1 // Copyright (c) 2011 The Chromium Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style license that can be 3 // found in the LICENSE file. 4 5 // This defines a set of argument wrappers and related factory methods that 6 // can be used specify the refcounting and reference semantics of arguments 7 // that are bound by the Bind() function in base/bind.h. 8 // 9 // It also defines a set of simple functions and utilities that people want 10 // when using Callback<> and Bind(). 11 // 12 // 13 // ARGUMENT BINDING WRAPPERS 14 // 15 // The wrapper functions are base::Unretained(), base::Owned(), base::Passed(), 16 // base::ConstRef(), and base::IgnoreResult(). 17 // 18 // Unretained() allows Bind() to bind a non-refcounted class, and to disable 19 // refcounting on arguments that are refcounted objects. 20 // 21 // Owned() transfers ownership of an object to the Callback resulting from 22 // bind; the object will be deleted when the Callback is deleted. 23 // 24 // Passed() is for transferring movable-but-not-copyable types (eg. scoped_ptr) 25 // through a Callback. Logically, this signifies a destructive transfer of 26 // the state of the argument into the target function. Invoking 27 // Callback::Run() twice on a Callback that was created with a Passed() 28 // argument will CHECK() because the first invocation would have already 29 // transferred ownership to the target function. 30 // 31 // ConstRef() allows binding a constant reference to an argument rather 32 // than a copy. 33 // 34 // IgnoreResult() is used to adapt a function or Callback with a return type to 35 // one with a void return. This is most useful if you have a function with, 36 // say, a pesky ignorable bool return that you want to use with PostTask or 37 // something else that expect a Callback with a void return. 38 // 39 // EXAMPLE OF Unretained(): 40 // 41 // class Foo { 42 // public: 43 // void func() { cout << "Foo:f" << endl; } 44 // }; 45 // 46 // // In some function somewhere. 47 // Foo foo; 48 // Closure foo_callback = 49 // Bind(&Foo::func, Unretained(&foo)); 50 // foo_callback.Run(); // Prints "Foo:f". 51 // 52 // Without the Unretained() wrapper on |&foo|, the above call would fail 53 // to compile because Foo does not support the AddRef() and Release() methods. 54 // 55 // 56 // EXAMPLE OF Owned(): 57 // 58 // void foo(int* arg) { cout << *arg << endl } 59 // 60 // int* pn = new int(1); 61 // Closure foo_callback = Bind(&foo, Owned(pn)); 62 // 63 // foo_callback.Run(); // Prints "1" 64 // foo_callback.Run(); // Prints "1" 65 // *n = 2; 66 // foo_callback.Run(); // Prints "2" 67 // 68 // foo_callback.Reset(); // |pn| is deleted. Also will happen when 69 // // |foo_callback| goes out of scope. 70 // 71 // Without Owned(), someone would have to know to delete |pn| when the last 72 // reference to the Callback is deleted. 73 // 74 // 75 // EXAMPLE OF ConstRef(): 76 // 77 // void foo(int arg) { cout << arg << endl } 78 // 79 // int n = 1; 80 // Closure no_ref = Bind(&foo, n); 81 // Closure has_ref = Bind(&foo, ConstRef(n)); 82 // 83 // no_ref.Run(); // Prints "1" 84 // has_ref.Run(); // Prints "1" 85 // 86 // n = 2; 87 // no_ref.Run(); // Prints "1" 88 // has_ref.Run(); // Prints "2" 89 // 90 // Note that because ConstRef() takes a reference on |n|, |n| must outlive all 91 // its bound callbacks. 92 // 93 // 94 // EXAMPLE OF IgnoreResult(): 95 // 96 // int DoSomething(int arg) { cout << arg << endl; } 97 // 98 // // Assign to a Callback with a void return type. 99 // Callback<void(int)> cb = Bind(IgnoreResult(&DoSomething)); 100 // cb->Run(1); // Prints "1". 101 // 102 // // Prints "1" on |ml|. 103 // ml->PostTask(FROM_HERE, Bind(IgnoreResult(&DoSomething), 1); 104 // 105 // 106 // EXAMPLE OF Passed(): 107 // 108 // void TakesOwnership(scoped_ptr<Foo> arg) { } 109 // scoped_ptr<Foo> CreateFoo() { return scoped_ptr<Foo>(new Foo()); } 110 // 111 // scoped_ptr<Foo> f(new Foo()); 112 // 113 // // |cb| is given ownership of Foo(). |f| is now NULL. 114 // // You can use std::move(f) in place of &f, but it's more verbose. 