHeight();
65 halfExtents += btVector3(getMargin(),getMargin(),getMargin());
66 btMatrix3x3 abs_b = t.getBasis().absolute();
67 btVector3 center = t.getOrigin();
68 btVector3 extent = halfExtents.dot3(abs_b[0], abs_b[1], abs_b[2]);
69
70 aabbMin = center - extent;
71 aabbMax = center + extent;
72 }
73
74 virtual const char* getName()const
75 {
76 return "CapsuleShape";
77 }
78
79 int getUpAxis() const
80 {
81 return m_upAxis;
82 }
83
84 btScalar getRadius() const
85 {
86 int radiusAxis = (m_upAxis+2)%3;
87 return m_implicitShapeDimensions[radiusAxis];
88 }
89
90 btScalar getHalfHeight() const
91 {
92 return m_implicitShapeDimensions[m_upAxis];
93 }
94
95 virtual void setLocalScaling(const btVector3& scaling)
96 {
97 btVector3 oldMargin(getMargin(),getMargin(),getMargin());
98 btVector3 implicitShapeDimensionsWithMargin = m_implicitShapeDimensions+oldMargin;
99 btVector3 unScaledImplicitShapeDimensionsWithMargin = implicitShapeDimensionsWithMargin / m_localScaling;
100
101 btConvexInternalShape::setLocalScaling(scaling);
102
103 m_implicitShapeDimensions = (unScaledImplicitShapeDimensionsWithMargin * m_localScaling) - oldMargin;
104
105 }
106
107 virtual btVector3 getAnisotropicRollingFrictionDirection() const
108 {
109 btVector3 aniDir(0,0,0);
110 aniDir[getUpAxis()]=1;
111 return aniDir;
112 }
113
114
115 virtual int calculateSerializeBufferSize() const;
116
117 ///fills the dataBuffer and returns the struct name (and 0 on failure)
118 virtual const char* serialize(void* dataBuffer, btSerializer* serializer) const;
119
120 SIMD_FORCE_INLINE void deSerializeFloat(struct btCapsuleShapeData* dataBuffer);
121
122 };
123
124 ///btCapsuleShapeX represents a capsule around the Z axis
125 ///the total height is height+2*radius, so the height is just the height between the center of each 'sphere' of the capsule caps.
126 class btCapsuleShapeX : public btCapsuleShape
127 {
128 public:
129
130 btCapsuleShapeX(btScalar radius,btScalar height);
131
132 //debugging
getName()133 virtual const char* getName()const
134 {
135 return "CapsuleX";
136 }
137
138
139
140 };
141
142 ///btCapsuleShapeZ represents a capsule around the Z axis
143 ///the total height is height+2*radius, so the height is just the height between the center of each 'sphere' of the capsule caps.
144 class btCapsuleShapeZ : public btCapsuleShape
145 {
146 public:
147 btCapsuleShapeZ(btScalar radius,btScalar height);
148
149 //debugging
getName()150 virtual const char* getName()const
151 {
152 return "CapsuleZ";
153 }
154
155
156 };
157
158 ///do not change those serialization structures, it requires an updated sBulletDNAstr/sBulletDNAstr64
159 struct btCapsuleShapeData
160 {
161 btConvexInternalShapeData m_convexInternalShapeData;
162
163 int m_upAxis;
164
165 char m_padding[4];
166 };
167
calculateSerializeBufferSize()168 SIMD_FORCE_INLINE int btCapsuleShape::calculateSerializeBufferSize() const
169 {
170 return sizeof(btCapsuleShapeData);
171 }
172
173 ///fills the dataBuffer and returns the struct name (and 0 on failure)
serialize(void * dataBuffer,btSerializer * serializer)174 SIMD_FORCE_INLINE const char* btCapsuleShape::serialize(void* dataBuffer, btSerializer* serializer) const
175 {
176 btCapsuleShapeData* shapeData = (btCapsuleShapeData*) dataBuffer;
177
178 btConvexInternalShape::serialize(&shapeData->m_convexInternalShapeData,serializer);
179
180 shapeData->m_upAxis = m_upAxis;
181
182 return "btCapsuleShapeData";
183 }
184
deSerializeFloat(btCapsuleShapeData * dataBuffer)185 SIMD_FORCE_INLINE void btCapsuleShape::deSerializeFloat(btCapsuleShapeData* dataBuffer)
186 {
187 m_implicitShapeDimensions.deSerializeFloat(dataBuffer->m_convexInternalShapeData.m_implicitShapeDimensions);
188 m_collisionMargin = dataBuffer->m_convexInternalShapeData.m_collisionMargin;
189 m_localScaling.deSerializeFloat(dataBuffer->m_convexInternalShapeData.m_localScaling);
190 //it is best to already pre-allocate the matching btCapsuleShape*(X/Z) version to match m_upAxis
191 m_upAxis = dataBuffer->m_upAxis;
192 }
193
194 #endif //BT_CAPSULE_SHAPE_H
195