• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2 Bullet Continuous Collision Detection and Physics Library
3 Copyright (c) 2003-2009 Erwin Coumans  http://bulletphysics.org
4 
5 This software is provided 'as-is', without any express or implied warranty.
6 In no event will the authors be held liable for any damages arising from the use of this software.
7 Permission is granted to anyone to use this software for any purpose,
8 including commercial applications, and to alter it and redistribute it freely,
9 subject to the following restrictions:
10 
11 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
12 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
13 3. This notice may not be removed or altered from any source distribution.
14 */
15 
16 #if defined (_WIN32) || defined (__i386__)
17 #define BT_USE_SSE_IN_API
18 #endif
19 
20 #include "btConvexHullShape.h"
21 #include "BulletCollision/CollisionShapes/btCollisionMargin.h"
22 
23 #include "LinearMath/btQuaternion.h"
24 #include "LinearMath/btSerializer.h"
25 
btConvexHullShape(const btScalar * points,int numPoints,int stride)26 btConvexHullShape ::btConvexHullShape (const btScalar* points,int numPoints,int stride) : btPolyhedralConvexAabbCachingShape ()
27 {
28 	m_shapeType = CONVEX_HULL_SHAPE_PROXYTYPE;
29 	m_unscaledPoints.resize(numPoints);
30 
31 	unsigned char* pointsAddress = (unsigned char*)points;
32 
33 	for (int i=0;i<numPoints;i++)
34 	{
35 		btScalar* point = (btScalar*)pointsAddress;
36 		m_unscaledPoints[i] = btVector3(point[0], point[1], point[2]);
37 		pointsAddress += stride;
38 	}
39 
40 	recalcLocalAabb();
41 
42 }
43 
44 
45 
setLocalScaling(const btVector3 & scaling)46 void btConvexHullShape::setLocalScaling(const btVector3& scaling)
47 {
48 	m_localScaling = scaling;
49 	recalcLocalAabb();
50 }
51 
addPoint(const btVector3 & point,bool recalculateLocalAabb)52 void btConvexHullShape::addPoint(const btVector3& point, bool recalculateLocalAabb)
53 {
54 	m_unscaledPoints.push_back(point);
55 	if (recalculateLocalAabb)
56 		recalcLocalAabb();
57 
58 }
59 
localGetSupportingVertexWithoutMargin(const btVector3 & vec) const60 btVector3	btConvexHullShape::localGetSupportingVertexWithoutMargin(const btVector3& vec)const
61 {
62 	btVector3 supVec(btScalar(0.),btScalar(0.),btScalar(0.));
63 	btScalar maxDot = btScalar(-BT_LARGE_FLOAT);
64 
65     // Here we take advantage of dot(a, b*c) = dot(a*b, c).  Note: This is true mathematically, but not numerically.
66     if( 0 < m_unscaledPoints.size() )
67     {
68         btVector3 scaled = vec * m_localScaling;
69         int index = (int) scaled.maxDot( &m_unscaledPoints[0], m_unscaledPoints.size(), maxDot); // FIXME: may violate encapsulation of m_unscaledPoints
70         return m_unscaledPoints[index] * m_localScaling;
71     }
72 
73     return supVec;
74 }
75 
batchedUnitVectorGetSupportingVertexWithoutMargin(const btVector3 * vectors,btVector3 * supportVerticesOut,int numVectors) const76 void	btConvexHullShape::batchedUnitVectorGetSupportingVertexWithoutMargin(const btVector3* vectors,btVector3* supportVerticesOut,int numVectors) const
77 {
78 	btScalar newDot;
79 	//use 'w' component of supportVerticesOut?
80 	{
81 		for (int i=0;i<numVectors;i++)
82 		{
83 			supportVerticesOut[i][3] = btScalar(-BT_LARGE_FLOAT);
84 		}
85 	}
86 
87     for (int j=0;j<numVectors;j++)
88     {
89         btVector3 vec = vectors[j] * m_localScaling;        // dot(a*b,c) = dot(a,b*c)
90         if( 0 <  m_unscaledPoints.size() )
91         {
92             int i = (int) vec.maxDot( &m_unscaledPoints[0], m_unscaledPoints.size(), newDot);
93             supportVerticesOut[j] = getScaledPoint(i);
94             supportVerticesOut[j][3] = newDot;
95         }
96         else
97             supportVerticesOut[j][3] = -BT_LARGE_FLOAT;
98     }
99 
100 
101 
102 }
103 
104 
105 
localGetSupportingVertex(const btVector3 & vec) const106 btVector3	btConvexHullShape::localGetSupportingVertex(const btVector3& vec)const
107 {
108 	btVector3 supVertex = localGetSupportingVertexWithoutMargin(vec);
109 
110 	if ( getMargin()!=btScalar(0.) )
111 	{
112 		btVector3 vecnorm = vec;
113 		if (vecnorm .length2() < (SIMD_EPSILON*SIMD_EPSILON))
114 		{