115 // Closure cb = Bind(&TakesOwnership, Passed(&f)); 116 // 117 // // Run was never called so |cb| still owns Foo() and deletes 118 // // it on Reset(). 119 // cb.Reset(); 120 // 121 // // |cb| is given a new Foo created by CreateFoo(). 122 // cb = Bind(&TakesOwnership, Passed(CreateFoo())); 123 // 124 // // |arg| in TakesOwnership() is given ownership of Foo(). |cb| 125 // // no longer owns Foo() and, if reset, would not delete Foo(). 126 // cb.Run(); // Foo() is now transferred to |arg| and deleted. 127 // cb.Run(); // This CHECK()s since Foo() already been used once. 128 // 129 // Passed() is particularly useful with PostTask() when you are transferring 130 // ownership of an argument into a task, but don't necessarily know if the 131 // task will always be executed. This can happen if the task is cancellable 132 // or if it is posted to a TaskRunner. 133 // 134 // 135 // SIMPLE FUNCTIONS AND UTILITIES. 136 // 137 // DoNothing() - Useful for creating a Closure that does nothing when called. 138 // DeletePointer<T>() - Useful for creating a Closure that will delete a 139 // pointer when invoked. Only use this when necessary. 140 // In most cases MessageLoop::DeleteSoon() is a better 141 // fit. 142 143 #ifndef BASE_BIND_HELPERS_H_ 144 #define BASE_BIND_HELPERS_H_ 145 146 #include <stddef.h> 147 148 #include <map> 149 #include <memory> 150 #include <type_traits> 151 #include <utility> 152 #include <vector> 153 154 #include "base/callback.h" 155 #include "base/memory/weak_ptr.h" 156 #include "base/template_util.h" 157 #include "build/build_config.h" 158 159 namespace base { 160 namespace internal { 161 162 // Use the Substitution Failure Is Not An Error (SFINAE) trick to inspect T 163 // for the existence of AddRef() and Release() functions of the correct 164 // signature. 165 // 166 // http://en.wikipedia.org/wiki/Substitution_failure_is_not_an_error 167 // http://stackoverflow.com/questions/257288/is-it-possible-to-write-a-c-template-to-check-for-a-functions-existence 168 // http://stackoverflow.com/questions/4358584/sfinae-approach-comparison 169 // http://stackoverflow.com/questions/1966362/sfinae-to-check-for-inherited-member-functions 170 // 171 // The last link in particular show the method used below. 172 // 173 // For SFINAE to work with inherited methods, we need to pull some extra tricks 174 // with multiple inheritance. In the more standard formulation, the overloads 175 // of Check would be: 176 // 177 // template <typename C> 178 // Yes NotTheCheckWeWant(Helper<&C::TargetFunc>*); 179 // 180 // template <typename C> 181 // No NotTheCheckWeWant(...); 182 // 183 // static const bool value = sizeof(NotTheCheckWeWant<T>(0)) == sizeof(Yes); 184 // 185 // The problem here is that template resolution will not match 186 // C::TargetFunc if TargetFunc does not exist directly in C. That is, if 187 // TargetFunc in inherited from an ancestor, &C::TargetFunc will not match, 188 // |value| will be false. This formulation only checks for whether or 189 // not TargetFunc exist directly in the class being introspected. 190 // 191 // To get around this, we play a dirty trick with multiple inheritance. 192 // First, We create a class BaseMixin that declares each function that we 193 // want to probe for. Then we create a class Base that inherits from both T 194 // (the class we wish to probe) and BaseMixin. Note that the function 195 // signature in BaseMixin does not need to match the signature of the function 196 // we are probing for; thus it's easiest to just use void(). 