• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2 Bullet Continuous Collision Detection and Physics Library
3 Copyright (c) 2003-2009 Erwin Coumans  http://bulletphysics.org
4 
5 This software is provided 'as-is', without any express or implied warranty.
6 In no event will the authors be held liable for any damages arising from the use of this software.
7 Permission is granted to anyone to use this software for any purpose,
8 including commercial applications, and to alter it and redistribute it freely,
9 subject to the following restrictions:
10 
11 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
12 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
13 3. This notice may not be removed or altered from any source distribution.
14 */
15 
16 #include "btTetrahedronShape.h"
17 #include "LinearMath/btMatrix3x3.h"
18 
btBU_Simplex1to4()19 btBU_Simplex1to4::btBU_Simplex1to4() : btPolyhedralConvexAabbCachingShape (),
20 m_numVertices(0)
21 {
22 	m_shapeType = TETRAHEDRAL_SHAPE_PROXYTYPE;
23 }
24 
btBU_Simplex1to4(const btVector3 & pt0)25 btBU_Simplex1to4::btBU_Simplex1to4(const btVector3& pt0) : btPolyhedralConvexAabbCachingShape (),
26 m_numVertices(0)
27 {
28 	m_shapeType = TETRAHEDRAL_SHAPE_PROXYTYPE;
29 	addVertex(pt0);
30 }
31 
btBU_Simplex1to4(const btVector3 & pt0,const btVector3 & pt1)32 btBU_Simplex1to4::btBU_Simplex1to4(const btVector3& pt0,const btVector3& pt1) : btPolyhedralConvexAabbCachingShape (),
33 m_numVertices(0)
34 {
35 	m_shapeType = TETRAHEDRAL_SHAPE_PROXYTYPE;
36 	addVertex(pt0);
37 	addVertex(pt1);
38 }
39 
btBU_Simplex1to4(const btVector3 & pt0,const btVector3 & pt1,const btVector3 & pt2)40 btBU_Simplex1to4::btBU_Simplex1to4(const btVector3& pt0,const btVector3& pt1,const btVector3& pt2) : btPolyhedralConvexAabbCachingShape (),
41 m_numVertices(0)
42 {
43 	m_shapeType = TETRAHEDRAL_SHAPE_PROXYTYPE;
44 	addVertex(pt0);
45 	addVertex(pt1);
46 	addVertex(pt2);
47 }
48 
btBU_Simplex1to4(const btVector3 & pt0,const btVector3 & pt1,const btVector3 & pt2,const btVector3 & pt3)49 btBU_Simplex1to4::btBU_Simplex1to4(const btVector3& pt0,const btVector3& pt1,const btVector3& pt2,const btVector3& pt3) : btPolyhedralConvexAabbCachingShape (),
50 m_numVertices(0)
51 {
52 	m_shapeType = TETRAHEDRAL_SHAPE_PROXYTYPE;
53 	addVertex(pt0);
54 	addVertex(pt1);
55 	addVertex(pt2);
56 	addVertex(pt3);
57 }
58 
59 
getAabb(const btTransform & t,btVector3 & aabbMin,btVector3 & aabbMax) const60 void btBU_Simplex1to4::getAabb(const btTransform& t,btVector3& aabbMin,btVector3& aabbMax) const
61 {
62 #if 1
63 	btPolyhedralConvexAabbCachingShape::getAabb(t,aabbMin,aabbMax);
64 #else
65 	aabbMin.setValue(BT_LARGE_FLOAT,BT_LARGE_FLOAT,BT_LARGE_FLOAT);
66 	aabbMax.setValue(-BT_LARGE_FLOAT,-BT_LARGE_FLOAT,-BT_LARGE_FLOAT);
67 
68 	//just transform the vertices in worldspace, and take their AABB
69 	for (int i=0;i<m_numVertices;i++)
70 	{
71 		btVector3 worldVertex = t(m_vertices[i]);
72 		aabbMin.setMin(worldVertex);
73 		aabbMax.setMax(worldVertex);
74 	}
75 #endif
76 }
77 
78 
79 
80 
81 
addVertex(const btVector3 & pt)82 void btBU_Simplex1to4::addVertex(const btVector3& pt)
83 {
84 	m_vertices[m_numVertices++] = pt;
85 	recalcLocalAabb();
86 }
87 
88 
getNumVertices() const89 int	btBU_Simplex1to4::getNumVertices() const
90 {
91 	return m_numVertices;
92 }
93 
getNumEdges() const94 int btBU_Simplex1to4::getNumEdges() const
95 {
96 	//euler formula, F-E+V = 2, so E = F+V-2
97 
98 	switch (m_numVertices)
99 	{
100 	case 0:
101 		return 0;
102 	case 1: return 0;
103 	case 2: return 1;
104 	case 3: return 3;
105 	case 4: return 6;
106 
107 
108 	}
109 
110 	return 0;
111 }
112 
getEdge(int i,btVector3 & pa,btVector3 & pb) const113 void btBU_Simplex1to4::getEdge(int i,btVector3& pa,btVector3& pb) const
114 {
115 
116     switch (m_numVertices)
117 	{
118 
119 	case 2:
120 		pa = m_vertices[0];
121 		pb = m_vertices[1];
122 		break;
123 	case 3:
124 		switch (i)
125 		{
126 		case 0:
127 			pa = m_vertices[0];
128 			pb = m_vertices[1];
129 			break;
130 		case 1:
131 			pa = m_vertices[1];
132 			pb = m_vertices[2];
133 			break;
134 		case 2:
135 			pa = m_vertices[2];
136 			pb = m_vertices[0];
137 			break;
138 
139 		}
140 		break;
141 	case 4:
142 		switch (i)
143 		{
144 		case 0:
145 			pa = m_vertices[0];
146 			pb = m_vertices[1];
147 			break;
148 		case 1:
149 			pa = m_vertices[1];
150 			pb = m_vertices[2];
151 			break;
152 		case 2:
153 			pa = m_vertices[2];
154 			pb = m_vertices[0];
155 			break;
156 		case 3:
157 			pa = m_vertices[0];
158 			pb = m_vertices[3];
159 			break;
160 		case 4:
161 			pa = m_vertices[1];
162 			pb = m_vertices[3];
163 			break;
164 		case 5:
165 			pa = m_vertices[2];
166 			pb = m_vertices[3];
167 			break;
168 		}
169 
170 	}
171 
172 
173 
174 
175 }
176 
getVertex(int i,btVector3 & vtx) const177 void btBU_Simplex1to4::getVertex(int i,btVector3& vtx) const
178 {
179 	vtx = m_vertices[i];
180 }
181 
getNumPlanes() const182 int	btBU_Simplex1to4::getNumPlanes() const
183 {
184 	switch (m_numVertices)
185 	{
186 	case 0:
187 			return 0;
188 	case 1:
189 			return 0;
190 	case 2:
191 			return 0;
192 	case 3:
193 			return 2;
194 	case 4:
195 			return 4;
196 	default:
197 		{
198 		}
199 	}
200 	return 0;
201 }
202 
203 
getPlane(btVector3 &,btVector3 &,int) const204 void btBU_Simplex1to4::getPlane(btVector3&, btVector3& ,int ) const
205 {
206 
207 }
208 
getIndex(int) const209 int btBU_Simplex1to4::getIndex(int ) const
210 {
211 	return 0;
212 }
213 
isInside(const btVector3 &,btScalar) const214 bool btBU_Simplex1to4::isInside(const btVector3& ,btScalar ) const
215 {
216 	return false;
217 }
218 
219