115 			vecnorm.setValue(btScalar(-1.),btScalar(-1.),btScalar(-1.));
116 		}
117 		vecnorm.normalize();
118 		supVertex+= getMargin() * vecnorm;
119 	}
120 	return supVertex;
121 }
122 
123 
124 
125 
126 
127 
128 
129 
130 
131 //currently just for debugging (drawing), perhaps future support for algebraic continuous collision detection
132 //Please note that you can debug-draw btConvexHullShape with the Raytracer Demo
getNumVertices() const133 int	btConvexHullShape::getNumVertices() const
134 {
135 	return m_unscaledPoints.size();
136 }
137 
getNumEdges() const138 int btConvexHullShape::getNumEdges() const
139 {
140 	return m_unscaledPoints.size();
141 }
142 
getEdge(int i,btVector3 & pa,btVector3 & pb) const143 void btConvexHullShape::getEdge(int i,btVector3& pa,btVector3& pb) const
144 {
145 
146 	int index0 = i%m_unscaledPoints.size();
147 	int index1 = (i+1)%m_unscaledPoints.size();
148 	pa = getScaledPoint(index0);
149 	pb = getScaledPoint(index1);
150 }
151 
getVertex(int i,btVector3 & vtx) const152 void btConvexHullShape::getVertex(int i,btVector3& vtx) const
153 {
154 	vtx = getScaledPoint(i);
155 }
156 
getNumPlanes() const157 int	btConvexHullShape::getNumPlanes() const
158 {
159 	return 0;
160 }
161 
getPlane(btVector3 &,btVector3 &,int) const162 void btConvexHullShape::getPlane(btVector3& ,btVector3& ,int ) const
163 {
164 
165 	btAssert(0);
166 }
167 
168 //not yet
isInside(const btVector3 &,btScalar) const169 bool btConvexHullShape::isInside(const btVector3& ,btScalar ) const
170 {
171 	btAssert(0);
172 	return false;
173 }
174 
175 ///fills the dataBuffer and returns the struct name (and 0 on failure)
serialize(void * dataBuffer,btSerializer * serializer) const176 const char*	btConvexHullShape::serialize(void* dataBuffer, btSerializer* serializer) const
177 {
178 	//int szc = sizeof(btConvexHullShapeData);
179 	btConvexHullShapeData* shapeData = (btConvexHullShapeData*) dataBuffer;
180 	btConvexInternalShape::serialize(&shapeData->m_convexInternalShapeData, serializer);
181 
182 	int numElem = m_unscaledPoints.size();
183 	shapeData->m_numUnscaledPoints = numElem;
184 #ifdef BT_USE_DOUBLE_PRECISION
185 	shapeData->m_unscaledPointsFloatPtr = 0;
186 	shapeData->m_unscaledPointsDoublePtr = numElem ? (btVector3Data*)serializer->getUniquePointer((void*)&m_unscaledPoints[0]):  0;
187 #else
188 	shapeData->m_unscaledPointsFloatPtr = numElem ? (btVector3Data*)serializer->getUniquePointer((void*)&m_unscaledPoints[0]):  0;
189 	shapeData->m_unscaledPointsDoublePtr = 0;
190 #endif
191 
192 	if (numElem)
193 	{
194 		int sz = sizeof(btVector3Data);
195 	//	int sz2 = sizeof(btVector3DoubleData);
196 	//	int sz3 = sizeof(btVector3FloatData);
197 		btChunk* chunk = serializer->allocate(sz,numElem);
198 		btVector3Data* memPtr = (btVector3Data*)chunk->m_oldPtr;
199 		for (int i=0;i<numElem;i++,memPtr++)
200 		{
201 			m_unscaledPoints[i].serialize(*memPtr);
202 		}
203 		serializer->finalizeChunk(chunk,btVector3DataName,BT_ARRAY_CODE,(void*)&m_unscaledPoints[0]);
204 	}
205 
206 	return "btConvexHullShapeData";
207 }
208 
project(const btTransform & trans,const btVector3 & dir,btScalar & minProj,btScalar & maxProj,btVector3 & witnesPtMin,btVector3 & witnesPtMax) const209 void btConvexHullShape::project(const btTransform& trans, const btVector3& dir, btScalar& minProj, btScalar& maxProj, btVector3& witnesPtMin,btVector3& witnesPtMax) const
210 {
211 #if 1
212 	minProj = FLT_MAX;
213 	maxProj = -FLT_MAX;
214 
215 	int numVerts = m_unscaledPoints.size();
216 	for(int i=0;i<numVerts;i++)
217 	{
218 		btVector3 vtx = m_unscaledPoints[i] * m_localScaling;
219 		btVector3 pt = trans * vtx;
220 		btScalar dp = pt.dot(dir);
221 		if(dp < minProj)
222 		{
223 			minProj = dp;
224 			witnesPtMin = pt;
225 		}
226 		if(dp > maxProj)
227 		{
228 			maxProj = dp;
229 			witnesPtMax=pt;
230 		}
231 	}
232 #else
233 	btVector3 localAxis = dir*trans.getBasis();
234 	witnesPtMin  = trans(localGetSupportingVertex(localAxis));
235 	witnesPtMax = trans(localGetSupportingVertex(-localAxis));
236 
237 	minProj = witnesPtMin.dot(dir);
238 	maxProj = witnesPtMax.dot(dir);
239 #endif
240 
241 	if(minProj>maxProj)
242 	{
243 		btSwap(minProj,maxProj);
244 		btSwap(witnesPtMin,witnesPtMax);
245 	}
246 
247 
248 }
249 
250 
251