197 // 198 // Now, if TargetFunc exists somewhere in T, then &Base::TargetFunc has an 199 // ambiguous resolution between BaseMixin and T. This lets us write the 200 // following: 201 // 202 // template <typename C> 203 // No GoodCheck(Helper<&C::TargetFunc>*); 204 // 205 // template <typename C> 206 // Yes GoodCheck(...); 207 // 208 // static const bool value = sizeof(GoodCheck<Base>(0)) == sizeof(Yes); 209 // 210 // Notice here that the variadic version of GoodCheck() returns Yes here 211 // instead of No like the previous one. Also notice that we calculate |value| 212 // by specializing GoodCheck() on Base instead of T. 213 // 214 // We've reversed the roles of the variadic, and Helper overloads. 215 // GoodCheck(Helper<&C::TargetFunc>*), when C = Base, fails to be a valid 216 // substitution if T::TargetFunc exists. Thus GoodCheck<Base>(0) will resolve 217 // to the variadic version if T has TargetFunc. If T::TargetFunc does not 218 // exist, then &C::TargetFunc is not ambiguous, and the overload resolution 219 // will prefer GoodCheck(Helper<&C::TargetFunc>*). 220 // 221 // This method of SFINAE will correctly probe for inherited names, but it cannot 222 // typecheck those names. It's still a good enough sanity check though. 223 // 224 // Works on gcc-4.2, gcc-4.4, and Visual Studio 2008. 225 // 226 // TODO(ajwong): Move to ref_counted.h or template_util.h when we've vetted 227 // this works well. 228 // 229 // TODO(ajwong): Make this check for Release() as well. 230 // See http://crbug.com/82038. 231 template <typename T> 232 class SupportsAddRefAndRelease { 233 using Yes = char[1]; 234 using No = char[2]; 235 236 struct BaseMixin { 237 void AddRef(); 238 }; 239 240 // MSVC warns when you try to use Base if T has a private destructor, the 241 // common pattern for refcounted types. It does this even though no attempt to 242 // instantiate Base is made. We disable the warning for this definition. 243 #if defined(OS_WIN) 244 #pragma warning(push) 245 #pragma warning(disable:4624) 246 #endif 247 struct Base : public T, public BaseMixin { 248 }; 249 #if defined(OS_WIN) 250 #pragma warning(pop) 251 #endif 252 253 template <void(BaseMixin::*)()> struct Helper {}; 254 255 template <typename C> 256 static No& Check(Helper<&C::AddRef>*); 257 258 template <typename > 259 static Yes& Check(...); 260 261 public: 262 enum { value = sizeof(Check<Base>(0)) == sizeof(Yes) }; 263 }; 264 265 // Helpers to assert that arguments of a recounted type are bound with a 266 // scoped_refptr. 267 template <bool IsClasstype, typename T> 268 struct UnsafeBindtoRefCountedArgHelper : std::false_type { 269 }; 270 271 template <typename T> 272 struct UnsafeBindtoRefCountedArgHelper<true, T> 273 : std::integral_constant<bool, SupportsAddRefAndRelease<T>::value> { 274 }; 275 276 template <typename T> 277 struct UnsafeBindtoRefCountedArg : std::false_type { 278 }; 279 280 template <typename T> 281 struct UnsafeBindtoRefCountedArg<T*> 282 : UnsafeBindtoRefCountedArgHelper<std::is_class<T>::value, T> { 283 }; 284 285 template <typename T> 286 class HasIsMethodTag { 287 using Yes = char[1]; 288 using No = char[2]; 289 290 template <typename U> 291 static Yes& Check(typename U::IsMethod*); 292 293 template <typename U> 294 static No& Check(...); 295 296 public: 297 enum { value = sizeof(Check<T>(0)) == sizeof(Yes) }; 298 }; 299 300 template <typename T> 301 class UnretainedWrapper { 302 public: 303 explicit UnretainedWrapper(T* o) : ptr_(o) {} 304 T* get() const { return ptr_; } 305 private: 306 T* ptr_; 307 }; 308 309 template <typename T> 310 class ConstRefWrapper { 311 public: 312 explicit ConstRefWrapper(const T& o) : ptr_(&o) {} 313 const T& get() const { return *ptr_; } 314 private: 315 const T* ptr_; 316 }; 317 318 template <typename T> 319 struct IgnoreResultHelper { 320 explicit IgnoreResultHelper(T functor) : functor_(functor) {} 321 322 T functor_; 323 }; 324 325 template <typename T> 326 struct IgnoreResultHelper<Callback<T> > { 327 explicit IgnoreResultHelper(const Callback<T>& functor) : functor_(functor) {} 328 329 const Callback<T>& functor_; 330 }; 331 332 // An alternate implementation is to avoid the destructive copy, and instead 333 // specialize ParamTraits<> for OwnedWrapper<> to change the StorageType to 334 // a class that is essentially a scoped_ptr<>. 335 // 336 // The current implementation has the benefit though of leaving ParamTraits<> 337 // fully in callback_internal.h as well as avoiding type conversions during 338 // storage. 339 template <typename T> 340 class OwnedWrapper { 341 public: 342 explicit OwnedWrapper(T* o) : ptr_(o) {} 343 ~OwnedWrapper() { delete ptr_; } 344 T* get() const { return ptr_; } 345 OwnedWrapper(const OwnedWrapper& other) { 346 ptr_ = other.ptr_; 347 other.ptr_ = NULL; 348 } 349 350 private: 351 mutable T* ptr_; 352 }; 353 354 // PassedWrapper is a copyable adapter for a scoper that ignores const. 355 // 356 // It is needed to get around the fact that Bind() takes a const reference to 357 // all its arguments. Because Bind() takes a const reference to avoid 358 // unnecessary copies, it is incompatible with movable-but-not-copyable 359 // types; doing a destructive "move" of the type into Bind() would violate 360 // the const correctness. 361 // 362 // This conundrum cannot be solved without either C++11 rvalue references or 363 // a O(2^n) blowup of Bind() templates to handle each combination of regular 364 // types and movable-but-not-copyable types. Thus we introduce a wrapper type 365 // that is copyable to transmit the correct type information down into 366 // BindState<>. Ignoring const in this type makes sense because it is only 367 // created when we are explicitly trying to do a destructive move. 368 // 369 // Two notes: 370 // 1) PassedWrapper supports any type that has a move constructor, however 371 // the type will need to be specifically whitelisted in order for it to be 372 // bound to a Callback. We guard this explicitly at the call of Passed() 373 // to make for clear errors. Things not given to Passed() will be forwarded 374 // and stored by value which will not work for general move-only types. 375 // 2) is_valid_ is distinct from NULL because it is valid to bind a "NULL" 376 // scoper to a Callback and allow the Callback to execute once. 377 template <typename T> 378 class PassedWrapper { 379 public: 380 explicit PassedWrapper(T&& scoper) 381 : is_valid_(true), scoper_(std::move(scoper)) {} 382 PassedWrapper(const PassedWrapper& other) 383 : is_valid_(other.is_valid_), scoper_(std::move(other.scoper_)) {} 384 T Pass() const { 385 CHECK(is_valid_); 386 is_valid_ = false; 387 return std::move(scoper_); 388 } 389 390 private: 391 mutable bool is_valid_; 392 mutable T scoper_; 393 }; 394 395 // Unwrap the stored parameters for the wrappers above. 396 template <typename T> 397 struct UnwrapTraits { 398 using ForwardType = const T&; 399 static ForwardType Unwrap(const T& o) { return o; } 400 }; 401 402 template <typename T> 403 struct UnwrapTraits<UnretainedWrapper<T> > { 404 using ForwardType = T*; 405 static ForwardType Unwrap(UnretainedWrapper<T> unretained) { 406 return unretained.get(); 407 } 408 }; 409 410 template <typename T> 411 struct UnwrapTraits<ConstRefWrapper<T> > { 412 using ForwardType = const T&; 413 static ForwardType Unwrap(ConstRefWrapper<T> const_ref) { 414 return const_ref.get(); 415 } 416 }; 417 418 template <typename T> 419 struct UnwrapTraits<scoped_refptr<T> > { 420 using ForwardType = T*; 421 static ForwardType Unwrap(const scoped_refptr<T>& o) { return o.get(); } 422 }; 423 424 template <typename T> 425 struct UnwrapTraits<WeakPtr<T> > { 426 using ForwardType = const WeakPtr<T>&; 427 static ForwardType Unwrap(const WeakPtr<T>& o) { return o; } 428 }; 429 430 template <typename T> 431 struct UnwrapTraits<OwnedWrapper<T> > { 432 using ForwardType = T*; 433 static ForwardType Unwrap(const OwnedWrapper<T>& o) { 434 return o.get(); 435 } 436 }; 437 438 template <typename T> 439 struct UnwrapTraits<PassedWrapper<T> > { 440 using ForwardType = T; 441 static T Unwrap(PassedWrapper<T>& o) { 442 return o.Pass(); 443 } 444 }; 445 446 // Utility for handling different refcounting semantics in the Bind() 447 // function. 448 template <bool is_method, typename... T> 449 struct MaybeScopedRefPtr; 450 451 template <bool is_method> 452 struct MaybeScopedRefPtr<is_method> { 453 MaybeScopedRefPtr() {} 454 }; 455 456 template <typename T, typename... Rest> 457 struct MaybeScopedRefPtr<false, T, Rest...> { 458 MaybeScopedRefPtr(const T&, const Rest&...) {} 459 }; 460 461 template <typename T, size_t n, typename... Rest> 462 struct MaybeScopedRefPtr<false, T[n], Rest...> { 463 MaybeScopedRefPtr(const T*, const Rest&...) {} 464 }; 465 466 template <typename T, typename... Rest> 467 struct MaybeScopedRefPtr<true, T, Rest...> { 468 MaybeScopedRefPtr(const T& /* o */, const Rest&...) {} 469 }; 470 471 template <typename T, typename... Rest> 472 struct MaybeScopedRefPtr<true, T*, Rest...> { 473 MaybeScopedRefPtr(T* o, const Rest&...) : ref_(o) {} 474 scoped_refptr<T> ref_; 475 }; 476 477 // No need to additionally AddRef() and Release() since we are storing a 478 // scoped_refptr<> inside the storage object already. 479 template <typename T, typename... Rest> 480 struct MaybeScopedRefPtr<true, scoped_refptr<T>, Rest...> { 481 MaybeScopedRefPtr(const scoped_refptr<T>&, const Rest&...) {} 482 }; 483 484 template <typename T, typename... Rest> 485 struct MaybeScopedRefPtr<true, const T*, Rest...> { 486 MaybeScopedRefPtr(const T* o, const Rest&...) : ref_(o) {} 487 scoped_refptr<const T> ref_; 488 }; 489 490 // IsWeakMethod is a helper that determine if we are binding a WeakPtr<> to a 491 // method. It is used internally by Bind() to select the correct 492 // InvokeHelper that will no-op itself in the event the WeakPtr<> for 493 // the target object is invalidated. 494 // 495 // The first argument should be the type of the object that will be received by 496 // the method. 497 template <bool IsMethod, typename... Args> 498 struct IsWeakMethod : public std::false_type {}; 499 500 template <typename T, typename... Args> 501 struct IsWeakMethod<true, WeakPtr<T>, Args...> : public std::true_type {}; 502 503 template <typename T, typename... Args> 504 struct IsWeakMethod<true, ConstRefWrapper<WeakPtr<T>>, Args...> 505 : public std::true_type {}; 506 507 508 // Packs a list of types to hold them in a single type. 509 template <typename... Types> 510 struct TypeList {}; 511 512 // Used for DropTypeListItem implementation. 513 template <size_t n, typename List> 514 struct DropTypeListItemImpl; 515 516 // Do not use enable_if and SFINAE here to avoid MSVC2013 compile failure. 517 template <size_t n, typename T, typename... List> 518 struct DropTypeListItemImpl<n, TypeList<T, List...>> 519 : DropTypeListItemImpl<n - 1, TypeList<List...>> {}; 520 521 template <typename T, typename... List> 522 struct DropTypeListItemImpl<0, TypeList<T, List...>> { 523 using Type = TypeList<T, List...>; 524 }; 525 526 template <> 527 struct DropTypeListItemImpl<0, TypeList<>> { 528 using Type = TypeList<>; 529 }; 530 531 // A type-level function that drops |n| list item from given TypeList. 532 template <size_t n, typename List> 533 using DropTypeListItem = typename DropTypeListItemImpl<n, List>::Type; 534 535 // Used for TakeTypeListItem implementation. 536 template <size_t n, typename List, typename... Accum> 537 struct TakeTypeListItemImpl; 538 539 // Do not use enable_if and SFINAE here to avoid MSVC2013 compile failure. 540 template <size_t n, typename T, typename... List, typename... Accum> 541 struct TakeTypeListItemImpl<n, TypeList<T, List...>, Accum...> 542 : TakeTypeListItemImpl<n - 1, TypeList<List...>, Accum..., T> {}; 543 544 template <typename T, typename... List, typename... Accum> 545 struct TakeTypeListItemImpl<0, TypeList<T, List...>, Accum...> { 546 using Type = TypeList<Accum...>; 547 }; 548 549 template <typename... Accum> 550 struct TakeTypeListItemImpl<0, TypeList<>, Accum...> { 551 using Type = TypeList<Accum...>; 552 }; 553 554 // A type-level function that takes first |n| list item from given TypeList. 555 // E.g. TakeTypeListItem<3, TypeList<A, B, C, D>> is evaluated to 556 // TypeList<A, B, C>. 557 template <size_t n, typename List> 558 using TakeTypeListItem = typename TakeTypeListItemImpl<n, List>::Type; 559 560 // Used for ConcatTypeLists implementation. 561 template <typename List1, typename List2> 562 struct ConcatTypeListsImpl; 563 564 template <typename... Types1, typename... Types2> 565 struct ConcatTypeListsImpl<TypeList<Types1...>, TypeList<Types2...>> { 566 using Type = TypeList<Types1..., Types2...>; 567 }; 568 569 // A type-level function that concats two TypeLists. 570 template <typename List1, typename List2> 571 using ConcatTypeLists = typename ConcatTypeListsImpl<List1, List2>::Type; 572 573 // Used for MakeFunctionType implementation. 574 template <typename R, typename ArgList> 575 struct MakeFunctionTypeImpl; 576 577 template <typename R, typename... Args> 578 struct MakeFunctionTypeImpl<R, TypeList<Args...>> { 579 // MSVC 2013 doesn't support Type Alias of function types. 580 // Revisit this after we update it to newer version. 581 typedef R Type(Args...); 582 }; 583 584 // A type-level function that constructs a function type that has |R| as its 585 // return type and has TypeLists items as its arguments. 586 template <typename R, typename ArgList> 587 using MakeFunctionType = typename MakeFunctionTypeImpl<R, ArgList>::Type; 588 589 // Used for ExtractArgs. 590 template <typename Signature> 591 struct ExtractArgsImpl; 592 593 template <typename R, typename... Args> 594 struct ExtractArgsImpl<R(Args...)> { 595 using Type = TypeList<Args...>; 596 }; 597 598 // A type-level function that extracts function arguments into a TypeList. 599 // E.g. ExtractArgs<R(A, B, C)> is evaluated to TypeList<A, B, C>. 600 template <typename Signature> 601 using ExtractArgs = typename ExtractArgsImpl<Signature>::Type; 602 603 } // namespace internal 604 605 template <typename T> 606 static inline internal::UnretainedWrapper<T> Unretained(T* o) { 607 return internal::UnretainedWrapper<T>(o); 608 } 609 610 template <typename T> 611 static inline internal::ConstRefWrapper<T> ConstRef(const T& o) { 612 return internal::ConstRefWrapper<T>(o); 613 } 614 615 template <typename T> 616 static inline internal::OwnedWrapper<T> Owned(T* o) { 617 return internal::OwnedWrapper<T>(o); 618 } 619 620 // We offer 2 syntaxes for calling Passed(). The first takes an rvalue and 621 // is best suited for use with the return value of a function or other temporary 622 // rvalues. The second takes a pointer to the scoper and is just syntactic sugar 623 // to avoid having to write Passed(std::move(scoper)). 624 // 625 // Both versions of Passed() prevent T from being an lvalue reference. The first 626 // via use of enable_if, and the second takes a T* which will not bind to T&. 627 template <typename T, 628 typename std::enable_if<internal::IsMoveOnlyType<T>::value && 629 !std::is_lvalue_reference<T>::value>::type* = 630 nullptr> 631 static inline internal::PassedWrapper<T> Passed(T&& scoper) { 632 return internal::PassedWrapper<T>(std::move(scoper)); 633 } 634 template <typename T, 635 typename std::enable_if<internal::IsMoveOnlyType<T>::value>::type* = 636 nullptr> 637 static inline internal::PassedWrapper<T> Passed(T* scoper) { 638 return internal::PassedWrapper<T>(std::move(*scoper)); 639 } 640 641 template <typename T> 642 static inline internal::IgnoreResultHelper<T> IgnoreResult(T data) { 643 return internal::IgnoreResultHelper<T>(data); 644 } 645 646 template <typename T> 647 static inline internal::IgnoreResultHelper<Callback<T> > 648 IgnoreResult(const Callback<T>& data) { 649 return internal::IgnoreResultHelper<Callback<T> >(data); 650 } 651 652 void DoNothing(); 653 654 template<typename T> 655 void DeletePointer(T* obj) { 656 delete obj; 657 } 658 659 } // namespace base 660 661 #endif // BASE_BIND_HELPERS_H_ 662